/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^10 - 4*x^9 + 353*x^8 - 104*x^7 + 33864*x^6 + 107536*x^5 + 577512*x^4 + 1013344*x^3 + 4995856*x^2 + 7761536*x - 15005552, 10, 5, [2, 4], 6654854908590083522960688000000, [2, 3, 5, 11, 41], [1, a, a^2, a^3, 1/8*a^4 + 1/4*a^3 - 1/8*a^2 - 1/4*a - 1/4, 1/8*a^5 + 3/8*a^3 + 1/4*a - 1/2, 1/64*a^6 + 1/64*a^4 + 5/16*a^3 - 3/16*a^2 + 3/8*a - 7/16, 1/64*a^7 + 1/64*a^5 - 1/16*a^4 + 1/16*a^3 - 1/4*a^2 + 5/16*a - 1/4, 1/512*a^8 - 1/256*a^7 - 1/512*a^6 + 9/256*a^5 + 5/256*a^4 - 23/64*a^3 + 3/128*a^2 + 1/64*a - 9/64, 1/97238326789846225408*a^9 - 3082129110975743/48619163394923112704*a^8 - 242006878349648137/97238326789846225408*a^7 + 189240283587759503/48619163394923112704*a^6 + 442839694170901001/48619163394923112704*a^5 + 73767370453970971/1519348856091347272*a^4 - 11694588729264149685/24309581697461556352*a^3 - 2787046651757427993/12154790848730778176*a^2 + 5605259589569362379/12154790848730778176*a - 759664863364896899/3038697712182694544], 0, 125, [5, 5, 5], 1, [ (469843099027)/(3038697712182694544)*a^(9) - (2346894468497)/(3038697712182694544)*a^(8) + (165604343823513)/(3038697712182694544)*a^(7) - (197330984178545)/(3038697712182694544)*a^(6) + (7622843590191531)/(1519348856091347272)*a^(5) + (4643730878329199)/(379837214022836818)*a^(4) + (41355109930711033)/(759674428045673636)*a^(3) + (42421520108798665)/(759674428045673636)*a^(2) + (309662037243294573)/(379837214022836818)*a + (524982689949446341)/(189918607011418409) , -(44362268436406321198689)/(97238326789846225408)*a^(9) + (918223744917882209052573)/(97238326789846225408)*a^(8) - (10340290543938312106994613)/(97238326789846225408)*a^(7) + (161309634266508105396514875)/(97238326789846225408)*a^(6) + (125834402784946359080095647)/(24309581697461556352)*a^(5) + (1529874296464677521546070231)/(48619163394923112704)*a^(4) + (1214023665189926672769054619)/(24309581697461556352)*a^(3) + (7250055948861381890629618455)/(24309581697461556352)*a^(2) + (1523434755404948058537040599)/(3038697712182694544)*a - (11160049189945289497167542079)/(12154790848730778176) , -(1687598664303893739425037)/(97238326789846225408)*a^(9) - (21673233531561642654817331)/(97238326789846225408)*a^(8) - (331319888223016856419843977)/(97238326789846225408)*a^(7) - (6412006498112968340040664749)/(97238326789846225408)*a^(6) - (6016405762629958578474613719)/(24309581697461556352)*a^(5) - (50971117766877851839965174397)/(48619163394923112704)*a^(4) - (56957131003825877880648845697)/(24309581697461556352)*a^(3) - (229283148146875376322896848145)/(24309581697461556352)*a^(2) - (8019588802961367822270779977)/(759674428045673636)*a + (298478458357093372424551216877)/(12154790848730778176) , (3055936276130929318275091535212266409643)/(48619163394923112704)*a^(9) - (9102499119920942095303156633903465425617)/(48619163394923112704)*a^(8) + (1069448472911418685143464534983586578590299)/(48619163394923112704)*a^(7) + (774486733062569589069944451298859207822457)/(48619163394923112704)*a^(6) + (13034658083446126879490417093942481017307211)/(6077395424365389088)*a^(5) + (217564490476852350259928118589360694124819745)/(24309581697461556352)*a^(4) + (552317043576419993335914489346773482092190355)/(12154790848730778176)*a^(3) + (1338299513737288160139612153646519253023010989)/(12154790848730778176)*a^(2) + (1295913816288698299887409075217596158382416553)/(3038697712182694544)*a + (5612063587757128296950577910702620503864321983)/(6077395424365389088) , (166513924486725152944056089832334590312421278773235715030095067315070180035819473809084519042508826466987843606557558197709367779350666932415533816431804651339649377543070279985626341898781452134366886740844372120947591132223536348352928228538256469684603623)/(24309581697461556352)*a^(9) - (40843471752215439404513827296404803929192037883550422336285488484776319078532297254101037447363978191006754502437499021066529789559104596914677706615037276596578914854533232494686290559962556514763050195528390002933568146334946344639030392840004039078964029)/(1519348856091347272)*a^(8) + (56793913222350461429803420681511191696497503146400499234672040641795927746758948876262556904955115281965682653875057093477206595316660606530702075919542164857914164357118111648580135001058677456495730482608449294567748789508303046218122599445901067450261767505)/(24309581697461556352)*a^(7) - (1228931580030166115485487323552067555309801772211706272654565027492595919360622127363375289053112169128573087621390726263992866038018121050565241421478459250646897647568342436491590810820074660950891732476586368822045071564077463646559191658533750162075011629)/(3038697712182694544)*a^(6) + (2492481315477022033272807765729317804042596643685612872008056710798127603225073739737923238620084651395494278161468730520258751865078519518400559332258465498952897327645782794907978102313769812665775862010580664199388000148490745773296425021959882103102635664843)/(12154790848730778176)*a^(5) + (4228364739570840970502698737709000976246107427656605636693744011307371485490387973250333975971544552954033610552268009619680247584105469690758076905294185019391578672931126094795227562841123609976544681921587982585891304947310931992192675725764290669123755836219)/(6077395424365389088)*a^(4) + (9091649337249974739769747479726896094109966728505361818112364772108973235665291613033292542116700501661625387179499286919336188038819972706009490666000343215970060175003705547466874736528160252546747471349796753652299791049269381449214686155769441620743350459869)/(6077395424365389088)*a^(3) - (2560533563284660860045265927027596423917216952581649689186536771171752294902721675744077597977806801271841055723050152488441676087824791374179551522355312490183551905774133852056140113981971685921881304117977082334391063798684102990668098749787435265968583323679)/(379837214022836818)*a^(2) - (45608944859260773504737120899545626827297705694681278082760728399071255150604062036859246442294140793882040374786054772532174542419912877667258708379397381685581317739382338812177567174714953975596450733834278512671951596541170785896433948813770451684992899233207)/(3038697712182694544)*a + (30054566822208855387001205209464075738020235059822048979825157607637742440986519169831041906689407077302347588625282751674910214503532136240472385873239193631730151677104529991596580376106534807260411337772263982051098260054424288590114274585045619897330944325651)/(1519348856091347272) ], 6327756421.905004, [[x^2 - 3, 1], [x^5 - 2*x^4 + 182*x^3 + 288*x^2 + 2017*x + 1354, 1]]]