Show commands:
Magma
magma: G := TransitiveGroup(10, 5);
Group action invariants
Degree $n$: | $10$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $5$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $F_{5}\times C_2$ | ||
CHM label: | $F(5)[x]2$ | ||
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,7,9,3)(2,4,8,6), (1,2,3,4,5,6,7,8,9,10) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $C_4\times C_2$ $20$: $F_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 5: $F_5$
Low degree siblings
10T5, 20T9, 20T13, 40T14Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 4, 4, 1, 1 $ | $5$ | $4$ | $( 2, 4,10, 8)( 3, 7, 9, 5)$ |
$ 4, 4, 1, 1 $ | $5$ | $4$ | $( 2, 8,10, 4)( 3, 5, 9, 7)$ |
$ 2, 2, 2, 2, 1, 1 $ | $5$ | $2$ | $( 2,10)( 3, 9)( 4, 8)( 5, 7)$ |
$ 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 2)( 3,10)( 4, 9)( 5, 8)( 6, 7)$ |
$ 10 $ | $4$ | $10$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10)$ |
$ 4, 4, 2 $ | $5$ | $4$ | $( 1, 2, 5, 4)( 3, 8)( 6, 7,10, 9)$ |
$ 4, 4, 2 $ | $5$ | $4$ | $( 1, 2, 9, 8)( 3, 6, 7, 4)( 5,10)$ |
$ 5, 5 $ | $4$ | $5$ | $( 1, 3, 5, 7, 9)( 2, 4, 6, 8,10)$ |
$ 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 6)( 2, 7)( 3, 8)( 4, 9)( 5,10)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $40=2^{3} \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Label: | 40.12 | magma: IdentifyGroup(G);
|
Character table: |
2 3 3 3 3 3 1 3 3 1 3 5 1 . . . . 1 . . 1 1 1a 4a 4b 2a 2b 10a 4c 4d 5a 2c 2P 1a 2a 2a 1a 1a 5a 2a 2a 5a 1a 3P 1a 4b 4a 2a 2b 10a 4d 4c 5a 2c 5P 1a 4a 4b 2a 2b 2c 4c 4d 1a 2c 7P 1a 4b 4a 2a 2b 10a 4d 4c 5a 2c X.1 1 1 1 1 1 1 1 1 1 1 X.2 1 -1 -1 1 -1 -1 1 1 1 -1 X.3 1 -1 -1 1 1 1 -1 -1 1 1 X.4 1 1 1 1 -1 -1 -1 -1 1 -1 X.5 1 A -A -1 -1 1 A -A 1 1 X.6 1 -A A -1 -1 1 -A A 1 1 X.7 1 A -A -1 1 -1 -A A 1 -1 X.8 1 -A A -1 1 -1 A -A 1 -1 X.9 4 . . . . 1 . . -1 -4 X.10 4 . . . . -1 . . -1 4 A = -E(4) = -Sqrt(-1) = -i |
magma: CharacterTable(G);