Properties

Label 2.4.2.8a1.1
Base \(\Q_{2}\)
Degree \(8\)
e \(2\)
f \(4\)
c \(8\)
Galois group $C_4\times C_2$ (as 8T2)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{4} + x + 1 )^{2} + 2 ( x^{4} + x + 1 ) + 2$ Copy content Toggle raw display

Invariants

Base field: $\Q_{2}$
Degree $d$: $8$
Ramification index $e$: $2$
Residue field degree $f$: $4$
Discriminant exponent $c$: $8$
Discriminant root field: $\Q_{2}$
Root number: $1$
$\Aut(K/\Q_{2})$ $=$$\Gal(K/\Q_{2})$: $C_2\times C_4$
This field is Galois and abelian over $\Q_{2}.$
Visible Artin slopes:$[2]$
Visible Swan slopes:$[1]$
Means:$\langle\frac{1}{2}\rangle$
Rams:$(1)$
Jump set:$[1, 2]$
Roots of unity:$60 = (2^{ 4 } - 1) \cdot 2^{ 2 }$

Intermediate fields

$\Q_{2}(\sqrt{5})$, $\Q_{2}(\sqrt{-1})$, $\Q_{2}(\sqrt{-5})$, 2.4.1.0a1.1, 2.2.2.4a1.1, 2.2.2.4a1.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:2.4.1.0a1.1 $\cong \Q_{2}(t)$ where $t$ is a root of \( x^{4} + x + 1 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{2} + 2 x + 2 \) $\ \in\Q_{2}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z + 1$
Associated inertia:$1$
Indices of inseparability:$[1, 0]$

Invariants of the Galois closure

Galois degree: $8$
Galois group: $C_2\times C_4$ (as 8T2)
Inertia group: Intransitive group isomorphic to $C_2$
Wild inertia group: $C_2$
Galois unramified degree: $4$
Galois tame degree: $1$
Galois Artin slopes: $[2]$
Galois Swan slopes: $[1]$
Galois mean slope: $1.0$
Galois splitting model:$x^{8} - x^{6} + x^{4} - x^{2} + 1$