Properties

Label 975.2.o.p.551.15
Level $975$
Weight $2$
Character 975.551
Analytic conductor $7.785$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(476,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.476"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.o (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,12,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 551.15
Character \(\chi\) \(=\) 975.551
Dual form 975.2.o.p.476.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.11881 + 1.11881i) q^{2} +(-0.455401 - 1.67111i) q^{3} +0.503463i q^{4} +(1.36015 - 2.37916i) q^{6} +(-1.46633 - 1.46633i) q^{7} +(1.67434 - 1.67434i) q^{8} +(-2.58522 + 1.52205i) q^{9} +(0.292930 - 0.292930i) q^{11} +(0.841342 - 0.229277i) q^{12} +(-2.19240 - 2.86241i) q^{13} -3.28107i q^{14} +4.75345 q^{16} -2.78074 q^{17} +(-4.59525 - 1.18948i) q^{18} +(-1.21080 + 1.21080i) q^{19} +(-1.78263 + 3.11816i) q^{21} +0.655464 q^{22} -5.66438 q^{23} +(-3.56050 - 2.03551i) q^{24} +(0.749610 - 5.65536i) q^{26} +(3.72083 + 3.62704i) q^{27} +(0.738240 - 0.738240i) q^{28} -7.34233i q^{29} +(-1.98010 + 1.98010i) q^{31} +(1.96952 + 1.96952i) q^{32} +(-0.622918 - 0.356117i) q^{33} +(-3.11111 - 3.11111i) q^{34} +(-0.766296 - 1.30156i) q^{36} +(3.02847 + 3.02847i) q^{37} -2.70931 q^{38} +(-3.78498 + 4.96729i) q^{39} +(-3.08783 - 3.08783i) q^{41} +(-5.48304 + 1.49420i) q^{42} -0.831012i q^{43} +(0.147479 + 0.147479i) q^{44} +(-6.33735 - 6.33735i) q^{46} +(8.76367 - 8.76367i) q^{47} +(-2.16473 - 7.94354i) q^{48} -2.69978i q^{49} +(1.26635 + 4.64692i) q^{51} +(1.44112 - 1.10379i) q^{52} +0.258401i q^{53} +(0.104926 + 8.22086i) q^{54} -4.91025 q^{56} +(2.57478 + 1.47198i) q^{57} +(8.21465 - 8.21465i) q^{58} +(2.38433 - 2.38433i) q^{59} -3.66100 q^{61} -4.43070 q^{62} +(6.02260 + 1.55895i) q^{63} -5.09987i q^{64} +(-0.298499 - 1.09535i) q^{66} +(-9.29391 + 9.29391i) q^{67} -1.40000i q^{68} +(2.57957 + 9.46581i) q^{69} +(-7.88169 - 7.88169i) q^{71} +(-1.78010 + 6.87696i) q^{72} +(11.5212 + 11.5212i) q^{73} +6.77656i q^{74} +(-0.609593 - 0.609593i) q^{76} -0.859060 q^{77} +(-9.79210 + 1.32278i) q^{78} +16.3100 q^{79} +(4.36672 - 7.86967i) q^{81} -6.90938i q^{82} +(-10.1694 - 10.1694i) q^{83} +(-1.56988 - 0.897486i) q^{84} +(0.929743 - 0.929743i) q^{86} +(-12.2698 + 3.34370i) q^{87} -0.980926i q^{88} +(4.97395 - 4.97395i) q^{89} +(-0.982449 + 7.41200i) q^{91} -2.85180i q^{92} +(4.21070 + 2.40722i) q^{93} +19.6097 q^{94} +(2.39437 - 4.18821i) q^{96} +(8.41532 - 8.41532i) q^{97} +(3.02053 - 3.02053i) q^{98} +(-0.311433 + 1.20314i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 12 q^{6} + 16 q^{7} - 64 q^{16} - 4 q^{18} - 16 q^{19} - 12 q^{21} + 8 q^{24} + 24 q^{27} - 32 q^{28} + 32 q^{31} + 4 q^{33} - 16 q^{34} - 32 q^{37} - 8 q^{39} - 8 q^{42} - 40 q^{46} - 8 q^{48} - 32 q^{54}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.11881 + 1.11881i 0.791117 + 0.791117i 0.981676 0.190559i \(-0.0610301\pi\)
−0.190559 + 0.981676i \(0.561030\pi\)
\(3\) −0.455401 1.67111i −0.262926 0.964816i
\(4\) 0.503463i 0.251731i
\(5\) 0 0
\(6\) 1.36015 2.37916i 0.555277 0.971287i
\(7\) −1.46633 1.46633i −0.554219 0.554219i 0.373437 0.927656i \(-0.378179\pi\)
−0.927656 + 0.373437i \(0.878179\pi\)
\(8\) 1.67434 1.67434i 0.591968 0.591968i
\(9\) −2.58522 + 1.52205i −0.861740 + 0.507350i
\(10\) 0 0
\(11\) 0.292930 0.292930i 0.0883216 0.0883216i −0.661566 0.749887i \(-0.730108\pi\)
0.749887 + 0.661566i \(0.230108\pi\)
\(12\) 0.841342 0.229277i 0.242874 0.0661867i
\(13\) −2.19240 2.86241i −0.608063 0.793889i
\(14\) 3.28107i 0.876904i
\(15\) 0 0
\(16\) 4.75345 1.18836
\(17\) −2.78074 −0.674427 −0.337214 0.941428i \(-0.609484\pi\)
−0.337214 + 0.941428i \(0.609484\pi\)
\(18\) −4.59525 1.18948i −1.08311 0.280363i
\(19\) −1.21080 + 1.21080i −0.277777 + 0.277777i −0.832221 0.554444i \(-0.812931\pi\)
0.554444 + 0.832221i \(0.312931\pi\)
\(20\) 0 0
\(21\) −1.78263 + 3.11816i −0.389001 + 0.680438i
\(22\) 0.655464 0.139745
\(23\) −5.66438 −1.18111 −0.590553 0.806999i \(-0.701090\pi\)
−0.590553 + 0.806999i \(0.701090\pi\)
\(24\) −3.56050 2.03551i −0.726784 0.415496i
\(25\) 0 0
\(26\) 0.749610 5.65536i 0.147011 1.10911i
\(27\) 3.72083 + 3.62704i 0.716074 + 0.698025i
\(28\) 0.738240 0.738240i 0.139514 0.139514i
\(29\) 7.34233i 1.36344i −0.731615 0.681718i \(-0.761233\pi\)
0.731615 0.681718i \(-0.238767\pi\)
\(30\) 0 0
\(31\) −1.98010 + 1.98010i −0.355636 + 0.355636i −0.862202 0.506565i \(-0.830915\pi\)
0.506565 + 0.862202i \(0.330915\pi\)
\(32\) 1.96952 + 1.96952i 0.348166 + 0.348166i
\(33\) −0.622918 0.356117i −0.108436 0.0619920i
\(34\) −3.11111 3.11111i −0.533551 0.533551i
\(35\) 0 0
\(36\) −0.766296 1.30156i −0.127716 0.216927i
\(37\) 3.02847 + 3.02847i 0.497878 + 0.497878i 0.910777 0.412899i \(-0.135484\pi\)
−0.412899 + 0.910777i \(0.635484\pi\)
\(38\) −2.70931 −0.439508
\(39\) −3.78498 + 4.96729i −0.606082 + 0.795403i
\(40\) 0 0
\(41\) −3.08783 3.08783i −0.482238 0.482238i 0.423608 0.905846i \(-0.360764\pi\)
−0.905846 + 0.423608i \(0.860764\pi\)
\(42\) −5.48304 + 1.49420i −0.846051 + 0.230561i
\(43\) 0.831012i 0.126728i −0.997990 0.0633640i \(-0.979817\pi\)
0.997990 0.0633640i \(-0.0201829\pi\)
\(44\) 0.147479 + 0.147479i 0.0222333 + 0.0222333i
\(45\) 0 0
\(46\) −6.33735 6.33735i −0.934392 0.934392i
\(47\) 8.76367 8.76367i 1.27831 1.27831i 0.336702 0.941611i \(-0.390688\pi\)
0.941611 0.336702i \(-0.109312\pi\)
\(48\) −2.16473 7.94354i −0.312451 1.14655i
\(49\) 2.69978i 0.385682i
\(50\) 0 0
\(51\) 1.26635 + 4.64692i 0.177324 + 0.650698i
\(52\) 1.44112 1.10379i 0.199847 0.153068i
\(53\) 0.258401i 0.0354940i 0.999843 + 0.0177470i \(0.00564935\pi\)
−0.999843 + 0.0177470i \(0.994351\pi\)
\(54\) 0.104926 + 8.22086i 0.0142787 + 1.11872i
\(55\) 0 0
\(56\) −4.91025 −0.656160
\(57\) 2.57478 + 1.47198i 0.341038 + 0.194969i
\(58\) 8.21465 8.21465i 1.07864 1.07864i
\(59\) 2.38433 2.38433i 0.310414 0.310414i −0.534656 0.845070i \(-0.679559\pi\)
0.845070 + 0.534656i \(0.179559\pi\)
\(60\) 0 0
\(61\) −3.66100 −0.468744 −0.234372 0.972147i \(-0.575303\pi\)
−0.234372 + 0.972147i \(0.575303\pi\)
\(62\) −4.43070 −0.562699
\(63\) 6.02260 + 1.55895i 0.758776 + 0.196409i
\(64\) 5.09987i 0.637483i
\(65\) 0 0
\(66\) −0.298499 1.09535i −0.0367427 0.134829i
\(67\) −9.29391 + 9.29391i −1.13543 + 1.13543i −0.146173 + 0.989259i \(0.546696\pi\)
−0.989259 + 0.146173i \(0.953304\pi\)
\(68\) 1.40000i 0.169775i
\(69\) 2.57957 + 9.46581i 0.310543 + 1.13955i
\(70\) 0 0
\(71\) −7.88169 7.88169i −0.935385 0.935385i 0.0626508 0.998036i \(-0.480045\pi\)
−0.998036 + 0.0626508i \(0.980045\pi\)
\(72\) −1.78010 + 6.87696i −0.209787 + 0.810457i
\(73\) 11.5212 + 11.5212i 1.34845 + 1.34845i 0.887345 + 0.461107i \(0.152547\pi\)
0.461107 + 0.887345i \(0.347453\pi\)
\(74\) 6.77656i 0.787759i
\(75\) 0 0
\(76\) −0.609593 0.609593i −0.0699252 0.0699252i
\(77\) −0.859060 −0.0978990
\(78\) −9.79210 + 1.32278i −1.10874 + 0.149775i
\(79\) 16.3100 1.83502 0.917512 0.397708i \(-0.130194\pi\)
0.917512 + 0.397708i \(0.130194\pi\)
\(80\) 0 0
\(81\) 4.36672 7.86967i 0.485191 0.874408i
\(82\) 6.90938i 0.763013i
\(83\) −10.1694 10.1694i −1.11624 1.11624i −0.992288 0.123950i \(-0.960444\pi\)
−0.123950 0.992288i \(-0.539556\pi\)
\(84\) −1.56988 0.897486i −0.171288 0.0979237i
\(85\) 0 0
\(86\) 0.929743 0.929743i 0.100257 0.100257i
\(87\) −12.2698 + 3.34370i −1.31546 + 0.358483i
\(88\) 0.980926i 0.104567i
\(89\) 4.97395 4.97395i 0.527238 0.527238i −0.392510 0.919748i \(-0.628393\pi\)
0.919748 + 0.392510i \(0.128393\pi\)
\(90\) 0 0
\(91\) −0.982449 + 7.41200i −0.102989 + 0.776988i
\(92\) 2.85180i 0.297321i
\(93\) 4.21070 + 2.40722i 0.436629 + 0.249617i
\(94\) 19.6097 2.02259
\(95\) 0 0
\(96\) 2.39437 4.18821i 0.244374 0.427458i
\(97\) 8.41532 8.41532i 0.854447 0.854447i −0.136231 0.990677i \(-0.543499\pi\)
0.990677 + 0.136231i \(0.0434988\pi\)
\(98\) 3.02053 3.02053i 0.305120 0.305120i
\(99\) −0.311433 + 1.20314i −0.0313002 + 0.120920i
\(100\) 0 0
\(101\) 6.35267 0.632114 0.316057 0.948740i \(-0.397641\pi\)
0.316057 + 0.948740i \(0.397641\pi\)
\(102\) −3.78220 + 6.61581i −0.374494 + 0.655063i
\(103\) 7.54935i 0.743860i −0.928261 0.371930i \(-0.878696\pi\)
0.928261 0.371930i \(-0.121304\pi\)
\(104\) −8.46346 1.12182i −0.829910 0.110003i
\(105\) 0 0
\(106\) −0.289101 + 0.289101i −0.0280799 + 0.0280799i
\(107\) 3.69172i 0.356892i −0.983950 0.178446i \(-0.942893\pi\)
0.983950 0.178446i \(-0.0571070\pi\)
\(108\) −1.82608 + 1.87330i −0.175715 + 0.180258i
\(109\) 10.1957 10.1957i 0.976570 0.976570i −0.0231620 0.999732i \(-0.507373\pi\)
0.999732 + 0.0231620i \(0.00737335\pi\)
\(110\) 0 0
\(111\) 3.68174 6.44008i 0.349456 0.611266i
\(112\) −6.97011 6.97011i −0.658613 0.658613i
\(113\) 17.3519i 1.63233i 0.577820 + 0.816164i \(0.303903\pi\)
−0.577820 + 0.816164i \(0.696097\pi\)
\(114\) 1.23382 + 4.52755i 0.115558 + 0.424044i
\(115\) 0 0
\(116\) 3.69659 0.343219
\(117\) 10.0246 + 4.06301i 0.926772 + 0.375625i
\(118\) 5.33522 0.491147
\(119\) 4.07746 + 4.07746i 0.373781 + 0.373781i
\(120\) 0 0
\(121\) 10.8284i 0.984399i
\(122\) −4.09596 4.09596i −0.370831 0.370831i
\(123\) −3.75390 + 6.56631i −0.338478 + 0.592064i
\(124\) −0.996906 0.996906i −0.0895248 0.0895248i
\(125\) 0 0
\(126\) 4.99396 + 8.48230i 0.444898 + 0.755663i
\(127\) 21.0990i 1.87224i 0.351686 + 0.936118i \(0.385608\pi\)
−0.351686 + 0.936118i \(0.614392\pi\)
\(128\) 9.64482 9.64482i 0.852489 0.852489i
\(129\) −1.38871 + 0.378444i −0.122269 + 0.0333201i
\(130\) 0 0
\(131\) 9.86242i 0.861684i 0.902427 + 0.430842i \(0.141783\pi\)
−0.902427 + 0.430842i \(0.858217\pi\)
\(132\) 0.179292 0.313616i 0.0156053 0.0272968i
\(133\) 3.55086 0.307899
\(134\) −20.7962 −1.79652
\(135\) 0 0
\(136\) −4.65589 + 4.65589i −0.399239 + 0.399239i
\(137\) 6.51118 6.51118i 0.556288 0.556288i −0.371961 0.928249i \(-0.621314\pi\)
0.928249 + 0.371961i \(0.121314\pi\)
\(138\) −7.70438 + 13.4765i −0.655840 + 1.14719i
\(139\) −4.65409 −0.394755 −0.197377 0.980328i \(-0.563242\pi\)
−0.197377 + 0.980328i \(0.563242\pi\)
\(140\) 0 0
\(141\) −18.6361 10.6541i −1.56944 0.897235i
\(142\) 17.6362i 1.48000i
\(143\) −1.48070 0.196265i −0.123823 0.0164125i
\(144\) −12.2887 + 7.23500i −1.02406 + 0.602916i
\(145\) 0 0
\(146\) 25.7800i 2.13356i
\(147\) −4.51163 + 1.22948i −0.372113 + 0.101406i
\(148\) −1.52472 + 1.52472i −0.125331 + 0.125331i
\(149\) 11.8788 + 11.8788i 0.973150 + 0.973150i 0.999649 0.0264986i \(-0.00843576\pi\)
−0.0264986 + 0.999649i \(0.508436\pi\)
\(150\) 0 0
\(151\) 4.96656 + 4.96656i 0.404173 + 0.404173i 0.879701 0.475528i \(-0.157743\pi\)
−0.475528 + 0.879701i \(0.657743\pi\)
\(152\) 4.05458i 0.328870i
\(153\) 7.18881 4.23242i 0.581181 0.342171i
\(154\) −0.961124 0.961124i −0.0774496 0.0774496i
\(155\) 0 0
\(156\) −2.50084 1.90560i −0.200228 0.152570i
\(157\) 15.9533 1.27321 0.636606 0.771190i \(-0.280338\pi\)
0.636606 + 0.771190i \(0.280338\pi\)
\(158\) 18.2478 + 18.2478i 1.45172 + 1.45172i
\(159\) 0.431816 0.117676i 0.0342452 0.00933231i
\(160\) 0 0
\(161\) 8.30583 + 8.30583i 0.654591 + 0.654591i
\(162\) 13.6902 3.91913i 1.07560 0.307916i
\(163\) −4.37713 4.37713i −0.342843 0.342843i 0.514592 0.857435i \(-0.327943\pi\)
−0.857435 + 0.514592i \(0.827943\pi\)
\(164\) 1.55461 1.55461i 0.121394 0.121394i
\(165\) 0 0
\(166\) 22.7553i 1.76615i
\(167\) 3.94953 3.94953i 0.305624 0.305624i −0.537585 0.843209i \(-0.680663\pi\)
0.843209 + 0.537585i \(0.180663\pi\)
\(168\) 2.23613 + 8.20557i 0.172521 + 0.633073i
\(169\) −3.38676 + 12.5511i −0.260520 + 0.965468i
\(170\) 0 0
\(171\) 1.28729 4.97309i 0.0984412 0.380302i
\(172\) 0.418383 0.0319014
\(173\) −9.74943 −0.741235 −0.370618 0.928786i \(-0.620854\pi\)
−0.370618 + 0.928786i \(0.620854\pi\)
\(174\) −17.4686 9.98663i −1.32429 0.757084i
\(175\) 0 0
\(176\) 1.39243 1.39243i 0.104958 0.104958i
\(177\) −5.07031 2.89866i −0.381108 0.217876i
\(178\) 11.1298 0.834213
\(179\) 1.28470 0.0960232 0.0480116 0.998847i \(-0.484712\pi\)
0.0480116 + 0.998847i \(0.484712\pi\)
\(180\) 0 0
\(181\) 5.39074i 0.400690i −0.979725 0.200345i \(-0.935794\pi\)
0.979725 0.200345i \(-0.0642064\pi\)
\(182\) −9.39177 + 7.19343i −0.696165 + 0.533212i
\(183\) 1.66723 + 6.11794i 0.123245 + 0.452251i
\(184\) −9.48409 + 9.48409i −0.699176 + 0.699176i
\(185\) 0 0
\(186\) 2.01775 + 7.40419i 0.147948 + 0.542901i
\(187\) −0.814560 + 0.814560i −0.0595665 + 0.0595665i
\(188\) 4.41218 + 4.41218i 0.321792 + 0.321792i
\(189\) −0.137518 10.7744i −0.0100030 0.783720i
\(190\) 0 0
\(191\) 8.13709i 0.588779i −0.955686 0.294390i \(-0.904884\pi\)
0.955686 0.294390i \(-0.0951163\pi\)
\(192\) −8.52244 + 2.32248i −0.615054 + 0.167611i
\(193\) −2.02917 2.02917i −0.146063 0.146063i 0.630294 0.776357i \(-0.282934\pi\)
−0.776357 + 0.630294i \(0.782934\pi\)
\(194\) 18.8303 1.35193
\(195\) 0 0
\(196\) 1.35924 0.0970884
\(197\) 3.10238 + 3.10238i 0.221036 + 0.221036i 0.808934 0.587899i \(-0.200045\pi\)
−0.587899 + 0.808934i \(0.700045\pi\)
\(198\) −1.69452 + 0.997650i −0.120424 + 0.0708999i
\(199\) 3.79864i 0.269279i −0.990895 0.134639i \(-0.957012\pi\)
0.990895 0.134639i \(-0.0429876\pi\)
\(200\) 0 0
\(201\) 19.7636 + 11.2987i 1.39402 + 0.796949i
\(202\) 7.10742 + 7.10742i 0.500076 + 0.500076i
\(203\) −10.7662 + 10.7662i −0.755642 + 0.755642i
\(204\) −2.33955 + 0.637560i −0.163801 + 0.0446381i
\(205\) 0 0
\(206\) 8.44627 8.44627i 0.588480 0.588480i
\(207\) 14.6437 8.62148i 1.01781 0.599234i
\(208\) −10.4215 13.6063i −0.722599 0.943428i
\(209\) 0.709359i 0.0490674i
\(210\) 0 0
\(211\) 5.97128 0.411080 0.205540 0.978649i \(-0.434105\pi\)
0.205540 + 0.978649i \(0.434105\pi\)
\(212\) −0.130095 −0.00893496
\(213\) −9.58185 + 16.7605i −0.656537 + 1.14841i
\(214\) 4.13032 4.13032i 0.282343 0.282343i
\(215\) 0 0
\(216\) 12.3028 0.157026i 0.837101 0.0106843i
\(217\) 5.80694 0.394201
\(218\) 22.8140 1.54516
\(219\) 14.0064 24.4999i 0.946465 1.65555i
\(220\) 0 0
\(221\) 6.09649 + 7.95960i 0.410094 + 0.535421i
\(222\) 11.3244 3.08605i 0.760042 0.207122i
\(223\) −4.16343 + 4.16343i −0.278804 + 0.278804i −0.832631 0.553827i \(-0.813167\pi\)
0.553827 + 0.832631i \(0.313167\pi\)
\(224\) 5.77592i 0.385920i
\(225\) 0 0
\(226\) −19.4134 + 19.4134i −1.29136 + 1.29136i
\(227\) −7.99122 7.99122i −0.530396 0.530396i 0.390294 0.920690i \(-0.372373\pi\)
−0.920690 + 0.390294i \(0.872373\pi\)
\(228\) −0.741088 + 1.29631i −0.0490798 + 0.0858501i
\(229\) −14.7738 14.7738i −0.976279 0.976279i 0.0234464 0.999725i \(-0.492536\pi\)
−0.999725 + 0.0234464i \(0.992536\pi\)
\(230\) 0 0
\(231\) 0.391217 + 1.43558i 0.0257402 + 0.0944545i
\(232\) −12.2935 12.2935i −0.807110 0.807110i
\(233\) 15.0434 0.985527 0.492764 0.870163i \(-0.335987\pi\)
0.492764 + 0.870163i \(0.335987\pi\)
\(234\) 6.66984 + 15.7613i 0.436021 + 1.03035i
\(235\) 0 0
\(236\) 1.20042 + 1.20042i 0.0781409 + 0.0781409i
\(237\) −7.42762 27.2559i −0.482475 1.77046i
\(238\) 9.12380i 0.591408i
\(239\) −5.13466 5.13466i −0.332134 0.332134i 0.521263 0.853396i \(-0.325461\pi\)
−0.853396 + 0.521263i \(0.825461\pi\)
\(240\) 0 0
\(241\) 4.11251 + 4.11251i 0.264910 + 0.264910i 0.827045 0.562135i \(-0.190020\pi\)
−0.562135 + 0.827045i \(0.690020\pi\)
\(242\) −12.1149 + 12.1149i −0.778774 + 0.778774i
\(243\) −15.1397 3.71341i −0.971212 0.238216i
\(244\) 1.84318i 0.117997i
\(245\) 0 0
\(246\) −11.5463 + 3.14654i −0.736167 + 0.200616i
\(247\) 6.12037 + 0.811246i 0.389430 + 0.0516183i
\(248\) 6.63071i 0.421050i
\(249\) −12.3631 + 21.6254i −0.783477 + 1.37045i
\(250\) 0 0
\(251\) −5.50029 −0.347175 −0.173588 0.984818i \(-0.555536\pi\)
−0.173588 + 0.984818i \(0.555536\pi\)
\(252\) −0.784874 + 3.03215i −0.0494424 + 0.191008i
\(253\) −1.65926 + 1.65926i −0.104317 + 0.104317i
\(254\) −23.6058 + 23.6058i −1.48116 + 1.48116i
\(255\) 0 0
\(256\) 11.3817 0.711354
\(257\) 7.45007 0.464723 0.232361 0.972630i \(-0.425355\pi\)
0.232361 + 0.972630i \(0.425355\pi\)
\(258\) −1.97711 1.13030i −0.123089 0.0703692i
\(259\) 8.88146i 0.551867i
\(260\) 0 0
\(261\) 11.1754 + 18.9815i 0.691740 + 1.17493i
\(262\) −11.0342 + 11.0342i −0.681692 + 0.681692i
\(263\) 23.1846i 1.42962i −0.699317 0.714812i \(-0.746512\pi\)
0.699317 0.714812i \(-0.253488\pi\)
\(264\) −1.63924 + 0.446715i −0.100888 + 0.0274934i
\(265\) 0 0
\(266\) 3.97273 + 3.97273i 0.243584 + 0.243584i
\(267\) −10.5772 6.04688i −0.647312 0.370063i
\(268\) −4.67914 4.67914i −0.285824 0.285824i
\(269\) 26.7447i 1.63065i −0.579002 0.815326i \(-0.696558\pi\)
0.579002 0.815326i \(-0.303442\pi\)
\(270\) 0 0
\(271\) −2.78066 2.78066i −0.168913 0.168913i 0.617588 0.786501i \(-0.288110\pi\)
−0.786501 + 0.617588i \(0.788110\pi\)
\(272\) −13.2181 −0.801464
\(273\) 12.8337 1.73365i 0.776729 0.104925i
\(274\) 14.5695 0.880177
\(275\) 0 0
\(276\) −4.76568 + 1.29872i −0.286860 + 0.0781735i
\(277\) 28.6741i 1.72286i 0.507874 + 0.861431i \(0.330431\pi\)
−0.507874 + 0.861431i \(0.669569\pi\)
\(278\) −5.20703 5.20703i −0.312297 0.312297i
\(279\) 2.10518 8.13280i 0.126034 0.486898i
\(280\) 0 0
\(281\) −0.811843 + 0.811843i −0.0484305 + 0.0484305i −0.730907 0.682477i \(-0.760903\pi\)
0.682477 + 0.730907i \(0.260903\pi\)
\(282\) −8.93030 32.7700i −0.531791 1.95143i
\(283\) 22.9639i 1.36506i −0.730857 0.682531i \(-0.760879\pi\)
0.730857 0.682531i \(-0.239121\pi\)
\(284\) 3.96814 3.96814i 0.235466 0.235466i
\(285\) 0 0
\(286\) −1.43704 1.87621i −0.0849739 0.110942i
\(287\) 9.05553i 0.534531i
\(288\) −8.08936 2.09393i −0.476670 0.123386i
\(289\) −9.26751 −0.545148
\(290\) 0 0
\(291\) −17.8953 10.2306i −1.04904 0.599728i
\(292\) −5.80048 + 5.80048i −0.339447 + 0.339447i
\(293\) −8.25860 + 8.25860i −0.482472 + 0.482472i −0.905920 0.423448i \(-0.860820\pi\)
0.423448 + 0.905920i \(0.360820\pi\)
\(294\) −6.42320 3.67209i −0.374608 0.214161i
\(295\) 0 0
\(296\) 10.1414 0.589455
\(297\) 2.15241 0.0274721i 0.124895 0.00159409i
\(298\) 26.5802i 1.53975i
\(299\) 12.4186 + 16.2138i 0.718186 + 0.937666i
\(300\) 0 0
\(301\) −1.21853 + 1.21853i −0.0702351 + 0.0702351i
\(302\) 11.1133i 0.639496i
\(303\) −2.89301 10.6160i −0.166199 0.609874i
\(304\) −5.75549 + 5.75549i −0.330100 + 0.330100i
\(305\) 0 0
\(306\) 12.7782 + 3.30763i 0.730479 + 0.189085i
\(307\) −22.4159 22.4159i −1.27934 1.27934i −0.941035 0.338310i \(-0.890145\pi\)
−0.338310 0.941035i \(-0.609855\pi\)
\(308\) 0.432505i 0.0246443i
\(309\) −12.6158 + 3.43798i −0.717688 + 0.195580i
\(310\) 0 0
\(311\) −21.6419 −1.22720 −0.613600 0.789617i \(-0.710279\pi\)
−0.613600 + 0.789617i \(0.710279\pi\)
\(312\) 1.97959 + 14.6542i 0.112072 + 0.829633i
\(313\) −7.12210 −0.402565 −0.201282 0.979533i \(-0.564511\pi\)
−0.201282 + 0.979533i \(0.564511\pi\)
\(314\) 17.8487 + 17.8487i 1.00726 + 1.00726i
\(315\) 0 0
\(316\) 8.21150i 0.461933i
\(317\) 14.9932 + 14.9932i 0.842104 + 0.842104i 0.989132 0.147028i \(-0.0469707\pi\)
−0.147028 + 0.989132i \(0.546971\pi\)
\(318\) 0.614776 + 0.351462i 0.0344749 + 0.0197090i
\(319\) −2.15078 2.15078i −0.120421 0.120421i
\(320\) 0 0
\(321\) −6.16927 + 1.68121i −0.344335 + 0.0938361i
\(322\) 18.5853i 1.03572i
\(323\) 3.36692 3.36692i 0.187340 0.187340i
\(324\) 3.96209 + 2.19848i 0.220116 + 0.122138i
\(325\) 0 0
\(326\) 9.79433i 0.542458i
\(327\) −21.6812 12.3950i −1.19898 0.685445i
\(328\) −10.3401 −0.570939
\(329\) −25.7008 −1.41693
\(330\) 0 0
\(331\) −6.48090 + 6.48090i −0.356223 + 0.356223i −0.862418 0.506196i \(-0.831051\pi\)
0.506196 + 0.862418i \(0.331051\pi\)
\(332\) 5.11992 5.11992i 0.280992 0.280992i
\(333\) −12.4388 3.21978i −0.681640 0.176443i
\(334\) 8.83753 0.483568
\(335\) 0 0
\(336\) −8.47362 + 14.8220i −0.462274 + 0.808607i
\(337\) 32.1622i 1.75199i −0.482323 0.875993i \(-0.660207\pi\)
0.482323 0.875993i \(-0.339793\pi\)
\(338\) −17.8314 + 10.2531i −0.969900 + 0.557697i
\(339\) 28.9969 7.90207i 1.57490 0.429181i
\(340\) 0 0
\(341\) 1.16006i 0.0628207i
\(342\) 7.00416 4.12371i 0.378742 0.222985i
\(343\) −14.2230 + 14.2230i −0.767972 + 0.767972i
\(344\) −1.39139 1.39139i −0.0750190 0.0750190i
\(345\) 0 0
\(346\) −10.9077 10.9077i −0.586404 0.586404i
\(347\) 11.3661i 0.610165i 0.952326 + 0.305082i \(0.0986840\pi\)
−0.952326 + 0.305082i \(0.901316\pi\)
\(348\) −1.68343 6.17740i −0.0902413 0.331144i
\(349\) 0.388646 + 0.388646i 0.0208038 + 0.0208038i 0.717432 0.696628i \(-0.245317\pi\)
−0.696628 + 0.717432i \(0.745317\pi\)
\(350\) 0 0
\(351\) 2.22453 18.6025i 0.118737 0.992926i
\(352\) 1.15386 0.0615011
\(353\) 10.9517 + 10.9517i 0.582900 + 0.582900i 0.935699 0.352799i \(-0.114770\pi\)
−0.352799 + 0.935699i \(0.614770\pi\)
\(354\) −2.42967 8.91574i −0.129135 0.473866i
\(355\) 0 0
\(356\) 2.50420 + 2.50420i 0.132722 + 0.132722i
\(357\) 4.95701 8.67078i 0.262353 0.458906i
\(358\) 1.43734 + 1.43734i 0.0759655 + 0.0759655i
\(359\) −3.80124 + 3.80124i −0.200622 + 0.200622i −0.800266 0.599645i \(-0.795309\pi\)
0.599645 + 0.800266i \(0.295309\pi\)
\(360\) 0 0
\(361\) 16.0679i 0.845680i
\(362\) 6.03120 6.03120i 0.316993 0.316993i
\(363\) 18.0954 4.93126i 0.949764 0.258824i
\(364\) −3.73166 0.494626i −0.195592 0.0259255i
\(365\) 0 0
\(366\) −4.97950 + 8.71011i −0.260282 + 0.455285i
\(367\) 23.2059 1.21134 0.605669 0.795717i \(-0.292906\pi\)
0.605669 + 0.795717i \(0.292906\pi\)
\(368\) −26.9254 −1.40358
\(369\) 12.6826 + 3.28288i 0.660227 + 0.170900i
\(370\) 0 0
\(371\) 0.378899 0.378899i 0.0196715 0.0196715i
\(372\) −1.21195 + 2.11993i −0.0628365 + 0.109913i
\(373\) 20.3615 1.05428 0.527139 0.849779i \(-0.323265\pi\)
0.527139 + 0.849779i \(0.323265\pi\)
\(374\) −1.82267 −0.0942481
\(375\) 0 0
\(376\) 29.3467i 1.51344i
\(377\) −21.0167 + 16.0973i −1.08242 + 0.829054i
\(378\) 11.9006 12.2083i 0.612101 0.627928i
\(379\) −2.24383 + 2.24383i −0.115258 + 0.115258i −0.762383 0.647126i \(-0.775971\pi\)
0.647126 + 0.762383i \(0.275971\pi\)
\(380\) 0 0
\(381\) 35.2588 9.60852i 1.80636 0.492259i
\(382\) 9.10384 9.10384i 0.465793 0.465793i
\(383\) 3.09636 + 3.09636i 0.158217 + 0.158217i 0.781776 0.623559i \(-0.214314\pi\)
−0.623559 + 0.781776i \(0.714314\pi\)
\(384\) −20.5098 11.7253i −1.04664 0.598354i
\(385\) 0 0
\(386\) 4.54050i 0.231105i
\(387\) 1.26484 + 2.14835i 0.0642955 + 0.109207i
\(388\) 4.23680 + 4.23680i 0.215091 + 0.215091i
\(389\) 19.3062 0.978864 0.489432 0.872041i \(-0.337204\pi\)
0.489432 + 0.872041i \(0.337204\pi\)
\(390\) 0 0
\(391\) 15.7511 0.796570
\(392\) −4.52034 4.52034i −0.228312 0.228312i
\(393\) 16.4812 4.49136i 0.831366 0.226559i
\(394\) 6.94194i 0.349730i
\(395\) 0 0
\(396\) −0.605737 0.156795i −0.0304394 0.00787925i
\(397\) −13.4071 13.4071i −0.672884 0.672884i 0.285496 0.958380i \(-0.407842\pi\)
−0.958380 + 0.285496i \(0.907842\pi\)
\(398\) 4.24995 4.24995i 0.213031 0.213031i
\(399\) −1.61707 5.93388i −0.0809545 0.297065i
\(400\) 0 0
\(401\) −4.82449 + 4.82449i −0.240923 + 0.240923i −0.817232 0.576309i \(-0.804493\pi\)
0.576309 + 0.817232i \(0.304493\pi\)
\(402\) 9.47062 + 34.7528i 0.472351 + 1.73331i
\(403\) 10.0090 + 1.32668i 0.498585 + 0.0660867i
\(404\) 3.19833i 0.159123i
\(405\) 0 0
\(406\) −24.0907 −1.19560
\(407\) 1.77426 0.0879467
\(408\) 9.90081 + 5.66021i 0.490163 + 0.280222i
\(409\) −2.33925 + 2.33925i −0.115669 + 0.115669i −0.762572 0.646903i \(-0.776064\pi\)
0.646903 + 0.762572i \(0.276064\pi\)
\(410\) 0 0
\(411\) −13.8461 7.91571i −0.682978 0.390453i
\(412\) 3.80082 0.187253
\(413\) −6.99242 −0.344074
\(414\) 26.0292 + 6.73768i 1.27927 + 0.331139i
\(415\) 0 0
\(416\) 1.31959 9.95556i 0.0646985 0.488112i
\(417\) 2.11948 + 7.77749i 0.103791 + 0.380866i
\(418\) −0.793637 + 0.793637i −0.0388180 + 0.0388180i
\(419\) 11.3389i 0.553942i −0.960878 0.276971i \(-0.910669\pi\)
0.960878 0.276971i \(-0.0893306\pi\)
\(420\) 0 0
\(421\) 15.5576 15.5576i 0.758230 0.758230i −0.217770 0.976000i \(-0.569878\pi\)
0.976000 + 0.217770i \(0.0698783\pi\)
\(422\) 6.68071 + 6.68071i 0.325212 + 0.325212i
\(423\) −9.31726 + 35.9948i −0.453021 + 1.75013i
\(424\) 0.432650 + 0.432650i 0.0210113 + 0.0210113i
\(425\) 0 0
\(426\) −29.4720 + 8.03155i −1.42792 + 0.389130i
\(427\) 5.36823 + 5.36823i 0.259787 + 0.259787i
\(428\) 1.85864 0.0898409
\(429\) 0.346333 + 2.56380i 0.0167211 + 0.123781i
\(430\) 0 0
\(431\) −25.6108 25.6108i −1.23363 1.23363i −0.962560 0.271068i \(-0.912623\pi\)
−0.271068 0.962560i \(-0.587377\pi\)
\(432\) 17.6868 + 17.2410i 0.850955 + 0.829507i
\(433\) 32.5410i 1.56382i −0.623392 0.781909i \(-0.714246\pi\)
0.623392 0.781909i \(-0.285754\pi\)
\(434\) 6.49685 + 6.49685i 0.311859 + 0.311859i
\(435\) 0 0
\(436\) 5.13315 + 5.13315i 0.245833 + 0.245833i
\(437\) 6.85844 6.85844i 0.328084 0.328084i
\(438\) 43.0812 11.7402i 2.05850 0.560970i
\(439\) 33.7542i 1.61100i 0.592595 + 0.805501i \(0.298104\pi\)
−0.592595 + 0.805501i \(0.701896\pi\)
\(440\) 0 0
\(441\) 4.10920 + 6.97952i 0.195676 + 0.332358i
\(442\) −2.08447 + 15.7261i −0.0991479 + 0.748012i
\(443\) 30.3054i 1.43985i −0.694050 0.719927i \(-0.744175\pi\)
0.694050 0.719927i \(-0.255825\pi\)
\(444\) 3.24234 + 1.85362i 0.153875 + 0.0879689i
\(445\) 0 0
\(446\) −9.31616 −0.441133
\(447\) 14.4412 25.2604i 0.683044 1.19478i
\(448\) −7.47806 + 7.47806i −0.353305 + 0.353305i
\(449\) −18.9354 + 18.9354i −0.893616 + 0.893616i −0.994861 0.101246i \(-0.967717\pi\)
0.101246 + 0.994861i \(0.467717\pi\)
\(450\) 0 0
\(451\) −1.80903 −0.0851841
\(452\) −8.73603 −0.410908
\(453\) 6.03790 10.5615i 0.283685 0.496220i
\(454\) 17.8813i 0.839211i
\(455\) 0 0
\(456\) 6.77565 1.84646i 0.317299 0.0864685i
\(457\) 12.6125 12.6125i 0.589987 0.589987i −0.347641 0.937628i \(-0.613017\pi\)
0.937628 + 0.347641i \(0.113017\pi\)
\(458\) 33.0580i 1.54470i
\(459\) −10.3466 10.0858i −0.482940 0.470767i
\(460\) 0 0
\(461\) −13.1232 13.1232i −0.611207 0.611207i 0.332054 0.943260i \(-0.392258\pi\)
−0.943260 + 0.332054i \(0.892258\pi\)
\(462\) −1.16845 + 2.04384i −0.0543611 + 0.0950881i
\(463\) 23.7400 + 23.7400i 1.10329 + 1.10329i 0.994011 + 0.109278i \(0.0348540\pi\)
0.109278 + 0.994011i \(0.465146\pi\)
\(464\) 34.9014i 1.62026i
\(465\) 0 0
\(466\) 16.8307 + 16.8307i 0.779667 + 0.779667i
\(467\) 20.9138 0.967776 0.483888 0.875130i \(-0.339224\pi\)
0.483888 + 0.875130i \(0.339224\pi\)
\(468\) −2.04557 + 5.04700i −0.0945566 + 0.233297i
\(469\) 27.2558 1.25856
\(470\) 0 0
\(471\) −7.26515 26.6597i −0.334760 1.22841i
\(472\) 7.98436i 0.367510i
\(473\) −0.243428 0.243428i −0.0111928 0.0111928i
\(474\) 22.1840 38.8042i 1.01895 1.78234i
\(475\) 0 0
\(476\) −2.05285 + 2.05285i −0.0940923 + 0.0940923i
\(477\) −0.393299 0.668022i −0.0180079 0.0305866i
\(478\) 11.4894i 0.525513i
\(479\) −12.4837 + 12.4837i −0.570393 + 0.570393i −0.932238 0.361845i \(-0.882147\pi\)
0.361845 + 0.932238i \(0.382147\pi\)
\(480\) 0 0
\(481\) 2.02910 15.3084i 0.0925190 0.698001i
\(482\) 9.20221i 0.419149i
\(483\) 10.0975 17.6624i 0.459451 0.803669i
\(484\) −5.45169 −0.247804
\(485\) 0 0
\(486\) −12.7838 21.0930i −0.579886 0.956799i
\(487\) −17.2586 + 17.2586i −0.782061 + 0.782061i −0.980178 0.198117i \(-0.936517\pi\)
0.198117 + 0.980178i \(0.436517\pi\)
\(488\) −6.12976 + 6.12976i −0.277481 + 0.277481i
\(489\) −5.32131 + 9.30801i −0.240638 + 0.420923i
\(490\) 0 0
\(491\) 33.3522 1.50516 0.752582 0.658498i \(-0.228808\pi\)
0.752582 + 0.658498i \(0.228808\pi\)
\(492\) −3.30589 1.88995i −0.149041 0.0852055i
\(493\) 20.4171i 0.919538i
\(494\) 5.93989 + 7.75515i 0.267248 + 0.348921i
\(495\) 0 0
\(496\) −9.41230 + 9.41230i −0.422625 + 0.422625i
\(497\) 23.1143i 1.03682i
\(498\) −38.0265 + 10.3628i −1.70401 + 0.464367i
\(499\) −17.9656 + 17.9656i −0.804252 + 0.804252i −0.983757 0.179505i \(-0.942550\pi\)
0.179505 + 0.983757i \(0.442550\pi\)
\(500\) 0 0
\(501\) −8.39872 4.80148i −0.375227 0.214514i
\(502\) −6.15377 6.15377i −0.274656 0.274656i
\(503\) 38.5906i 1.72067i −0.509731 0.860334i \(-0.670255\pi\)
0.509731 0.860334i \(-0.329745\pi\)
\(504\) 12.6941 7.47365i 0.565439 0.332903i
\(505\) 0 0
\(506\) −3.71280 −0.165054
\(507\) 22.5166 0.0561329i 0.999997 0.00249295i
\(508\) −10.6226 −0.471300
\(509\) 5.99503 + 5.99503i 0.265725 + 0.265725i 0.827375 0.561650i \(-0.189833\pi\)
−0.561650 + 0.827375i \(0.689833\pi\)
\(510\) 0 0
\(511\) 33.7876i 1.49467i
\(512\) −6.55574 6.55574i −0.289725 0.289725i
\(513\) −8.89681 + 0.113554i −0.392804 + 0.00501352i
\(514\) 8.33520 + 8.33520i 0.367650 + 0.367650i
\(515\) 0 0
\(516\) −0.190532 0.699165i −0.00838772 0.0307790i
\(517\) 5.13428i 0.225805i
\(518\) 9.93664 9.93664i 0.436591 0.436591i
\(519\) 4.43990 + 16.2924i 0.194890 + 0.715156i
\(520\) 0 0
\(521\) 13.8731i 0.607791i −0.952705 0.303896i \(-0.901713\pi\)
0.952705 0.303896i \(-0.0982874\pi\)
\(522\) −8.73356 + 33.7398i −0.382257 + 1.47675i
\(523\) 24.2698 1.06124 0.530622 0.847609i \(-0.321958\pi\)
0.530622 + 0.847609i \(0.321958\pi\)
\(524\) −4.96536 −0.216913
\(525\) 0 0
\(526\) 25.9391 25.9391i 1.13100 1.13100i
\(527\) 5.50613 5.50613i 0.239851 0.239851i
\(528\) −2.96101 1.69279i −0.128861 0.0736690i
\(529\) 9.08521 0.395009
\(530\) 0 0
\(531\) −2.53495 + 9.79310i −0.110007 + 0.424984i
\(532\) 1.78773i 0.0775077i
\(533\) −2.06887 + 15.6084i −0.0896127 + 0.676074i
\(534\) −5.06852 18.5991i −0.219336 0.804862i
\(535\) 0 0
\(536\) 31.1223i 1.34428i
\(537\) −0.585055 2.14688i −0.0252470 0.0926447i
\(538\) 29.9222 29.9222i 1.29004 1.29004i
\(539\) −0.790845 0.790845i −0.0340641 0.0340641i
\(540\) 0 0
\(541\) 22.2024 + 22.2024i 0.954555 + 0.954555i 0.999011 0.0444563i \(-0.0141555\pi\)
−0.0444563 + 0.999011i \(0.514156\pi\)
\(542\) 6.22205i 0.267260i
\(543\) −9.00852 + 2.45495i −0.386592 + 0.105352i
\(544\) −5.47672 5.47672i −0.234813 0.234813i
\(545\) 0 0
\(546\) 16.2980 + 12.4188i 0.697492 + 0.531475i
\(547\) 19.3984 0.829418 0.414709 0.909954i \(-0.363883\pi\)
0.414709 + 0.909954i \(0.363883\pi\)
\(548\) 3.27814 + 3.27814i 0.140035 + 0.140035i
\(549\) 9.46450 5.57224i 0.403935 0.237817i
\(550\) 0 0
\(551\) 8.89010 + 8.89010i 0.378731 + 0.378731i
\(552\) 20.1680 + 11.5299i 0.858408 + 0.490745i
\(553\) −23.9158 23.9158i −1.01701 1.01701i
\(554\) −32.0809 + 32.0809i −1.36299 + 1.36299i
\(555\) 0 0
\(556\) 2.34316i 0.0993721i
\(557\) 12.2284 12.2284i 0.518134 0.518134i −0.398873 0.917006i \(-0.630598\pi\)
0.917006 + 0.398873i \(0.130598\pi\)
\(558\) 11.4543 6.74375i 0.484900 0.285486i
\(559\) −2.37869 + 1.82191i −0.100608 + 0.0770586i
\(560\) 0 0
\(561\) 1.73217 + 0.990268i 0.0731323 + 0.0418091i
\(562\) −1.81659 −0.0766284
\(563\) −13.2701 −0.559267 −0.279633 0.960107i \(-0.590213\pi\)
−0.279633 + 0.960107i \(0.590213\pi\)
\(564\) 5.36393 9.38256i 0.225862 0.395077i
\(565\) 0 0
\(566\) 25.6922 25.6922i 1.07992 1.07992i
\(567\) −17.9425 + 5.13647i −0.753516 + 0.215711i
\(568\) −26.3932 −1.10744
\(569\) 1.99616 0.0836833 0.0418417 0.999124i \(-0.486677\pi\)
0.0418417 + 0.999124i \(0.486677\pi\)
\(570\) 0 0
\(571\) 8.10449i 0.339162i 0.985516 + 0.169581i \(0.0542415\pi\)
−0.985516 + 0.169581i \(0.945758\pi\)
\(572\) 0.0988121 0.745479i 0.00413154 0.0311700i
\(573\) −13.5980 + 3.70564i −0.568063 + 0.154805i
\(574\) −10.1314 + 10.1314i −0.422876 + 0.422876i
\(575\) 0 0
\(576\) 7.76226 + 13.1843i 0.323427 + 0.549345i
\(577\) −22.0036 + 22.0036i −0.916023 + 0.916023i −0.996737 0.0807147i \(-0.974280\pi\)
0.0807147 + 0.996737i \(0.474280\pi\)
\(578\) −10.3686 10.3686i −0.431275 0.431275i
\(579\) −2.46688 + 4.31505i −0.102520 + 0.179327i
\(580\) 0 0
\(581\) 29.8234i 1.23728i
\(582\) −8.57532 31.4674i −0.355459 1.30437i
\(583\) 0.0756932 + 0.0756932i 0.00313489 + 0.00313489i
\(584\) 38.5807 1.59648
\(585\) 0 0
\(586\) −18.4796 −0.763384
\(587\) 6.82405 + 6.82405i 0.281659 + 0.281659i 0.833770 0.552112i \(-0.186178\pi\)
−0.552112 + 0.833770i \(0.686178\pi\)
\(588\) −0.618998 2.27144i −0.0255271 0.0936724i
\(589\) 4.79501i 0.197575i
\(590\) 0 0
\(591\) 3.77159 6.59725i 0.155143 0.271375i
\(592\) 14.3957 + 14.3957i 0.591659 + 0.591659i
\(593\) −1.95435 + 1.95435i −0.0802556 + 0.0802556i −0.746095 0.665839i \(-0.768074\pi\)
0.665839 + 0.746095i \(0.268074\pi\)
\(594\) 2.43887 + 2.37740i 0.100068 + 0.0975457i
\(595\) 0 0
\(596\) −5.98054 + 5.98054i −0.244972 + 0.244972i
\(597\) −6.34795 + 1.72991i −0.259804 + 0.0708004i
\(598\) −4.24607 + 32.0341i −0.173635 + 1.30997i
\(599\) 4.69516i 0.191839i 0.995389 + 0.0959195i \(0.0305791\pi\)
−0.995389 + 0.0959195i \(0.969421\pi\)
\(600\) 0 0
\(601\) 7.38898 0.301403 0.150701 0.988579i \(-0.451847\pi\)
0.150701 + 0.988579i \(0.451847\pi\)
\(602\) −2.72661 −0.111128
\(603\) 9.88100 38.1726i 0.402385 1.55451i
\(604\) −2.50048 + 2.50048i −0.101743 + 0.101743i
\(605\) 0 0
\(606\) 8.64055 15.1140i 0.350998 0.613965i
\(607\) 5.61074 0.227733 0.113867 0.993496i \(-0.463676\pi\)
0.113867 + 0.993496i \(0.463676\pi\)
\(608\) −4.76940 −0.193425
\(609\) 22.8945 + 13.0886i 0.927733 + 0.530378i
\(610\) 0 0
\(611\) −44.2987 5.87173i −1.79213 0.237545i
\(612\) 2.13087 + 3.61930i 0.0861352 + 0.146301i
\(613\) −16.7181 + 16.7181i −0.675238 + 0.675238i −0.958919 0.283680i \(-0.908445\pi\)
0.283680 + 0.958919i \(0.408445\pi\)
\(614\) 50.1582i 2.02422i
\(615\) 0 0
\(616\) −1.43836 + 1.43836i −0.0579531 + 0.0579531i
\(617\) −30.6567 30.6567i −1.23419 1.23419i −0.962339 0.271854i \(-0.912363\pi\)
−0.271854 0.962339i \(-0.587637\pi\)
\(618\) −17.9611 10.2682i −0.722501 0.413048i
\(619\) −20.5920 20.5920i −0.827663 0.827663i 0.159530 0.987193i \(-0.449002\pi\)
−0.987193 + 0.159530i \(0.949002\pi\)
\(620\) 0 0
\(621\) −21.0762 20.5450i −0.845758 0.824441i
\(622\) −24.2131 24.2131i −0.970859 0.970859i
\(623\) −14.5869 −0.584410
\(624\) −17.9917 + 23.6118i −0.720245 + 0.945227i
\(625\) 0 0
\(626\) −7.96826 7.96826i −0.318476 0.318476i
\(627\) 1.18542 0.323043i 0.0473410 0.0129011i
\(628\) 8.03189i 0.320507i
\(629\) −8.42138 8.42138i −0.335782 0.335782i
\(630\) 0 0
\(631\) 2.48933 + 2.48933i 0.0990986 + 0.0990986i 0.754918 0.655819i \(-0.227677\pi\)
−0.655819 + 0.754918i \(0.727677\pi\)
\(632\) 27.3085 27.3085i 1.08628 1.08628i
\(633\) −2.71933 9.97866i −0.108084 0.396616i
\(634\) 33.5491i 1.33241i
\(635\) 0 0
\(636\) 0.0592454 + 0.217403i 0.00234923 + 0.00862060i
\(637\) −7.72786 + 5.91899i −0.306189 + 0.234519i
\(638\) 4.81263i 0.190534i
\(639\) 32.3722 + 8.37957i 1.28063 + 0.331491i
\(640\) 0 0
\(641\) 27.5035 1.08632 0.543161 0.839629i \(-0.317227\pi\)
0.543161 + 0.839629i \(0.317227\pi\)
\(642\) −8.78318 5.02127i −0.346645 0.198174i
\(643\) −27.9426 + 27.9426i −1.10195 + 1.10195i −0.107771 + 0.994176i \(0.534371\pi\)
−0.994176 + 0.107771i \(0.965629\pi\)
\(644\) −4.18167 + 4.18167i −0.164781 + 0.164781i
\(645\) 0 0
\(646\) 7.53387 0.296416
\(647\) 16.9805 0.667572 0.333786 0.942649i \(-0.391674\pi\)
0.333786 + 0.942649i \(0.391674\pi\)
\(648\) −5.86513 20.4879i −0.230404 0.804839i
\(649\) 1.39688i 0.0548325i
\(650\) 0 0
\(651\) −2.64449 9.70403i −0.103646 0.380331i
\(652\) 2.20372 2.20372i 0.0863044 0.0863044i
\(653\) 42.0032i 1.64371i 0.569695 + 0.821856i \(0.307061\pi\)
−0.569695 + 0.821856i \(0.692939\pi\)
\(654\) −10.3895 38.1248i −0.406263 1.49080i
\(655\) 0 0
\(656\) −14.6778 14.6778i −0.573074 0.573074i
\(657\) −47.3206 12.2489i −1.84615 0.477877i
\(658\) −28.7543 28.7543i −1.12096 1.12096i
\(659\) 7.23414i 0.281802i −0.990024 0.140901i \(-0.955000\pi\)
0.990024 0.140901i \(-0.0450000\pi\)
\(660\) 0 0
\(661\) −10.3889 10.3889i −0.404082 0.404082i 0.475587 0.879669i \(-0.342236\pi\)
−0.879669 + 0.475587i \(0.842236\pi\)
\(662\) −14.5018 −0.563627
\(663\) 10.5250 13.8127i 0.408758 0.536441i
\(664\) −34.0541 −1.32155
\(665\) 0 0
\(666\) −10.3143 17.5189i −0.399670 0.678843i
\(667\) 41.5897i 1.61036i
\(668\) 1.98844 + 1.98844i 0.0769351 + 0.0769351i
\(669\) 8.85359 + 5.06152i 0.342299 + 0.195690i
\(670\) 0 0
\(671\) −1.07242 + 1.07242i −0.0414002 + 0.0414002i
\(672\) −9.65221 + 2.63036i −0.372342 + 0.101468i
\(673\) 25.8635i 0.996966i 0.866899 + 0.498483i \(0.166109\pi\)
−0.866899 + 0.498483i \(0.833891\pi\)
\(674\) 35.9833 35.9833i 1.38603 1.38603i
\(675\) 0 0
\(676\) −6.31901 1.70511i −0.243039 0.0655810i
\(677\) 21.1738i 0.813775i −0.913478 0.406887i \(-0.866614\pi\)
0.913478 0.406887i \(-0.133386\pi\)
\(678\) 41.2829 + 23.6011i 1.58546 + 0.906394i
\(679\) −24.6792 −0.947101
\(680\) 0 0
\(681\) −9.71501 + 16.9934i −0.372280 + 0.651190i
\(682\) −1.29788 + 1.29788i −0.0496985 + 0.0496985i
\(683\) 13.2249 13.2249i 0.506038 0.506038i −0.407270 0.913308i \(-0.633519\pi\)
0.913308 + 0.407270i \(0.133519\pi\)
\(684\) 2.50377 + 0.648101i 0.0957339 + 0.0247807i
\(685\) 0 0
\(686\) −31.8257 −1.21511
\(687\) −17.9606 + 31.4166i −0.685240 + 1.19862i
\(688\) 3.95017i 0.150599i
\(689\) 0.739648 0.566518i 0.0281783 0.0215826i
\(690\) 0 0
\(691\) 15.4010 15.4010i 0.585883 0.585883i −0.350630 0.936514i \(-0.614033\pi\)
0.936514 + 0.350630i \(0.114033\pi\)
\(692\) 4.90847i 0.186592i
\(693\) 2.22086 1.30753i 0.0843635 0.0496691i
\(694\) −12.7165 + 12.7165i −0.482712 + 0.482712i
\(695\) 0 0
\(696\) −14.9454 + 26.1423i −0.566502 + 0.990923i
\(697\) 8.58644 + 8.58644i 0.325235 + 0.325235i
\(698\) 0.869642i 0.0329164i
\(699\) −6.85079 25.1392i −0.259121 0.950852i
\(700\) 0 0
\(701\) 14.2724 0.539063 0.269531 0.962992i \(-0.413131\pi\)
0.269531 + 0.962992i \(0.413131\pi\)
\(702\) 23.3014 18.3238i 0.879455 0.691585i
\(703\) −7.33376 −0.276598
\(704\) −1.49390 1.49390i −0.0563035 0.0563035i
\(705\) 0 0
\(706\) 24.5057i 0.922284i
\(707\) −9.31508 9.31508i −0.350330 0.350330i
\(708\) 1.45936 2.55271i 0.0548463 0.0959368i
\(709\) −1.84603 1.84603i −0.0693291 0.0693291i 0.671592 0.740921i \(-0.265611\pi\)
−0.740921 + 0.671592i \(0.765611\pi\)
\(710\) 0 0
\(711\) −42.1651 + 24.8247i −1.58131 + 0.931000i
\(712\) 16.6561i 0.624216i
\(713\) 11.2160 11.2160i 0.420044 0.420044i
\(714\) 15.2469 4.15499i 0.570600 0.155497i
\(715\) 0 0
\(716\) 0.646800i 0.0241720i
\(717\) −6.24226 + 10.9189i −0.233121 + 0.407775i
\(718\) −8.50571 −0.317430
\(719\) −45.7040 −1.70447 −0.852237 0.523156i \(-0.824754\pi\)
−0.852237 + 0.523156i \(0.824754\pi\)
\(720\) 0 0
\(721\) −11.0698 + 11.0698i −0.412261 + 0.412261i
\(722\) −17.9769 + 17.9769i −0.669032 + 0.669032i
\(723\) 4.99961 8.74530i 0.185938 0.325241i
\(724\) 2.71404 0.100866
\(725\) 0 0
\(726\) 25.7624 + 14.7282i 0.956134 + 0.546614i
\(727\) 5.12985i 0.190256i 0.995465 + 0.0951279i \(0.0303260\pi\)
−0.995465 + 0.0951279i \(0.969674\pi\)
\(728\) 10.7652 + 14.0551i 0.398986 + 0.520918i
\(729\) 0.689112 + 26.9912i 0.0255227 + 0.999674i
\(730\) 0 0
\(731\) 2.31082i 0.0854689i
\(732\) −3.08016 + 0.839386i −0.113846 + 0.0310246i
\(733\) −6.65960 + 6.65960i −0.245978 + 0.245978i −0.819318 0.573340i \(-0.805647\pi\)
0.573340 + 0.819318i \(0.305647\pi\)
\(734\) 25.9629 + 25.9629i 0.958309 + 0.958309i
\(735\) 0 0
\(736\) −11.1561 11.1561i −0.411220 0.411220i
\(737\) 5.44492i 0.200566i
\(738\) 10.5164 + 17.8623i 0.387115 + 0.657519i
\(739\) −15.3715 15.3715i −0.565448 0.565448i 0.365402 0.930850i \(-0.380932\pi\)
−0.930850 + 0.365402i \(0.880932\pi\)
\(740\) 0 0
\(741\) −1.43154 10.5973i −0.0525890 0.389300i
\(742\) 0.847831 0.0311249
\(743\) 10.7883 + 10.7883i 0.395784 + 0.395784i 0.876743 0.480959i \(-0.159712\pi\)
−0.480959 + 0.876743i \(0.659712\pi\)
\(744\) 11.0806 3.01963i 0.406236 0.110705i
\(745\) 0 0
\(746\) 22.7806 + 22.7806i 0.834056 + 0.834056i
\(747\) 41.7686 + 10.8118i 1.52823 + 0.395583i
\(748\) −0.410100 0.410100i −0.0149948 0.0149948i
\(749\) −5.41326 + 5.41326i −0.197796 + 0.197796i
\(750\) 0 0
\(751\) 47.2418i 1.72388i 0.507012 + 0.861939i \(0.330750\pi\)
−0.507012 + 0.861939i \(0.669250\pi\)
\(752\) 41.6577 41.6577i 1.51910 1.51910i
\(753\) 2.50484 + 9.19160i 0.0912814 + 0.334960i
\(754\) −41.5235 5.50388i −1.51220 0.200439i
\(755\) 0 0
\(756\) 5.42449 0.0692351i 0.197287 0.00251806i
\(757\) −6.53480 −0.237511 −0.118756 0.992924i \(-0.537891\pi\)
−0.118756 + 0.992924i \(0.537891\pi\)
\(758\) −5.02083 −0.182365
\(759\) 3.52845 + 2.01718i 0.128074 + 0.0732191i
\(760\) 0 0
\(761\) −19.3550 + 19.3550i −0.701618 + 0.701618i −0.964758 0.263139i \(-0.915242\pi\)
0.263139 + 0.964758i \(0.415242\pi\)
\(762\) 50.1979 + 28.6977i 1.81848 + 1.03961i
\(763\) −29.9004 −1.08247
\(764\) 4.09672 0.148214
\(765\) 0 0
\(766\) 6.92846i 0.250336i
\(767\) −12.0523 1.59752i −0.435185 0.0576831i
\(768\) −5.18322 19.0200i −0.187033 0.686326i
\(769\) 1.85581 1.85581i 0.0669221 0.0669221i −0.672854 0.739776i \(-0.734932\pi\)
0.739776 + 0.672854i \(0.234932\pi\)
\(770\) 0 0
\(771\) −3.39277 12.4499i −0.122188 0.448372i
\(772\) 1.02161 1.02161i 0.0367686 0.0367686i
\(773\) 5.15489 + 5.15489i 0.185408 + 0.185408i 0.793708 0.608299i \(-0.208148\pi\)
−0.608299 + 0.793708i \(0.708148\pi\)
\(774\) −0.988473 + 3.81870i −0.0355299 + 0.137260i
\(775\) 0 0
\(776\) 28.1802i 1.01161i
\(777\) −14.8419 + 4.04463i −0.532450 + 0.145100i
\(778\) 21.5999 + 21.5999i 0.774396 + 0.774396i
\(779\) 7.47750 0.267909
\(780\) 0 0
\(781\) −4.61756 −0.165229
\(782\) 17.6225 + 17.6225i 0.630180 + 0.630180i
\(783\) 26.6309 27.3195i 0.951712 0.976320i
\(784\) 12.8333i 0.458331i
\(785\) 0 0
\(786\) 23.4643 + 13.4143i 0.836942 + 0.478473i
\(787\) 10.3937 + 10.3937i 0.370494 + 0.370494i 0.867657 0.497163i \(-0.165625\pi\)
−0.497163 + 0.867657i \(0.665625\pi\)
\(788\) −1.56193 + 1.56193i −0.0556416 + 0.0556416i
\(789\) −38.7440 + 10.5583i −1.37932 + 0.375885i
\(790\) 0 0
\(791\) 25.4435 25.4435i 0.904667 0.904667i
\(792\) 1.49302 + 2.53591i 0.0530521 + 0.0901096i
\(793\) 8.02639 + 10.4793i 0.285025 + 0.372130i
\(794\) 30.0000i 1.06466i
\(795\) 0 0
\(796\) 1.91248 0.0677859
\(797\) −28.4028 −1.00608 −0.503039 0.864264i \(-0.667785\pi\)
−0.503039 + 0.864264i \(0.667785\pi\)
\(798\) 4.82968 8.44806i 0.170969 0.299058i
\(799\) −24.3695 + 24.3695i −0.862130 + 0.862130i
\(800\) 0 0
\(801\) −5.28815 + 20.4294i −0.186847 + 0.721836i
\(802\) −10.7954 −0.381197
\(803\) 6.74979 0.238195
\(804\) −5.68847 + 9.95024i −0.200617 + 0.350918i
\(805\) 0 0
\(806\) 9.71387 + 12.6825i 0.342156 + 0.446721i
\(807\) −44.6933 + 12.1796i −1.57328 + 0.428741i
\(808\) 10.6365 10.6365i 0.374191 0.374191i
\(809\) 23.7943i 0.836561i −0.908318 0.418281i \(-0.862633\pi\)
0.908318 0.418281i \(-0.137367\pi\)
\(810\) 0 0
\(811\) 12.0402 12.0402i 0.422789 0.422789i −0.463374 0.886163i \(-0.653361\pi\)
0.886163 + 0.463374i \(0.153361\pi\)
\(812\) −5.42040 5.42040i −0.190219 0.190219i
\(813\) −3.38047 + 5.91310i −0.118558 + 0.207382i
\(814\) 1.98505 + 1.98505i 0.0695761 + 0.0695761i
\(815\) 0 0
\(816\) 6.01953 + 22.0889i 0.210726 + 0.773266i
\(817\) 1.00619 + 1.00619i 0.0352021 + 0.0352021i
\(818\) −5.23435 −0.183015
\(819\) −8.74159 20.6570i −0.305456 0.721813i
\(820\) 0 0
\(821\) −8.79819 8.79819i −0.307059 0.307059i 0.536709 0.843768i \(-0.319667\pi\)
−0.843768 + 0.536709i \(0.819667\pi\)
\(822\) −6.63498 24.3473i −0.231421 0.849209i
\(823\) 6.05273i 0.210985i −0.994420 0.105493i \(-0.966358\pi\)
0.994420 0.105493i \(-0.0336419\pi\)
\(824\) −12.6402 12.6402i −0.440341 0.440341i
\(825\) 0 0
\(826\) −7.82317 7.82317i −0.272203 0.272203i
\(827\) −32.2394 + 32.2394i −1.12107 + 1.12107i −0.129495 + 0.991580i \(0.541336\pi\)
−0.991580 + 0.129495i \(0.958664\pi\)
\(828\) 4.34059 + 7.37254i 0.150846 + 0.256214i
\(829\) 14.4284i 0.501119i 0.968101 + 0.250559i \(0.0806145\pi\)
−0.968101 + 0.250559i \(0.919385\pi\)
\(830\) 0 0
\(831\) 47.9177 13.0582i 1.66225 0.452985i
\(832\) −14.5979 + 11.1809i −0.506091 + 0.387630i
\(833\) 7.50737i 0.260115i
\(834\) −6.33024 + 11.0728i −0.219198 + 0.383420i
\(835\) 0 0
\(836\) −0.357136 −0.0123518
\(837\) −14.5495 + 0.185701i −0.502904 + 0.00641878i
\(838\) 12.6861 12.6861i 0.438233 0.438233i
\(839\) 16.5805 16.5805i 0.572423 0.572423i −0.360382 0.932805i \(-0.617354\pi\)
0.932805 + 0.360382i \(0.117354\pi\)
\(840\) 0 0
\(841\) −24.9097 −0.858956
\(842\) 34.8119 1.19970
\(843\) 1.72639 + 0.986965i 0.0594602 + 0.0339929i
\(844\) 3.00632i 0.103482i
\(845\) 0 0
\(846\) −50.6955 + 29.8470i −1.74295 + 1.02616i
\(847\) 15.8779 15.8779i 0.545572 0.545572i
\(848\) 1.22829i 0.0421798i
\(849\) −38.3752 + 10.4578i −1.31703 + 0.358910i
\(850\) 0 0
\(851\) −17.1544 17.1544i −0.588046 0.588046i
\(852\) −8.43829 4.82410i −0.289091 0.165271i
\(853\) −20.3214 20.3214i −0.695793 0.695793i 0.267707 0.963500i \(-0.413734\pi\)
−0.963500 + 0.267707i \(0.913734\pi\)
\(854\) 12.0120i 0.411043i
\(855\) 0 0
\(856\) −6.18118 6.18118i −0.211269 0.211269i
\(857\) −23.5604 −0.804807 −0.402404 0.915462i \(-0.631825\pi\)
−0.402404 + 0.915462i \(0.631825\pi\)
\(858\) −2.48092 + 3.25588i −0.0846971 + 0.111154i
\(859\) −23.0208 −0.785460 −0.392730 0.919654i \(-0.628469\pi\)
−0.392730 + 0.919654i \(0.628469\pi\)
\(860\) 0 0
\(861\) 15.1328 4.12390i 0.515724 0.140542i
\(862\) 57.3071i 1.95189i
\(863\) −0.128867 0.128867i −0.00438669 0.00438669i 0.704910 0.709297i \(-0.250987\pi\)
−0.709297 + 0.704910i \(0.750987\pi\)
\(864\) 0.184710 + 14.4718i 0.00628395 + 0.492341i
\(865\) 0 0
\(866\) 36.4071 36.4071i 1.23716 1.23716i
\(867\) 4.22043 + 15.4870i 0.143333 + 0.525967i
\(868\) 2.92358i 0.0992327i
\(869\) 4.77770 4.77770i 0.162072 0.162072i
\(870\) 0 0
\(871\) 46.9790 + 6.22699i 1.59182 + 0.210994i
\(872\) 34.1421i 1.15620i
\(873\) −8.94691 + 34.5640i −0.302807 + 1.16981i
\(874\) 15.3466 0.519105
\(875\) 0 0
\(876\) 12.3348 + 7.05170i 0.416754 + 0.238255i
\(877\) −23.8978 + 23.8978i −0.806973 + 0.806973i −0.984175 0.177202i \(-0.943296\pi\)
0.177202 + 0.984175i \(0.443296\pi\)
\(878\) −37.7645 + 37.7645i −1.27449 + 1.27449i
\(879\) 17.5620 + 10.0401i 0.592352 + 0.338643i
\(880\) 0 0
\(881\) 23.2229 0.782400 0.391200 0.920306i \(-0.372060\pi\)
0.391200 + 0.920306i \(0.372060\pi\)
\(882\) −3.21133 + 12.4061i −0.108131 + 0.417737i
\(883\) 11.7041i 0.393876i −0.980416 0.196938i \(-0.936900\pi\)
0.980416 0.196938i \(-0.0630998\pi\)
\(884\) −4.00736 + 3.06935i −0.134782 + 0.103234i
\(885\) 0 0
\(886\) 33.9059 33.9059i 1.13909 1.13909i
\(887\) 6.56575i 0.220456i 0.993906 + 0.110228i \(0.0351582\pi\)
−0.993906 + 0.110228i \(0.964842\pi\)
\(888\) −4.61839 16.9474i −0.154983 0.568716i
\(889\) 30.9380 30.9380i 1.03763 1.03763i
\(890\) 0 0
\(891\) −1.02612 3.58440i −0.0343763 0.120082i
\(892\) −2.09613 2.09613i −0.0701837 0.0701837i
\(893\) 21.2221i 0.710172i
\(894\) 44.4185 12.1047i 1.48558 0.404840i
\(895\) 0 0
\(896\) −28.2849 −0.944932
\(897\) 21.4396 28.1366i 0.715846 0.939454i
\(898\) −42.3701 −1.41391
\(899\) 14.5385 + 14.5385i 0.484887 + 0.484887i
\(900\) 0 0
\(901\) 0.718544i 0.0239382i
\(902\) −2.02396 2.02396i −0.0673905 0.0673905i
\(903\) 2.59123 + 1.48138i 0.0862306 + 0.0492973i
\(904\) 29.0529 + 29.0529i 0.966286 + 0.966286i
\(905\) 0 0
\(906\) 18.5715 5.06099i 0.616996 0.168140i
\(907\) 21.6880i 0.720139i −0.932926 0.360069i \(-0.882753\pi\)
0.932926 0.360069i \(-0.117247\pi\)
\(908\) 4.02328 4.02328i 0.133517 0.133517i
\(909\) −16.4230 + 9.66909i −0.544718 + 0.320703i
\(910\) 0 0
\(911\) 6.44406i 0.213501i 0.994286 + 0.106751i \(0.0340446\pi\)
−0.994286 + 0.106751i \(0.965955\pi\)
\(912\) 12.2391 + 6.99700i 0.405277 + 0.231694i
\(913\) −5.95785 −0.197176
\(914\) 28.2219 0.933497
\(915\) 0 0
\(916\) 7.43805 7.43805i 0.245760 0.245760i
\(917\) 14.4615 14.4615i 0.477562 0.477562i
\(918\) −0.291772 22.8600i −0.00962991 0.754493i
\(919\) 31.6869 1.04525 0.522626 0.852562i \(-0.324952\pi\)
0.522626 + 0.852562i \(0.324952\pi\)
\(920\) 0 0
\(921\) −27.2513 + 47.6677i −0.897959 + 1.57071i
\(922\) 29.3646i 0.967072i
\(923\) −5.28079 + 39.8404i −0.173819 + 1.31136i
\(924\) −0.722763 + 0.196963i −0.0237772 + 0.00647961i
\(925\) 0 0
\(926\) 53.1209i 1.74566i
\(927\) 11.4905 + 19.5167i 0.377397 + 0.641014i
\(928\) 14.4609 14.4609i 0.474702 0.474702i
\(929\) −14.6798 14.6798i −0.481629 0.481629i 0.424022 0.905652i \(-0.360618\pi\)
−0.905652 + 0.424022i \(0.860618\pi\)
\(930\) 0 0
\(931\) 3.26889 + 3.26889i 0.107134 + 0.107134i
\(932\) 7.57380i 0.248088i
\(933\) 9.85575 + 36.1660i 0.322663 + 1.18402i
\(934\) 23.3985 + 23.3985i 0.765624 + 0.765624i
\(935\) 0 0
\(936\) 23.5874 9.98167i 0.770977 0.326261i
\(937\) 0.784915 0.0256421 0.0128210 0.999918i \(-0.495919\pi\)
0.0128210 + 0.999918i \(0.495919\pi\)
\(938\) 30.4940 + 30.4940i 0.995665 + 0.995665i
\(939\) 3.24341 + 11.9018i 0.105845 + 0.388401i
\(940\) 0 0
\(941\) 39.5408 + 39.5408i 1.28899 + 1.28899i 0.935399 + 0.353595i \(0.115041\pi\)
0.353595 + 0.935399i \(0.384959\pi\)
\(942\) 21.6988 37.9554i 0.706985 1.23665i
\(943\) 17.4906 + 17.4906i 0.569574 + 0.569574i
\(944\) 11.3338 11.3338i 0.368884 0.368884i
\(945\) 0 0
\(946\) 0.544698i 0.0177097i
\(947\) −19.7845 + 19.7845i −0.642910 + 0.642910i −0.951270 0.308360i \(-0.900220\pi\)
0.308360 + 0.951270i \(0.400220\pi\)
\(948\) 13.7223 3.73953i 0.445680 0.121454i
\(949\) 7.71927 58.2373i 0.250578 1.89046i
\(950\) 0 0
\(951\) 18.2274 31.8833i 0.591065 1.03389i
\(952\) 13.6541 0.442532
\(953\) 52.5727 1.70300 0.851498 0.524357i \(-0.175694\pi\)
0.851498 + 0.524357i \(0.175694\pi\)
\(954\) 0.307363 1.18741i 0.00995123 0.0384440i
\(955\) 0 0
\(956\) 2.58511 2.58511i 0.0836085 0.0836085i
\(957\) −2.61473 + 4.57367i −0.0845222 + 0.147846i
\(958\) −27.9336 −0.902495
\(959\) −19.0950 −0.616611
\(960\) 0 0
\(961\) 23.1584i 0.747046i
\(962\) 19.3973 14.8569i 0.625393 0.479007i
\(963\) 5.61898 + 9.54390i 0.181069 + 0.307548i
\(964\) −2.07049 + 2.07049i −0.0666861 + 0.0666861i
\(965\) 0 0
\(966\) 31.0580 8.46375i 0.999275 0.272317i
\(967\) 15.6621 15.6621i 0.503658 0.503658i −0.408915 0.912573i \(-0.634093\pi\)
0.912573 + 0.408915i \(0.134093\pi\)
\(968\) 18.1304 + 18.1304i 0.582732 + 0.582732i
\(969\) −7.15979 4.09319i −0.230006 0.131492i
\(970\) 0 0
\(971\) 18.1426i 0.582225i 0.956689 + 0.291113i \(0.0940254\pi\)
−0.956689 + 0.291113i \(0.905975\pi\)
\(972\) 1.86957 7.62227i 0.0599663 0.244485i
\(973\) 6.82441 + 6.82441i 0.218781 + 0.218781i
\(974\) −38.6181 −1.23740
\(975\) 0 0
\(976\) −17.4024 −0.557037
\(977\) −21.5034 21.5034i −0.687954 0.687954i 0.273826 0.961779i \(-0.411711\pi\)
−0.961779 + 0.273826i \(0.911711\pi\)
\(978\) −16.3674 + 4.46035i −0.523372 + 0.142626i
\(979\) 2.91403i 0.0931329i
\(980\) 0 0
\(981\) −10.8397 + 41.8764i −0.346086 + 1.33701i
\(982\) 37.3147 + 37.3147i 1.19076 + 1.19076i
\(983\) −31.4759 + 31.4759i −1.00392 + 1.00392i −0.00393200 + 0.999992i \(0.501252\pi\)
−0.999992 + 0.00393200i \(0.998748\pi\)
\(984\) 4.70891 + 17.2795i 0.150115 + 0.550851i
\(985\) 0 0
\(986\) −22.8428 + 22.8428i −0.727462 + 0.727462i
\(987\) 11.7042 + 42.9489i 0.372548 + 1.36708i
\(988\) −0.408432 + 3.08138i −0.0129940 + 0.0980317i
\(989\) 4.70717i 0.149679i
\(990\) 0 0
\(991\) −43.9818 −1.39713 −0.698563 0.715548i \(-0.746177\pi\)
−0.698563 + 0.715548i \(0.746177\pi\)
\(992\) −7.79970 −0.247641
\(993\) 13.7817 + 7.87889i 0.437349 + 0.250029i
\(994\) −25.8604 + 25.8604i −0.820243 + 0.820243i
\(995\) 0 0
\(996\) −10.8876 6.22434i −0.344986 0.197226i
\(997\) 44.9600 1.42390 0.711949 0.702231i \(-0.247813\pi\)
0.711949 + 0.702231i \(0.247813\pi\)
\(998\) −40.2002 −1.27251
\(999\) 0.284022 + 22.2528i 0.00898606 + 0.704048i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.o.p.551.15 40
3.2 odd 2 inner 975.2.o.p.551.6 40
5.2 odd 4 975.2.n.q.824.6 40
5.3 odd 4 975.2.n.r.824.15 40
5.4 even 2 195.2.o.a.161.6 yes 40
13.8 odd 4 inner 975.2.o.p.476.6 40
15.2 even 4 975.2.n.q.824.15 40
15.8 even 4 975.2.n.r.824.6 40
15.14 odd 2 195.2.o.a.161.15 yes 40
39.8 even 4 inner 975.2.o.p.476.15 40
65.8 even 4 975.2.n.q.749.15 40
65.34 odd 4 195.2.o.a.86.15 yes 40
65.47 even 4 975.2.n.r.749.6 40
195.8 odd 4 975.2.n.q.749.6 40
195.47 odd 4 975.2.n.r.749.15 40
195.164 even 4 195.2.o.a.86.6 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.o.a.86.6 40 195.164 even 4
195.2.o.a.86.15 yes 40 65.34 odd 4
195.2.o.a.161.6 yes 40 5.4 even 2
195.2.o.a.161.15 yes 40 15.14 odd 2
975.2.n.q.749.6 40 195.8 odd 4
975.2.n.q.749.15 40 65.8 even 4
975.2.n.q.824.6 40 5.2 odd 4
975.2.n.q.824.15 40 15.2 even 4
975.2.n.r.749.6 40 65.47 even 4
975.2.n.r.749.15 40 195.47 odd 4
975.2.n.r.824.6 40 15.8 even 4
975.2.n.r.824.15 40 5.3 odd 4
975.2.o.p.476.6 40 13.8 odd 4 inner
975.2.o.p.476.15 40 39.8 even 4 inner
975.2.o.p.551.6 40 3.2 odd 2 inner
975.2.o.p.551.15 40 1.1 even 1 trivial