Group action invariants
| Degree $n$ : | $11$ | |
| Transitive number $t$ : | $5$ | |
| Group : | $\PSL(2,11)$ | |
| CHM label : | $L(11)=PSL(2,11)(11)$ | |
| Parity: | $1$ | |
| Primitive: | Yes | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2,3,4,5,6,7,8,9,10,11), (2,10)(3,4)(5,9)(6,7) | |
| $|\Aut(F/K)|$: | $1$ |
Low degree resolvents
NoneResolvents shown for degrees $\leq 47$
Subfields
Prime degree - none
Low degree siblings
11T5, 12T179Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1 $ | $55$ | $2$ | $( 3, 4)( 5, 7)( 6, 9)( 8,11)$ |
| $ 3, 3, 3, 1, 1 $ | $110$ | $3$ | $( 3, 5, 8)( 4,11, 7)( 6, 9,10)$ |
| $ 5, 5, 1 $ | $132$ | $5$ | $( 2, 3, 6, 9, 4)( 5,10, 7, 8,11)$ |
| $ 5, 5, 1 $ | $132$ | $5$ | $( 2, 3,10, 9, 7)( 4, 5,11, 8, 6)$ |
| $ 6, 3, 2 $ | $110$ | $6$ | $( 1, 2)( 3, 4, 8, 7, 5,11)( 6, 9,10)$ |
| $ 11 $ | $60$ | $11$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11)$ |
| $ 11 $ | $60$ | $11$ | $( 1, 2, 3, 6,10, 7, 5, 9,11, 8, 4)$ |
Group invariants
| Order: | $660=2^{2} \cdot 3 \cdot 5 \cdot 11$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | [660, 13] |
| Character table: |
2 2 2 1 . . 1 . .
3 1 1 1 . . 1 . .
5 1 . . 1 1 . . .
11 1 . . . . . 1 1
1a 2a 3a 5a 5b 6a 11a 11b
2P 1a 1a 3a 5b 5a 3a 11b 11a
3P 1a 2a 1a 5b 5a 2a 11a 11b
5P 1a 2a 3a 1a 1a 6a 11a 11b
7P 1a 2a 3a 5b 5a 6a 11b 11a
11P 1a 2a 3a 5a 5b 6a 1a 1a
X.1 1 1 1 1 1 1 1 1
X.2 5 1 -1 . . 1 B /B
X.3 5 1 -1 . . 1 /B B
X.4 10 -2 1 . . 1 -1 -1
X.5 10 2 1 . . -1 -1 -1
X.6 11 -1 -1 1 1 -1 . .
X.7 12 . . A *A . 1 1
X.8 12 . . *A A . 1 1
A = E(5)^2+E(5)^3
= (-1-Sqrt(5))/2 = -1-b5
B = E(11)+E(11)^3+E(11)^4+E(11)^5+E(11)^9
= (-1+Sqrt(-11))/2 = b11
|