Normalized defining polynomial
\( x^{12} - 6 x^{11} + 33 x^{10} - 110 x^{9} + 2112 x^{8} - 7854 x^{7} + 24013 x^{6} - 35442 x^{5} + \cdots + 214386723 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[0, 6]$ |
| |
| Discriminant: |
\(74666441181916948967589849071616\)
\(\medspace = 2^{22}\cdot 3^{18}\cdot 11^{16}\)
|
| |
| Root discriminant: | \(453.00\) |
| |
| Galois root discriminant: | $2^{11/6}3^{3/2}11^{84/55}\approx 721.2085287457858$ | ||
| Ramified primes: |
\(2\), \(3\), \(11\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3}a^{3}-\frac{1}{3}a^{2}$, $\frac{1}{12}a^{4}-\frac{1}{6}a^{3}-\frac{5}{12}a^{2}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{12}a^{5}-\frac{1}{12}a^{3}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{36}a^{6}+\frac{1}{36}a^{5}+\frac{1}{36}a^{4}+\frac{1}{12}a^{3}-\frac{5}{12}a^{2}+\frac{1}{4}a$, $\frac{1}{36}a^{7}-\frac{1}{36}a^{4}-\frac{1}{4}a^{2}+\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{432}a^{8}-\frac{1}{72}a^{6}-\frac{1}{108}a^{5}+\frac{1}{144}a^{4}+\frac{5}{36}a^{3}-\frac{7}{24}a^{2}-\frac{1}{12}a+\frac{7}{16}$, $\frac{1}{432}a^{9}-\frac{1}{72}a^{7}-\frac{1}{108}a^{6}+\frac{1}{144}a^{5}-\frac{1}{36}a^{4}+\frac{1}{24}a^{3}-\frac{1}{4}a^{2}+\frac{7}{16}a-\frac{1}{2}$, $\frac{1}{2592}a^{10}-\frac{1}{2592}a^{9}-\frac{1}{864}a^{8}-\frac{11}{1296}a^{7}-\frac{11}{2592}a^{6}+\frac{5}{288}a^{5}-\frac{1}{288}a^{4}-\frac{1}{16}a^{3}+\frac{15}{32}a^{2}-\frac{35}{96}a-\frac{19}{96}$, $\frac{1}{15\cdots 16}a^{11}-\frac{888239361157447}{76\cdots 08}a^{10}-\frac{18719020370717}{38\cdots 04}a^{9}+\frac{10\cdots 19}{15\cdots 16}a^{8}-\frac{33\cdots 41}{41\cdots 68}a^{7}+\frac{15\cdots 65}{19\cdots 52}a^{6}+\frac{13\cdots 03}{42\cdots 56}a^{5}+\frac{805951915828951}{62\cdots 12}a^{4}+\frac{91\cdots 27}{56\cdots 08}a^{3}-\frac{228450352024571}{70\cdots 76}a^{2}-\frac{36\cdots 87}{28\cdots 04}a+\frac{13\cdots 53}{56\cdots 08}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{2}\times C_{6}$, which has order $12$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}\times C_{6}$, which has order $12$ (assuming GRH) |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{18\cdots 57}{25\cdots 36}a^{11}-\frac{17\cdots 09}{84\cdots 12}a^{10}+\frac{77\cdots 47}{63\cdots 84}a^{9}-\frac{72\cdots 47}{12\cdots 68}a^{8}+\frac{27\cdots 45}{22\cdots 76}a^{7}-\frac{60\cdots 49}{25\cdots 36}a^{6}-\frac{22\cdots 31}{21\cdots 28}a^{5}-\frac{10\cdots 57}{15\cdots 28}a^{4}+\frac{10\cdots 29}{28\cdots 04}a^{3}-\frac{66\cdots 61}{94\cdots 68}a^{2}-\frac{28\cdots 65}{47\cdots 84}a-\frac{79\cdots 69}{23\cdots 92}$, $\frac{23\cdots 81}{76\cdots 08}a^{11}-\frac{18\cdots 57}{76\cdots 08}a^{10}+\frac{98\cdots 61}{76\cdots 08}a^{9}-\frac{13\cdots 33}{38\cdots 04}a^{8}+\frac{11\cdots 33}{20\cdots 84}a^{7}-\frac{19\cdots 83}{76\cdots 08}a^{6}+\frac{16\cdots 45}{28\cdots 04}a^{5}+\frac{26\cdots 33}{14\cdots 52}a^{4}+\frac{93\cdots 43}{94\cdots 68}a^{3}-\frac{69\cdots 99}{28\cdots 04}a^{2}-\frac{49\cdots 59}{28\cdots 04}a+\frac{29\cdots 33}{17\cdots 19}$, $\frac{30\cdots 21}{95\cdots 26}a^{11}-\frac{48\cdots 93}{76\cdots 08}a^{10}+\frac{22\cdots 21}{38\cdots 04}a^{9}-\frac{13\cdots 69}{38\cdots 04}a^{8}+\frac{57\cdots 17}{25\cdots 98}a^{7}-\frac{11\cdots 87}{76\cdots 08}a^{6}+\frac{36\cdots 51}{42\cdots 56}a^{5}-\frac{48\cdots 67}{14\cdots 52}a^{4}+\frac{84\cdots 29}{70\cdots 76}a^{3}-\frac{15\cdots 83}{28\cdots 04}a^{2}+\frac{28\cdots 09}{14\cdots 52}a-\frac{14\cdots 59}{35\cdots 38}$, $\frac{71\cdots 35}{12\cdots 68}a^{11}-\frac{20\cdots 27}{31\cdots 42}a^{10}+\frac{47\cdots 71}{12\cdots 68}a^{9}-\frac{21\cdots 39}{25\cdots 36}a^{8}+\frac{17\cdots 25}{34\cdots 64}a^{7}-\frac{53\cdots 71}{12\cdots 68}a^{6}+\frac{87\cdots 69}{42\cdots 56}a^{5}-\frac{21\cdots 57}{31\cdots 56}a^{4}+\frac{24\cdots 35}{14\cdots 52}a^{3}-\frac{10\cdots 11}{15\cdots 28}a^{2}+\frac{56\cdots 61}{15\cdots 28}a+\frac{23\cdots 83}{94\cdots 68}$, $\frac{21\cdots 27}{76\cdots 08}a^{11}-\frac{53\cdots 57}{19\cdots 52}a^{10}-\frac{19\cdots 21}{38\cdots 04}a^{9}-\frac{55\cdots 97}{76\cdots 08}a^{8}-\frac{19\cdots 19}{20\cdots 84}a^{7}-\frac{20\cdots 15}{38\cdots 04}a^{6}-\frac{73\cdots 13}{42\cdots 56}a^{5}-\frac{80\cdots 95}{94\cdots 68}a^{4}-\frac{41\cdots 99}{28\cdots 04}a^{3}-\frac{32\cdots 29}{14\cdots 52}a^{2}-\frac{66\cdots 37}{70\cdots 76}a-\frac{73\cdots 87}{28\cdots 04}$
|
| |
| Regulator: | \( 39976757877.1 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 39976757877.1 \cdot 12}{2\cdot\sqrt{74666441181916948967589849071616}}\cr\approx \mathstrut & 1.70795059659 \end{aligned}\] (assuming GRH)
Galois group
$\PSL(2,11)$ (as 12T179):
| A non-solvable group of order 660 |
| The 8 conjugacy class representatives for $\PSL(2,11)$ |
| Character table for $\PSL(2,11)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 11 siblings: | 11.3.14403248684783362069365325824.2, 11.3.14403248684783362069365325824.4 |
| Minimal sibling: | 11.3.14403248684783362069365325824.2 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.5.0.1}{5} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ | ${\href{/padicField/7.5.0.1}{5} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/13.3.0.1}{3} }^{4}$ | ${\href{/padicField/17.5.0.1}{5} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ | ${\href{/padicField/19.11.0.1}{11} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.11.0.1}{11} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.5.0.1}{5} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }^{2}$ | ${\href{/padicField/37.5.0.1}{5} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.5.0.1}{5} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.5.0.1}{5} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}$ | ${\href{/padicField/53.5.0.1}{5} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.6.22a1.1 | $x^{12} + 6 x^{11} + 21 x^{10} + 50 x^{9} + 90 x^{8} + 126 x^{7} + 141 x^{6} + 126 x^{5} + 90 x^{4} + 50 x^{3} + 21 x^{2} + 6 x + 3$ | $6$ | $2$ | $22$ | $D_6$ | $$[3]_{3}^{2}$$ |
|
\(3\)
| 3.1.6.9a1.7 | $x^{6} + 3 x^{4} + 6$ | $6$ | $1$ | $9$ | $C_6$ | $$[2]_{2}$$ |
| 3.1.6.9a1.7 | $x^{6} + 3 x^{4} + 6$ | $6$ | $1$ | $9$ | $C_6$ | $$[2]_{2}$$ | |
|
\(11\)
| $\Q_{11}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 11.1.11.16a2.1 | $x^{11} + 22 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $$[\frac{8}{5}]_{5}$$ |