Normalized defining polynomial
\( x^{12} - 6 x^{11} + 33 x^{10} - 110 x^{9} + 2112 x^{8} - 7854 x^{7} + 24013 x^{6} - 35442 x^{5} + 1081080 x^{4} - 2029698 x^{3} + 1589841 x^{2} + 6368382 x + 214386723 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(74666441181916948967589849071616=2^{22}\cdot 3^{18}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $453.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{12} a^{4} - \frac{1}{6} a^{3} - \frac{5}{12} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{12} a^{5} - \frac{1}{12} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{36} a^{6} + \frac{1}{36} a^{5} + \frac{1}{36} a^{4} + \frac{1}{12} a^{3} - \frac{5}{12} a^{2} + \frac{1}{4} a$, $\frac{1}{36} a^{7} - \frac{1}{36} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{432} a^{8} - \frac{1}{72} a^{6} - \frac{1}{108} a^{5} + \frac{1}{144} a^{4} + \frac{5}{36} a^{3} - \frac{7}{24} a^{2} - \frac{1}{12} a + \frac{7}{16}$, $\frac{1}{432} a^{9} - \frac{1}{72} a^{7} - \frac{1}{108} a^{6} + \frac{1}{144} a^{5} - \frac{1}{36} a^{4} + \frac{1}{24} a^{3} - \frac{1}{4} a^{2} + \frac{7}{16} a - \frac{1}{2}$, $\frac{1}{2592} a^{10} - \frac{1}{2592} a^{9} - \frac{1}{864} a^{8} - \frac{11}{1296} a^{7} - \frac{11}{2592} a^{6} + \frac{5}{288} a^{5} - \frac{1}{288} a^{4} - \frac{1}{16} a^{3} + \frac{15}{32} a^{2} - \frac{35}{96} a - \frac{19}{96}$, $\frac{1}{15276831131851677216} a^{11} - \frac{888239361157447}{7638415565925838608} a^{10} - \frac{18719020370717}{3819207782962919304} a^{9} + \frac{10785111057448919}{15276831131851677216} a^{8} - \frac{3347511072410341}{412887327887883168} a^{7} + \frac{15214603753674265}{1909603891481459652} a^{6} + \frac{13097586263873603}{424356420329213256} a^{5} + \frac{805951915828951}{62867617826550112} a^{4} + \frac{91749789750730127}{565808560438951008} a^{3} - \frac{228450352024571}{70726070054868876} a^{2} - \frac{36908562549533587}{282904280219475504} a + \frac{134602296782855953}{565808560438951008}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 39976757877.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\PSL(2,11)$ (as 12T179):
| A non-solvable group of order 660 |
| The 8 conjugacy class representatives for $\PSL(2,11)$ |
| Character table for $\PSL(2,11)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 11 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.22.79 | $x^{12} + 2 x^{10} + 4 x^{8} + 4 x^{6} + 4 x^{4} + 4$ | $6$ | $2$ | $22$ | $D_6$ | $[3]_{3}^{2}$ |
| $3$ | 3.6.9.2 | $x^{6} + 3 x^{4} + 6$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.2 | $x^{6} + 3 x^{4} + 6$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 11.11.16.4 | $x^{11} + 22 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $[8/5]_{5}$ |