Normalized defining polynomial
\( x^{10} - 4 x^{9} + 353 x^{8} - 104 x^{7} + 33864 x^{6} + 107536 x^{5} + 577512 x^{4} + 1013344 x^{3} + \cdots - 15005552 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[2, 4]$ |
| |
| Discriminant: |
\(6654854908590083522960688000000\)
\(\medspace = 2^{10}\cdot 3^{5}\cdot 5^{6}\cdot 11^{8}\cdot 41^{8}\)
|
| |
| Root discriminant: | \(1208.69\) |
| |
| Galois root discriminant: | $2\cdot 3^{1/2}5^{3/4}11^{4/5}41^{4/5}\approx 1538.7191534850367$ | ||
| Ramified primes: |
\(2\), \(3\), \(5\), \(11\), \(41\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{3}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{8}a^{4}+\frac{1}{4}a^{3}-\frac{1}{8}a^{2}-\frac{1}{4}a-\frac{1}{4}$, $\frac{1}{8}a^{5}+\frac{3}{8}a^{3}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{64}a^{6}+\frac{1}{64}a^{4}+\frac{5}{16}a^{3}-\frac{3}{16}a^{2}+\frac{3}{8}a-\frac{7}{16}$, $\frac{1}{64}a^{7}+\frac{1}{64}a^{5}-\frac{1}{16}a^{4}+\frac{1}{16}a^{3}-\frac{1}{4}a^{2}+\frac{5}{16}a-\frac{1}{4}$, $\frac{1}{512}a^{8}-\frac{1}{256}a^{7}-\frac{1}{512}a^{6}+\frac{9}{256}a^{5}+\frac{5}{256}a^{4}-\frac{23}{64}a^{3}+\frac{3}{128}a^{2}+\frac{1}{64}a-\frac{9}{64}$, $\frac{1}{97\cdots 08}a^{9}-\frac{30\cdots 43}{48\cdots 04}a^{8}-\frac{24\cdots 37}{97\cdots 08}a^{7}+\frac{18\cdots 03}{48\cdots 04}a^{6}+\frac{44\cdots 01}{48\cdots 04}a^{5}+\frac{73\cdots 71}{15\cdots 72}a^{4}-\frac{11\cdots 85}{24\cdots 52}a^{3}-\frac{27\cdots 93}{12\cdots 76}a^{2}+\frac{56\cdots 79}{12\cdots 76}a-\frac{75\cdots 99}{30\cdots 44}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | $C_{5}\times C_{5}\times C_{5}$, which has order $125$ (assuming GRH) |
| |
| Narrow class group: | $C_{5}\times C_{5}\times C_{10}$, which has order $250$ (assuming GRH) |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{469843099027}{30\cdots 44}a^{9}-\frac{2346894468497}{30\cdots 44}a^{8}+\frac{165604343823513}{30\cdots 44}a^{7}-\frac{197330984178545}{30\cdots 44}a^{6}+\frac{76\cdots 31}{15\cdots 72}a^{5}+\frac{46\cdots 99}{37\cdots 18}a^{4}+\frac{41\cdots 33}{75\cdots 36}a^{3}+\frac{42\cdots 65}{75\cdots 36}a^{2}+\frac{30\cdots 73}{37\cdots 18}a+\frac{52\cdots 41}{18\cdots 09}$, $\frac{44\cdots 89}{97\cdots 08}a^{9}+\frac{91\cdots 73}{97\cdots 08}a^{8}-\frac{10\cdots 13}{97\cdots 08}a^{7}+\frac{16\cdots 75}{97\cdots 08}a^{6}+\frac{12\cdots 47}{24\cdots 52}a^{5}+\frac{15\cdots 31}{48\cdots 04}a^{4}+\frac{12\cdots 19}{24\cdots 52}a^{3}+\frac{72\cdots 55}{24\cdots 52}a^{2}+\frac{15\cdots 99}{30\cdots 44}a-\frac{11\cdots 79}{12\cdots 76}$, $\frac{16\cdots 37}{97\cdots 08}a^{9}-\frac{21\cdots 31}{97\cdots 08}a^{8}-\frac{33\cdots 77}{97\cdots 08}a^{7}-\frac{64\cdots 49}{97\cdots 08}a^{6}-\frac{60\cdots 19}{24\cdots 52}a^{5}-\frac{50\cdots 97}{48\cdots 04}a^{4}-\frac{56\cdots 97}{24\cdots 52}a^{3}-\frac{22\cdots 45}{24\cdots 52}a^{2}-\frac{80\cdots 77}{75\cdots 36}a+\frac{29\cdots 77}{12\cdots 76}$, $\frac{30\cdots 43}{48\cdots 04}a^{9}-\frac{91\cdots 17}{48\cdots 04}a^{8}+\frac{10\cdots 99}{48\cdots 04}a^{7}+\frac{77\cdots 57}{48\cdots 04}a^{6}+\frac{13\cdots 11}{60\cdots 88}a^{5}+\frac{21\cdots 45}{24\cdots 52}a^{4}+\frac{55\cdots 55}{12\cdots 76}a^{3}+\frac{13\cdots 89}{12\cdots 76}a^{2}+\frac{12\cdots 53}{30\cdots 44}a+\frac{56\cdots 83}{60\cdots 88}$, $\frac{16\cdots 23}{24\cdots 52}a^{9}-\frac{40\cdots 29}{15\cdots 72}a^{8}+\frac{56\cdots 05}{24\cdots 52}a^{7}-\frac{12\cdots 29}{30\cdots 44}a^{6}+\frac{24\cdots 43}{12\cdots 76}a^{5}+\frac{42\cdots 19}{60\cdots 88}a^{4}+\frac{90\cdots 69}{60\cdots 88}a^{3}-\frac{25\cdots 79}{37\cdots 18}a^{2}-\frac{45\cdots 07}{30\cdots 44}a+\frac{30\cdots 51}{15\cdots 72}$
|
| |
| Regulator: | \( 6327756421.905004 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{4}\cdot 6327756421.905004 \cdot 125}{2\cdot\sqrt{6654854908590083522960688000000}}\cr\approx \mathstrut & 0.955740389675778 \end{aligned}\] (assuming GRH)
Galois group
$C_2\times F_5$ (as 10T5):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $F_{5}\times C_2$ |
| Character table for $F_{5}\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), 5.1.5171495850125.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/padicField/7.4.0.1}{4} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }$ | R | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.2.0.1}{2} }^{5}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{5}$ | ${\href{/padicField/31.10.0.1}{10} }$ | ${\href{/padicField/37.4.0.1}{4} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.2a1.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ |
| 2.4.2.8a1.1 | $x^{8} + 2 x^{5} + 4 x^{4} + x^{2} + 4 x + 5$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $$[2]^{4}$$ | |
|
\(3\)
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ | |
|
\(5\)
| 5.2.1.0a1.1 | $x^{2} + 4 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 5.2.4.6a1.2 | $x^{8} + 16 x^{7} + 104 x^{6} + 352 x^{5} + 664 x^{4} + 704 x^{3} + 416 x^{2} + 128 x + 21$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $$[\ ]_{4}^{2}$$ | |
|
\(11\)
| 11.1.5.4a1.3 | $x^{5} + 44$ | $5$ | $1$ | $4$ | $C_5$ | $$[\ ]_{5}$$ |
| 11.1.5.4a1.3 | $x^{5} + 44$ | $5$ | $1$ | $4$ | $C_5$ | $$[\ ]_{5}$$ | |
|
\(41\)
| 41.2.5.8a1.1 | $x^{10} + 190 x^{9} + 14470 x^{8} + 553280 x^{7} + 10685960 x^{6} + 85860848 x^{5} + 64115760 x^{4} + 19918080 x^{3} + 3125520 x^{2} + 246281 x + 7776$ | $5$ | $2$ | $8$ | $C_{10}$ | $$[\ ]_{5}^{2}$$ |