Properties

Label 11.1.11.16a2.1
Base \(\Q_{11}\)
Degree \(11\)
e \(11\)
f \(1\)
c \(16\)
Galois group $C_{11}:C_5$ (as 11T3)

Related objects

Downloads

Learn more

Defining polynomial

\(x^{11} + 22 x^{6} + 11\) Copy content Toggle raw display

Invariants

Base field: $\Q_{11}$
Degree $d$: $11$
Ramification index $e$: $11$
Residue field degree $f$: $1$
Discriminant exponent $c$: $16$
Discriminant root field: $\Q_{11}$
Root number: $1$
$\Aut(K/\Q_{11})$: $C_1$
This field is not Galois over $\Q_{11}.$
Visible Artin slopes:$[\frac{8}{5}]$
Visible Swan slopes:$[\frac{3}{5}]$
Means:$\langle\frac{6}{11}\rangle$
Rams:$(\frac{3}{5})$
Jump set:undefined
Roots of unity:$10 = (11 - 1)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q_{ 11 }$.

Canonical tower

Unramified subfield:$\Q_{11}$
Relative Eisenstein polynomial: \( x^{11} + 22 x^{6} + 11 \) Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^2 + 10$
Associated inertia:$1$
Indices of inseparability:$[6, 0]$

Invariants of the Galois closure

Galois degree: $55$
Galois group: $C_{11}:C_5$ (as 11T3)
Inertia group: $C_{11}:C_5$ (as 11T3)
Wild inertia group: $C_{11}$
Galois unramified degree: $1$
Galois tame degree: $5$
Galois Artin slopes: $[\frac{8}{5}]$
Galois Swan slopes: $[\frac{3}{5}]$
Galois mean slope: $1.5272727272727273$
Galois splitting model:$x^{11} - 55 x^{9} + 1100 x^{7} - 9625 x^{5} + 34375 x^{3} - 34375 x - 12675$