Properties

Label 975.2.n.r.749.15
Level $975$
Weight $2$
Character 975.749
Analytic conductor $7.785$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(749,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.749"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.n (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,12,16,0,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 749.15
Character \(\chi\) \(=\) 975.749
Dual form 975.2.n.r.824.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.11881 + 1.11881i) q^{2} +(1.67111 + 0.455401i) q^{3} +0.503463i q^{4} +(1.36015 + 2.37916i) q^{6} +(-1.46633 - 1.46633i) q^{7} +(1.67434 - 1.67434i) q^{8} +(2.58522 + 1.52205i) q^{9} +(0.292930 + 0.292930i) q^{11} +(-0.229277 + 0.841342i) q^{12} +(2.86241 + 2.19240i) q^{13} -3.28107i q^{14} +4.75345 q^{16} -2.78074i q^{17} +(1.18948 + 4.59525i) q^{18} +(1.21080 + 1.21080i) q^{19} +(-1.78263 - 3.11816i) q^{21} +0.655464i q^{22} +5.66438i q^{23} +(3.56050 - 2.03551i) q^{24} +(0.749610 + 5.65536i) q^{26} +(3.62704 + 3.72083i) q^{27} +(0.738240 - 0.738240i) q^{28} -7.34233i q^{29} +(-1.98010 - 1.98010i) q^{31} +(1.96952 + 1.96952i) q^{32} +(0.356117 + 0.622918i) q^{33} +(3.11111 - 3.11111i) q^{34} +(-0.766296 + 1.30156i) q^{36} +(3.02847 + 3.02847i) q^{37} +2.70931i q^{38} +(3.78498 + 4.96729i) q^{39} +(-3.08783 + 3.08783i) q^{41} +(1.49420 - 5.48304i) q^{42} +0.831012 q^{43} +(-0.147479 + 0.147479i) q^{44} +(-6.33735 + 6.33735i) q^{46} +(-8.76367 + 8.76367i) q^{47} +(7.94354 + 2.16473i) q^{48} -2.69978i q^{49} +(1.26635 - 4.64692i) q^{51} +(-1.10379 + 1.44112i) q^{52} -0.258401 q^{53} +(-0.104926 + 8.22086i) q^{54} -4.91025 q^{56} +(1.47198 + 2.57478i) q^{57} +(8.21465 - 8.21465i) q^{58} +(-2.38433 - 2.38433i) q^{59} -3.66100 q^{61} -4.43070i q^{62} +(-1.55895 - 6.02260i) q^{63} -5.09987i q^{64} +(-0.298499 + 1.09535i) q^{66} +(9.29391 - 9.29391i) q^{67} +1.40000 q^{68} +(-2.57957 + 9.46581i) q^{69} +(-7.88169 + 7.88169i) q^{71} +(6.87696 - 1.78010i) q^{72} +(-11.5212 - 11.5212i) q^{73} +6.77656i q^{74} +(-0.609593 + 0.609593i) q^{76} -0.859060i q^{77} +(-1.32278 + 9.79210i) q^{78} -16.3100 q^{79} +(4.36672 + 7.86967i) q^{81} -6.90938 q^{82} +(10.1694 + 10.1694i) q^{83} +(1.56988 - 0.897486i) q^{84} +(0.929743 + 0.929743i) q^{86} +(3.34370 - 12.2698i) q^{87} +0.980926 q^{88} +(-4.97395 - 4.97395i) q^{89} +(-0.982449 - 7.41200i) q^{91} -2.85180 q^{92} +(-2.40722 - 4.21070i) q^{93} -19.6097 q^{94} +(2.39437 + 4.18821i) q^{96} +(-8.41532 + 8.41532i) q^{97} +(3.02053 - 3.02053i) q^{98} +(0.311433 + 1.20314i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 12 q^{6} + 16 q^{7} + 24 q^{12} - 24 q^{13} - 64 q^{16} - 4 q^{18} + 16 q^{19} - 12 q^{21} - 8 q^{24} - 32 q^{28} + 32 q^{31} - 4 q^{33} + 16 q^{34} - 32 q^{37} + 8 q^{39} + 32 q^{43} - 40 q^{46}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.11881 + 1.11881i 0.791117 + 0.791117i 0.981676 0.190559i \(-0.0610301\pi\)
−0.190559 + 0.981676i \(0.561030\pi\)
\(3\) 1.67111 + 0.455401i 0.964816 + 0.262926i
\(4\) 0.503463i 0.251731i
\(5\) 0 0
\(6\) 1.36015 + 2.37916i 0.555277 + 0.971287i
\(7\) −1.46633 1.46633i −0.554219 0.554219i 0.373437 0.927656i \(-0.378179\pi\)
−0.927656 + 0.373437i \(0.878179\pi\)
\(8\) 1.67434 1.67434i 0.591968 0.591968i
\(9\) 2.58522 + 1.52205i 0.861740 + 0.507350i
\(10\) 0 0
\(11\) 0.292930 + 0.292930i 0.0883216 + 0.0883216i 0.749887 0.661566i \(-0.230108\pi\)
−0.661566 + 0.749887i \(0.730108\pi\)
\(12\) −0.229277 + 0.841342i −0.0661867 + 0.242874i
\(13\) 2.86241 + 2.19240i 0.793889 + 0.608063i
\(14\) 3.28107i 0.876904i
\(15\) 0 0
\(16\) 4.75345 1.18836
\(17\) 2.78074i 0.674427i −0.941428 0.337214i \(-0.890516\pi\)
0.941428 0.337214i \(-0.109484\pi\)
\(18\) 1.18948 + 4.59525i 0.280363 + 1.08311i
\(19\) 1.21080 + 1.21080i 0.277777 + 0.277777i 0.832221 0.554444i \(-0.187069\pi\)
−0.554444 + 0.832221i \(0.687069\pi\)
\(20\) 0 0
\(21\) −1.78263 3.11816i −0.389001 0.680438i
\(22\) 0.655464i 0.139745i
\(23\) 5.66438i 1.18111i 0.806999 + 0.590553i \(0.201090\pi\)
−0.806999 + 0.590553i \(0.798910\pi\)
\(24\) 3.56050 2.03551i 0.726784 0.415496i
\(25\) 0 0
\(26\) 0.749610 + 5.65536i 0.147011 + 1.10911i
\(27\) 3.62704 + 3.72083i 0.698025 + 0.716074i
\(28\) 0.738240 0.738240i 0.139514 0.139514i
\(29\) 7.34233i 1.36344i −0.731615 0.681718i \(-0.761233\pi\)
0.731615 0.681718i \(-0.238767\pi\)
\(30\) 0 0
\(31\) −1.98010 1.98010i −0.355636 0.355636i 0.506565 0.862202i \(-0.330915\pi\)
−0.862202 + 0.506565i \(0.830915\pi\)
\(32\) 1.96952 + 1.96952i 0.348166 + 0.348166i
\(33\) 0.356117 + 0.622918i 0.0619920 + 0.108436i
\(34\) 3.11111 3.11111i 0.533551 0.533551i
\(35\) 0 0
\(36\) −0.766296 + 1.30156i −0.127716 + 0.216927i
\(37\) 3.02847 + 3.02847i 0.497878 + 0.497878i 0.910777 0.412899i \(-0.135484\pi\)
−0.412899 + 0.910777i \(0.635484\pi\)
\(38\) 2.70931i 0.439508i
\(39\) 3.78498 + 4.96729i 0.606082 + 0.795403i
\(40\) 0 0
\(41\) −3.08783 + 3.08783i −0.482238 + 0.482238i −0.905846 0.423608i \(-0.860764\pi\)
0.423608 + 0.905846i \(0.360764\pi\)
\(42\) 1.49420 5.48304i 0.230561 0.846051i
\(43\) 0.831012 0.126728 0.0633640 0.997990i \(-0.479817\pi\)
0.0633640 + 0.997990i \(0.479817\pi\)
\(44\) −0.147479 + 0.147479i −0.0222333 + 0.0222333i
\(45\) 0 0
\(46\) −6.33735 + 6.33735i −0.934392 + 0.934392i
\(47\) −8.76367 + 8.76367i −1.27831 + 1.27831i −0.336702 + 0.941611i \(0.609312\pi\)
−0.941611 + 0.336702i \(0.890688\pi\)
\(48\) 7.94354 + 2.16473i 1.14655 + 0.312451i
\(49\) 2.69978i 0.385682i
\(50\) 0 0
\(51\) 1.26635 4.64692i 0.177324 0.650698i
\(52\) −1.10379 + 1.44112i −0.153068 + 0.199847i
\(53\) −0.258401 −0.0354940 −0.0177470 0.999843i \(-0.505649\pi\)
−0.0177470 + 0.999843i \(0.505649\pi\)
\(54\) −0.104926 + 8.22086i −0.0142787 + 1.11872i
\(55\) 0 0
\(56\) −4.91025 −0.656160
\(57\) 1.47198 + 2.57478i 0.194969 + 0.341038i
\(58\) 8.21465 8.21465i 1.07864 1.07864i
\(59\) −2.38433 2.38433i −0.310414 0.310414i 0.534656 0.845070i \(-0.320441\pi\)
−0.845070 + 0.534656i \(0.820441\pi\)
\(60\) 0 0
\(61\) −3.66100 −0.468744 −0.234372 0.972147i \(-0.575303\pi\)
−0.234372 + 0.972147i \(0.575303\pi\)
\(62\) 4.43070i 0.562699i
\(63\) −1.55895 6.02260i −0.196409 0.758776i
\(64\) 5.09987i 0.637483i
\(65\) 0 0
\(66\) −0.298499 + 1.09535i −0.0367427 + 0.134829i
\(67\) 9.29391 9.29391i 1.13543 1.13543i 0.146173 0.989259i \(-0.453304\pi\)
0.989259 0.146173i \(-0.0466957\pi\)
\(68\) 1.40000 0.169775
\(69\) −2.57957 + 9.46581i −0.310543 + 1.13955i
\(70\) 0 0
\(71\) −7.88169 + 7.88169i −0.935385 + 0.935385i −0.998036 0.0626508i \(-0.980045\pi\)
0.0626508 + 0.998036i \(0.480045\pi\)
\(72\) 6.87696 1.78010i 0.810457 0.209787i
\(73\) −11.5212 11.5212i −1.34845 1.34845i −0.887345 0.461107i \(-0.847453\pi\)
−0.461107 0.887345i \(-0.652547\pi\)
\(74\) 6.77656i 0.787759i
\(75\) 0 0
\(76\) −0.609593 + 0.609593i −0.0699252 + 0.0699252i
\(77\) 0.859060i 0.0978990i
\(78\) −1.32278 + 9.79210i −0.149775 + 1.10874i
\(79\) −16.3100 −1.83502 −0.917512 0.397708i \(-0.869806\pi\)
−0.917512 + 0.397708i \(0.869806\pi\)
\(80\) 0 0
\(81\) 4.36672 + 7.86967i 0.485191 + 0.874408i
\(82\) −6.90938 −0.763013
\(83\) 10.1694 + 10.1694i 1.11624 + 1.11624i 0.992288 + 0.123950i \(0.0395564\pi\)
0.123950 + 0.992288i \(0.460444\pi\)
\(84\) 1.56988 0.897486i 0.171288 0.0979237i
\(85\) 0 0
\(86\) 0.929743 + 0.929743i 0.100257 + 0.100257i
\(87\) 3.34370 12.2698i 0.358483 1.31546i
\(88\) 0.980926 0.104567
\(89\) −4.97395 4.97395i −0.527238 0.527238i 0.392510 0.919748i \(-0.371607\pi\)
−0.919748 + 0.392510i \(0.871607\pi\)
\(90\) 0 0
\(91\) −0.982449 7.41200i −0.102989 0.776988i
\(92\) −2.85180 −0.297321
\(93\) −2.40722 4.21070i −0.249617 0.436629i
\(94\) −19.6097 −2.02259
\(95\) 0 0
\(96\) 2.39437 + 4.18821i 0.244374 + 0.427458i
\(97\) −8.41532 + 8.41532i −0.854447 + 0.854447i −0.990677 0.136231i \(-0.956501\pi\)
0.136231 + 0.990677i \(0.456501\pi\)
\(98\) 3.02053 3.02053i 0.305120 0.305120i
\(99\) 0.311433 + 1.20314i 0.0313002 + 0.120920i
\(100\) 0 0
\(101\) 6.35267 0.632114 0.316057 0.948740i \(-0.397641\pi\)
0.316057 + 0.948740i \(0.397641\pi\)
\(102\) 6.61581 3.78220i 0.655063 0.374494i
\(103\) 7.54935 0.743860 0.371930 0.928261i \(-0.378696\pi\)
0.371930 + 0.928261i \(0.378696\pi\)
\(104\) 8.46346 1.12182i 0.829910 0.110003i
\(105\) 0 0
\(106\) −0.289101 0.289101i −0.0280799 0.0280799i
\(107\) −3.69172 −0.356892 −0.178446 0.983950i \(-0.557107\pi\)
−0.178446 + 0.983950i \(0.557107\pi\)
\(108\) −1.87330 + 1.82608i −0.180258 + 0.175715i
\(109\) −10.1957 10.1957i −0.976570 0.976570i 0.0231620 0.999732i \(-0.492627\pi\)
−0.999732 + 0.0231620i \(0.992627\pi\)
\(110\) 0 0
\(111\) 3.68174 + 6.44008i 0.349456 + 0.611266i
\(112\) −6.97011 6.97011i −0.658613 0.658613i
\(113\) −17.3519 −1.63233 −0.816164 0.577820i \(-0.803903\pi\)
−0.816164 + 0.577820i \(0.803903\pi\)
\(114\) −1.23382 + 4.52755i −0.115558 + 0.424044i
\(115\) 0 0
\(116\) 3.69659 0.343219
\(117\) 4.06301 + 10.0246i 0.375625 + 0.926772i
\(118\) 5.33522i 0.491147i
\(119\) −4.07746 + 4.07746i −0.373781 + 0.373781i
\(120\) 0 0
\(121\) 10.8284i 0.984399i
\(122\) −4.09596 4.09596i −0.370831 0.370831i
\(123\) −6.56631 + 3.75390i −0.592064 + 0.338478i
\(124\) 0.996906 0.996906i 0.0895248 0.0895248i
\(125\) 0 0
\(126\) 4.99396 8.48230i 0.444898 0.755663i
\(127\) 21.0990 1.87224 0.936118 0.351686i \(-0.114392\pi\)
0.936118 + 0.351686i \(0.114392\pi\)
\(128\) 9.64482 9.64482i 0.852489 0.852489i
\(129\) 1.38871 + 0.378444i 0.122269 + 0.0333201i
\(130\) 0 0
\(131\) 9.86242i 0.861684i −0.902427 0.430842i \(-0.858217\pi\)
0.902427 0.430842i \(-0.141783\pi\)
\(132\) −0.313616 + 0.179292i −0.0272968 + 0.0156053i
\(133\) 3.55086i 0.307899i
\(134\) 20.7962 1.79652
\(135\) 0 0
\(136\) −4.65589 4.65589i −0.399239 0.399239i
\(137\) −6.51118 + 6.51118i −0.556288 + 0.556288i −0.928249 0.371961i \(-0.878686\pi\)
0.371961 + 0.928249i \(0.378686\pi\)
\(138\) −13.4765 + 7.70438i −1.14719 + 0.655840i
\(139\) 4.65409 0.394755 0.197377 0.980328i \(-0.436758\pi\)
0.197377 + 0.980328i \(0.436758\pi\)
\(140\) 0 0
\(141\) −18.6361 + 10.6541i −1.56944 + 0.897235i
\(142\) −17.6362 −1.48000
\(143\) 0.196265 + 1.48070i 0.0164125 + 0.123823i
\(144\) 12.2887 + 7.23500i 1.02406 + 0.602916i
\(145\) 0 0
\(146\) 25.7800i 2.13356i
\(147\) 1.22948 4.51163i 0.101406 0.372113i
\(148\) −1.52472 + 1.52472i −0.125331 + 0.125331i
\(149\) −11.8788 + 11.8788i −0.973150 + 0.973150i −0.999649 0.0264986i \(-0.991564\pi\)
0.0264986 + 0.999649i \(0.491564\pi\)
\(150\) 0 0
\(151\) 4.96656 4.96656i 0.404173 0.404173i −0.475528 0.879701i \(-0.657743\pi\)
0.879701 + 0.475528i \(0.157743\pi\)
\(152\) 4.05458 0.328870
\(153\) 4.23242 7.18881i 0.342171 0.581181i
\(154\) 0.961124 0.961124i 0.0774496 0.0774496i
\(155\) 0 0
\(156\) −2.50084 + 1.90560i −0.200228 + 0.152570i
\(157\) 15.9533i 1.27321i 0.771190 + 0.636606i \(0.219662\pi\)
−0.771190 + 0.636606i \(0.780338\pi\)
\(158\) −18.2478 18.2478i −1.45172 1.45172i
\(159\) −0.431816 0.117676i −0.0342452 0.00933231i
\(160\) 0 0
\(161\) 8.30583 8.30583i 0.654591 0.654591i
\(162\) −3.91913 + 13.6902i −0.307916 + 1.07560i
\(163\) 4.37713 + 4.37713i 0.342843 + 0.342843i 0.857435 0.514592i \(-0.172057\pi\)
−0.514592 + 0.857435i \(0.672057\pi\)
\(164\) −1.55461 1.55461i −0.121394 0.121394i
\(165\) 0 0
\(166\) 22.7553i 1.76615i
\(167\) −3.94953 + 3.94953i −0.305624 + 0.305624i −0.843209 0.537585i \(-0.819337\pi\)
0.537585 + 0.843209i \(0.319337\pi\)
\(168\) −8.20557 2.23613i −0.633073 0.172521i
\(169\) 3.38676 + 12.5511i 0.260520 + 0.965468i
\(170\) 0 0
\(171\) 1.28729 + 4.97309i 0.0984412 + 0.380302i
\(172\) 0.418383i 0.0319014i
\(173\) 9.74943i 0.741235i 0.928786 + 0.370618i \(0.120854\pi\)
−0.928786 + 0.370618i \(0.879146\pi\)
\(174\) 17.4686 9.98663i 1.32429 0.757084i
\(175\) 0 0
\(176\) 1.39243 + 1.39243i 0.104958 + 0.104958i
\(177\) −2.89866 5.07031i −0.217876 0.381108i
\(178\) 11.1298i 0.834213i
\(179\) −1.28470 −0.0960232 −0.0480116 0.998847i \(-0.515288\pi\)
−0.0480116 + 0.998847i \(0.515288\pi\)
\(180\) 0 0
\(181\) 5.39074i 0.400690i 0.979725 + 0.200345i \(0.0642064\pi\)
−0.979725 + 0.200345i \(0.935794\pi\)
\(182\) 7.19343 9.39177i 0.533212 0.696165i
\(183\) −6.11794 1.66723i −0.452251 0.123245i
\(184\) 9.48409 + 9.48409i 0.699176 + 0.699176i
\(185\) 0 0
\(186\) 2.01775 7.40419i 0.147948 0.542901i
\(187\) 0.814560 0.814560i 0.0595665 0.0595665i
\(188\) −4.41218 4.41218i −0.321792 0.321792i
\(189\) 0.137518 10.7744i 0.0100030 0.783720i
\(190\) 0 0
\(191\) 8.13709i 0.588779i 0.955686 + 0.294390i \(0.0951163\pi\)
−0.955686 + 0.294390i \(0.904884\pi\)
\(192\) 2.32248 8.52244i 0.167611 0.615054i
\(193\) 2.02917 + 2.02917i 0.146063 + 0.146063i 0.776357 0.630294i \(-0.217066\pi\)
−0.630294 + 0.776357i \(0.717066\pi\)
\(194\) −18.8303 −1.35193
\(195\) 0 0
\(196\) 1.35924 0.0970884
\(197\) 3.10238 + 3.10238i 0.221036 + 0.221036i 0.808934 0.587899i \(-0.200045\pi\)
−0.587899 + 0.808934i \(0.700045\pi\)
\(198\) −0.997650 + 1.69452i −0.0708999 + 0.120424i
\(199\) 3.79864i 0.269279i −0.990895 0.134639i \(-0.957012\pi\)
0.990895 0.134639i \(-0.0429876\pi\)
\(200\) 0 0
\(201\) 19.7636 11.2987i 1.39402 0.796949i
\(202\) 7.10742 + 7.10742i 0.500076 + 0.500076i
\(203\) −10.7662 + 10.7662i −0.755642 + 0.755642i
\(204\) 2.33955 + 0.637560i 0.163801 + 0.0446381i
\(205\) 0 0
\(206\) 8.44627 + 8.44627i 0.588480 + 0.588480i
\(207\) −8.62148 + 14.6437i −0.599234 + 1.01781i
\(208\) 13.6063 + 10.4215i 0.943428 + 0.722599i
\(209\) 0.709359i 0.0490674i
\(210\) 0 0
\(211\) 5.97128 0.411080 0.205540 0.978649i \(-0.434105\pi\)
0.205540 + 0.978649i \(0.434105\pi\)
\(212\) 0.130095i 0.00893496i
\(213\) −16.7605 + 9.58185i −1.14841 + 0.656537i
\(214\) −4.13032 4.13032i −0.282343 0.282343i
\(215\) 0 0
\(216\) 12.3028 + 0.157026i 0.837101 + 0.0106843i
\(217\) 5.80694i 0.394201i
\(218\) 22.8140i 1.54516i
\(219\) −14.0064 24.4999i −0.946465 1.65555i
\(220\) 0 0
\(221\) 6.09649 7.95960i 0.410094 0.535421i
\(222\) −3.08605 + 11.3244i −0.207122 + 0.760042i
\(223\) −4.16343 + 4.16343i −0.278804 + 0.278804i −0.832631 0.553827i \(-0.813167\pi\)
0.553827 + 0.832631i \(0.313167\pi\)
\(224\) 5.77592i 0.385920i
\(225\) 0 0
\(226\) −19.4134 19.4134i −1.29136 1.29136i
\(227\) −7.99122 7.99122i −0.530396 0.530396i 0.390294 0.920690i \(-0.372373\pi\)
−0.920690 + 0.390294i \(0.872373\pi\)
\(228\) −1.29631 + 0.741088i −0.0858501 + 0.0490798i
\(229\) 14.7738 14.7738i 0.976279 0.976279i −0.0234464 0.999725i \(-0.507464\pi\)
0.999725 + 0.0234464i \(0.00746389\pi\)
\(230\) 0 0
\(231\) 0.391217 1.43558i 0.0257402 0.0944545i
\(232\) −12.2935 12.2935i −0.807110 0.807110i
\(233\) 15.0434i 0.985527i −0.870163 0.492764i \(-0.835987\pi\)
0.870163 0.492764i \(-0.164013\pi\)
\(234\) −6.66984 + 15.7613i −0.436021 + 1.03035i
\(235\) 0 0
\(236\) 1.20042 1.20042i 0.0781409 0.0781409i
\(237\) −27.2559 7.42762i −1.77046 0.482475i
\(238\) −9.12380 −0.591408
\(239\) 5.13466 5.13466i 0.332134 0.332134i −0.521263 0.853396i \(-0.674539\pi\)
0.853396 + 0.521263i \(0.174539\pi\)
\(240\) 0 0
\(241\) 4.11251 4.11251i 0.264910 0.264910i −0.562135 0.827045i \(-0.690020\pi\)
0.827045 + 0.562135i \(0.190020\pi\)
\(242\) 12.1149 12.1149i 0.778774 0.778774i
\(243\) 3.71341 + 15.1397i 0.238216 + 0.971212i
\(244\) 1.84318i 0.117997i
\(245\) 0 0
\(246\) −11.5463 3.14654i −0.736167 0.200616i
\(247\) 0.811246 + 6.12037i 0.0516183 + 0.389430i
\(248\) −6.63071 −0.421050
\(249\) 12.3631 + 21.6254i 0.783477 + 1.37045i
\(250\) 0 0
\(251\) −5.50029 −0.347175 −0.173588 0.984818i \(-0.555536\pi\)
−0.173588 + 0.984818i \(0.555536\pi\)
\(252\) 3.03215 0.784874i 0.191008 0.0494424i
\(253\) −1.65926 + 1.65926i −0.104317 + 0.104317i
\(254\) 23.6058 + 23.6058i 1.48116 + 1.48116i
\(255\) 0 0
\(256\) 11.3817 0.711354
\(257\) 7.45007i 0.464723i 0.972630 + 0.232361i \(0.0746452\pi\)
−0.972630 + 0.232361i \(0.925355\pi\)
\(258\) 1.13030 + 1.97711i 0.0703692 + 0.123089i
\(259\) 8.88146i 0.551867i
\(260\) 0 0
\(261\) 11.1754 18.9815i 0.691740 1.17493i
\(262\) 11.0342 11.0342i 0.681692 0.681692i
\(263\) 23.1846 1.42962 0.714812 0.699317i \(-0.246512\pi\)
0.714812 + 0.699317i \(0.246512\pi\)
\(264\) 1.63924 + 0.446715i 0.100888 + 0.0274934i
\(265\) 0 0
\(266\) 3.97273 3.97273i 0.243584 0.243584i
\(267\) −6.04688 10.5772i −0.370063 0.647312i
\(268\) 4.67914 + 4.67914i 0.285824 + 0.285824i
\(269\) 26.7447i 1.63065i −0.579002 0.815326i \(-0.696558\pi\)
0.579002 0.815326i \(-0.303442\pi\)
\(270\) 0 0
\(271\) −2.78066 + 2.78066i −0.168913 + 0.168913i −0.786501 0.617588i \(-0.788110\pi\)
0.617588 + 0.786501i \(0.288110\pi\)
\(272\) 13.2181i 0.801464i
\(273\) 1.73365 12.8337i 0.104925 0.776729i
\(274\) −14.5695 −0.880177
\(275\) 0 0
\(276\) −4.76568 1.29872i −0.286860 0.0781735i
\(277\) 28.6741 1.72286 0.861431 0.507874i \(-0.169569\pi\)
0.861431 + 0.507874i \(0.169569\pi\)
\(278\) 5.20703 + 5.20703i 0.312297 + 0.312297i
\(279\) −2.10518 8.13280i −0.126034 0.486898i
\(280\) 0 0
\(281\) −0.811843 0.811843i −0.0484305 0.0484305i 0.682477 0.730907i \(-0.260903\pi\)
−0.730907 + 0.682477i \(0.760903\pi\)
\(282\) −32.7700 8.93030i −1.95143 0.531791i
\(283\) 22.9639 1.36506 0.682531 0.730857i \(-0.260879\pi\)
0.682531 + 0.730857i \(0.260879\pi\)
\(284\) −3.96814 3.96814i −0.235466 0.235466i
\(285\) 0 0
\(286\) −1.43704 + 1.87621i −0.0849739 + 0.110942i
\(287\) 9.05553 0.534531
\(288\) 2.09393 + 8.08936i 0.123386 + 0.476670i
\(289\) 9.26751 0.545148
\(290\) 0 0
\(291\) −17.8953 + 10.2306i −1.04904 + 0.599728i
\(292\) 5.80048 5.80048i 0.339447 0.339447i
\(293\) −8.25860 + 8.25860i −0.482472 + 0.482472i −0.905920 0.423448i \(-0.860820\pi\)
0.423448 + 0.905920i \(0.360820\pi\)
\(294\) 6.42320 3.67209i 0.374608 0.214161i
\(295\) 0 0
\(296\) 10.1414 0.589455
\(297\) −0.0274721 + 2.15241i −0.00159409 + 0.124895i
\(298\) −26.5802 −1.53975
\(299\) −12.4186 + 16.2138i −0.718186 + 0.937666i
\(300\) 0 0
\(301\) −1.21853 1.21853i −0.0702351 0.0702351i
\(302\) 11.1133 0.639496
\(303\) 10.6160 + 2.89301i 0.609874 + 0.166199i
\(304\) 5.75549 + 5.75549i 0.330100 + 0.330100i
\(305\) 0 0
\(306\) 12.7782 3.30763i 0.730479 0.189085i
\(307\) −22.4159 22.4159i −1.27934 1.27934i −0.941035 0.338310i \(-0.890145\pi\)
−0.338310 0.941035i \(-0.609855\pi\)
\(308\) 0.432505 0.0246443
\(309\) 12.6158 + 3.43798i 0.717688 + 0.195580i
\(310\) 0 0
\(311\) −21.6419 −1.22720 −0.613600 0.789617i \(-0.710279\pi\)
−0.613600 + 0.789617i \(0.710279\pi\)
\(312\) 14.6542 + 1.97959i 0.829633 + 0.112072i
\(313\) 7.12210i 0.402565i 0.979533 + 0.201282i \(0.0645109\pi\)
−0.979533 + 0.201282i \(0.935489\pi\)
\(314\) −17.8487 + 17.8487i −1.00726 + 1.00726i
\(315\) 0 0
\(316\) 8.21150i 0.461933i
\(317\) 14.9932 + 14.9932i 0.842104 + 0.842104i 0.989132 0.147028i \(-0.0469707\pi\)
−0.147028 + 0.989132i \(0.546971\pi\)
\(318\) −0.351462 0.614776i −0.0197090 0.0344749i
\(319\) 2.15078 2.15078i 0.120421 0.120421i
\(320\) 0 0
\(321\) −6.16927 1.68121i −0.344335 0.0938361i
\(322\) 18.5853 1.03572
\(323\) 3.36692 3.36692i 0.187340 0.187340i
\(324\) −3.96209 + 2.19848i −0.220116 + 0.122138i
\(325\) 0 0
\(326\) 9.79433i 0.542458i
\(327\) −12.3950 21.6812i −0.685445 1.19898i
\(328\) 10.3401i 0.570939i
\(329\) 25.7008 1.41693
\(330\) 0 0
\(331\) −6.48090 6.48090i −0.356223 0.356223i 0.506196 0.862418i \(-0.331051\pi\)
−0.862418 + 0.506196i \(0.831051\pi\)
\(332\) −5.11992 + 5.11992i −0.280992 + 0.280992i
\(333\) 3.21978 + 12.4388i 0.176443 + 0.681640i
\(334\) −8.83753 −0.483568
\(335\) 0 0
\(336\) −8.47362 14.8220i −0.462274 0.808607i
\(337\) −32.1622 −1.75199 −0.875993 0.482323i \(-0.839793\pi\)
−0.875993 + 0.482323i \(0.839793\pi\)
\(338\) −10.2531 + 17.8314i −0.557697 + 0.969900i
\(339\) −28.9969 7.90207i −1.57490 0.429181i
\(340\) 0 0
\(341\) 1.16006i 0.0628207i
\(342\) −4.12371 + 7.00416i −0.222985 + 0.378742i
\(343\) −14.2230 + 14.2230i −0.767972 + 0.767972i
\(344\) 1.39139 1.39139i 0.0750190 0.0750190i
\(345\) 0 0
\(346\) −10.9077 + 10.9077i −0.586404 + 0.586404i
\(347\) 11.3661 0.610165 0.305082 0.952326i \(-0.401316\pi\)
0.305082 + 0.952326i \(0.401316\pi\)
\(348\) 6.17740 + 1.68343i 0.331144 + 0.0902413i
\(349\) −0.388646 + 0.388646i −0.0208038 + 0.0208038i −0.717432 0.696628i \(-0.754683\pi\)
0.696628 + 0.717432i \(0.254683\pi\)
\(350\) 0 0
\(351\) 2.22453 + 18.6025i 0.118737 + 0.992926i
\(352\) 1.15386i 0.0615011i
\(353\) −10.9517 10.9517i −0.582900 0.582900i 0.352799 0.935699i \(-0.385230\pi\)
−0.935699 + 0.352799i \(0.885230\pi\)
\(354\) 2.42967 8.91574i 0.129135 0.473866i
\(355\) 0 0
\(356\) 2.50420 2.50420i 0.132722 0.132722i
\(357\) −8.67078 + 4.95701i −0.458906 + 0.262353i
\(358\) −1.43734 1.43734i −0.0759655 0.0759655i
\(359\) 3.80124 + 3.80124i 0.200622 + 0.200622i 0.800266 0.599645i \(-0.204691\pi\)
−0.599645 + 0.800266i \(0.704691\pi\)
\(360\) 0 0
\(361\) 16.0679i 0.845680i
\(362\) −6.03120 + 6.03120i −0.316993 + 0.316993i
\(363\) 4.93126 18.0954i 0.258824 0.949764i
\(364\) 3.73166 0.494626i 0.195592 0.0259255i
\(365\) 0 0
\(366\) −4.97950 8.71011i −0.260282 0.455285i
\(367\) 23.2059i 1.21134i 0.795717 + 0.605669i \(0.207094\pi\)
−0.795717 + 0.605669i \(0.792906\pi\)
\(368\) 26.9254i 1.40358i
\(369\) −12.6826 + 3.28288i −0.660227 + 0.170900i
\(370\) 0 0
\(371\) 0.378899 + 0.378899i 0.0196715 + 0.0196715i
\(372\) 2.11993 1.21195i 0.109913 0.0628365i
\(373\) 20.3615i 1.05428i −0.849779 0.527139i \(-0.823265\pi\)
0.849779 0.527139i \(-0.176735\pi\)
\(374\) 1.82267 0.0942481
\(375\) 0 0
\(376\) 29.3467i 1.51344i
\(377\) 16.0973 21.0167i 0.829054 1.08242i
\(378\) 12.2083 11.9006i 0.627928 0.612101i
\(379\) 2.24383 + 2.24383i 0.115258 + 0.115258i 0.762383 0.647126i \(-0.224029\pi\)
−0.647126 + 0.762383i \(0.724029\pi\)
\(380\) 0 0
\(381\) 35.2588 + 9.60852i 1.80636 + 0.492259i
\(382\) −9.10384 + 9.10384i −0.465793 + 0.465793i
\(383\) −3.09636 3.09636i −0.158217 0.158217i 0.623559 0.781776i \(-0.285686\pi\)
−0.781776 + 0.623559i \(0.785686\pi\)
\(384\) 20.5098 11.7253i 1.04664 0.598354i
\(385\) 0 0
\(386\) 4.54050i 0.231105i
\(387\) 2.14835 + 1.26484i 0.109207 + 0.0642955i
\(388\) −4.23680 4.23680i −0.215091 0.215091i
\(389\) −19.3062 −0.978864 −0.489432 0.872041i \(-0.662796\pi\)
−0.489432 + 0.872041i \(0.662796\pi\)
\(390\) 0 0
\(391\) 15.7511 0.796570
\(392\) −4.52034 4.52034i −0.228312 0.228312i
\(393\) 4.49136 16.4812i 0.226559 0.831366i
\(394\) 6.94194i 0.349730i
\(395\) 0 0
\(396\) −0.605737 + 0.156795i −0.0304394 + 0.00787925i
\(397\) −13.4071 13.4071i −0.672884 0.672884i 0.285496 0.958380i \(-0.407842\pi\)
−0.958380 + 0.285496i \(0.907842\pi\)
\(398\) 4.24995 4.24995i 0.213031 0.213031i
\(399\) 1.61707 5.93388i 0.0809545 0.297065i
\(400\) 0 0
\(401\) −4.82449 4.82449i −0.240923 0.240923i 0.576309 0.817232i \(-0.304493\pi\)
−0.817232 + 0.576309i \(0.804493\pi\)
\(402\) 34.7528 + 9.47062i 1.73331 + 0.472351i
\(403\) −1.32668 10.0090i −0.0660867 0.498585i
\(404\) 3.19833i 0.159123i
\(405\) 0 0
\(406\) −24.0907 −1.19560
\(407\) 1.77426i 0.0879467i
\(408\) −5.66021 9.90081i −0.280222 0.490163i
\(409\) 2.33925 + 2.33925i 0.115669 + 0.115669i 0.762572 0.646903i \(-0.223936\pi\)
−0.646903 + 0.762572i \(0.723936\pi\)
\(410\) 0 0
\(411\) −13.8461 + 7.91571i −0.682978 + 0.390453i
\(412\) 3.80082i 0.187253i
\(413\) 6.99242i 0.344074i
\(414\) −26.0292 + 6.73768i −1.27927 + 0.331139i
\(415\) 0 0
\(416\) 1.31959 + 9.95556i 0.0646985 + 0.488112i
\(417\) 7.77749 + 2.11948i 0.380866 + 0.103791i
\(418\) −0.793637 + 0.793637i −0.0388180 + 0.0388180i
\(419\) 11.3389i 0.553942i −0.960878 0.276971i \(-0.910669\pi\)
0.960878 0.276971i \(-0.0893306\pi\)
\(420\) 0 0
\(421\) 15.5576 + 15.5576i 0.758230 + 0.758230i 0.976000 0.217770i \(-0.0698783\pi\)
−0.217770 + 0.976000i \(0.569878\pi\)
\(422\) 6.68071 + 6.68071i 0.325212 + 0.325212i
\(423\) −35.9948 + 9.31726i −1.75013 + 0.453021i
\(424\) −0.432650 + 0.432650i −0.0210113 + 0.0210113i
\(425\) 0 0
\(426\) −29.4720 8.03155i −1.42792 0.389130i
\(427\) 5.36823 + 5.36823i 0.259787 + 0.259787i
\(428\) 1.85864i 0.0898409i
\(429\) −0.346333 + 2.56380i −0.0167211 + 0.123781i
\(430\) 0 0
\(431\) −25.6108 + 25.6108i −1.23363 + 1.23363i −0.271068 + 0.962560i \(0.587377\pi\)
−0.962560 + 0.271068i \(0.912623\pi\)
\(432\) 17.2410 + 17.6868i 0.829507 + 0.850955i
\(433\) 32.5410 1.56382 0.781909 0.623392i \(-0.214246\pi\)
0.781909 + 0.623392i \(0.214246\pi\)
\(434\) −6.49685 + 6.49685i −0.311859 + 0.311859i
\(435\) 0 0
\(436\) 5.13315 5.13315i 0.245833 0.245833i
\(437\) −6.85844 + 6.85844i −0.328084 + 0.328084i
\(438\) 11.7402 43.0812i 0.560970 2.05850i
\(439\) 33.7542i 1.61100i 0.592595 + 0.805501i \(0.298104\pi\)
−0.592595 + 0.805501i \(0.701896\pi\)
\(440\) 0 0
\(441\) 4.10920 6.97952i 0.195676 0.332358i
\(442\) 15.7261 2.08447i 0.748012 0.0991479i
\(443\) 30.3054 1.43985 0.719927 0.694050i \(-0.244175\pi\)
0.719927 + 0.694050i \(0.244175\pi\)
\(444\) −3.24234 + 1.85362i −0.153875 + 0.0879689i
\(445\) 0 0
\(446\) −9.31616 −0.441133
\(447\) −25.2604 + 14.4412i −1.19478 + 0.683044i
\(448\) −7.47806 + 7.47806i −0.353305 + 0.353305i
\(449\) 18.9354 + 18.9354i 0.893616 + 0.893616i 0.994861 0.101246i \(-0.0322828\pi\)
−0.101246 + 0.994861i \(0.532283\pi\)
\(450\) 0 0
\(451\) −1.80903 −0.0851841
\(452\) 8.73603i 0.410908i
\(453\) 10.5615 6.03790i 0.496220 0.283685i
\(454\) 17.8813i 0.839211i
\(455\) 0 0
\(456\) 6.77565 + 1.84646i 0.317299 + 0.0864685i
\(457\) −12.6125 + 12.6125i −0.589987 + 0.589987i −0.937628 0.347641i \(-0.886983\pi\)
0.347641 + 0.937628i \(0.386983\pi\)
\(458\) 33.0580 1.54470
\(459\) 10.3466 10.0858i 0.482940 0.470767i
\(460\) 0 0
\(461\) −13.1232 + 13.1232i −0.611207 + 0.611207i −0.943260 0.332054i \(-0.892258\pi\)
0.332054 + 0.943260i \(0.392258\pi\)
\(462\) 2.04384 1.16845i 0.0950881 0.0543611i
\(463\) −23.7400 23.7400i −1.10329 1.10329i −0.994011 0.109278i \(-0.965146\pi\)
−0.109278 0.994011i \(-0.534854\pi\)
\(464\) 34.9014i 1.62026i
\(465\) 0 0
\(466\) 16.8307 16.8307i 0.779667 0.779667i
\(467\) 20.9138i 0.967776i 0.875130 + 0.483888i \(0.160776\pi\)
−0.875130 + 0.483888i \(0.839224\pi\)
\(468\) −5.04700 + 2.04557i −0.233297 + 0.0945566i
\(469\) −27.2558 −1.25856
\(470\) 0 0
\(471\) −7.26515 + 26.6597i −0.334760 + 1.22841i
\(472\) −7.98436 −0.367510
\(473\) 0.243428 + 0.243428i 0.0111928 + 0.0111928i
\(474\) −22.1840 38.8042i −1.01895 1.78234i
\(475\) 0 0
\(476\) −2.05285 2.05285i −0.0940923 0.0940923i
\(477\) −0.668022 0.393299i −0.0305866 0.0180079i
\(478\) 11.4894 0.525513
\(479\) 12.4837 + 12.4837i 0.570393 + 0.570393i 0.932238 0.361845i \(-0.117853\pi\)
−0.361845 + 0.932238i \(0.617853\pi\)
\(480\) 0 0
\(481\) 2.02910 + 15.3084i 0.0925190 + 0.698001i
\(482\) 9.20221 0.419149
\(483\) 17.6624 10.0975i 0.803669 0.459451i
\(484\) 5.45169 0.247804
\(485\) 0 0
\(486\) −12.7838 + 21.0930i −0.579886 + 0.956799i
\(487\) 17.2586 17.2586i 0.782061 0.782061i −0.198117 0.980178i \(-0.563483\pi\)
0.980178 + 0.198117i \(0.0634827\pi\)
\(488\) −6.12976 + 6.12976i −0.277481 + 0.277481i
\(489\) 5.32131 + 9.30801i 0.240638 + 0.420923i
\(490\) 0 0
\(491\) 33.3522 1.50516 0.752582 0.658498i \(-0.228808\pi\)
0.752582 + 0.658498i \(0.228808\pi\)
\(492\) −1.88995 3.30589i −0.0852055 0.149041i
\(493\) −20.4171 −0.919538
\(494\) −5.93989 + 7.75515i −0.267248 + 0.348921i
\(495\) 0 0
\(496\) −9.41230 9.41230i −0.422625 0.422625i
\(497\) 23.1143 1.03682
\(498\) −10.3628 + 38.0265i −0.464367 + 1.70401i
\(499\) 17.9656 + 17.9656i 0.804252 + 0.804252i 0.983757 0.179505i \(-0.0574497\pi\)
−0.179505 + 0.983757i \(0.557450\pi\)
\(500\) 0 0
\(501\) −8.39872 + 4.80148i −0.375227 + 0.214514i
\(502\) −6.15377 6.15377i −0.274656 0.274656i
\(503\) 38.5906 1.72067 0.860334 0.509731i \(-0.170255\pi\)
0.860334 + 0.509731i \(0.170255\pi\)
\(504\) −12.6941 7.47365i −0.565439 0.332903i
\(505\) 0 0
\(506\) −3.71280 −0.165054
\(507\) −0.0561329 + 22.5166i −0.00249295 + 0.999997i
\(508\) 10.6226i 0.471300i
\(509\) −5.99503 + 5.99503i −0.265725 + 0.265725i −0.827375 0.561650i \(-0.810167\pi\)
0.561650 + 0.827375i \(0.310167\pi\)
\(510\) 0 0
\(511\) 33.7876i 1.49467i
\(512\) −6.55574 6.55574i −0.289725 0.289725i
\(513\) −0.113554 + 8.89681i −0.00501352 + 0.392804i
\(514\) −8.33520 + 8.33520i −0.367650 + 0.367650i
\(515\) 0 0
\(516\) −0.190532 + 0.699165i −0.00838772 + 0.0307790i
\(517\) −5.13428 −0.225805
\(518\) 9.93664 9.93664i 0.436591 0.436591i
\(519\) −4.43990 + 16.2924i −0.194890 + 0.715156i
\(520\) 0 0
\(521\) 13.8731i 0.607791i 0.952705 + 0.303896i \(0.0982874\pi\)
−0.952705 + 0.303896i \(0.901713\pi\)
\(522\) 33.7398 8.73356i 1.47675 0.382257i
\(523\) 24.2698i 1.06124i −0.847609 0.530622i \(-0.821958\pi\)
0.847609 0.530622i \(-0.178042\pi\)
\(524\) 4.96536 0.216913
\(525\) 0 0
\(526\) 25.9391 + 25.9391i 1.13100 + 1.13100i
\(527\) −5.50613 + 5.50613i −0.239851 + 0.239851i
\(528\) 1.69279 + 2.96101i 0.0736690 + 0.128861i
\(529\) −9.08521 −0.395009
\(530\) 0 0
\(531\) −2.53495 9.79310i −0.110007 0.424984i
\(532\) 1.78773 0.0775077
\(533\) −15.6084 + 2.06887i −0.676074 + 0.0896127i
\(534\) 5.06852 18.5991i 0.219336 0.804862i
\(535\) 0 0
\(536\) 31.1223i 1.34428i
\(537\) −2.14688 0.585055i −0.0926447 0.0252470i
\(538\) 29.9222 29.9222i 1.29004 1.29004i
\(539\) 0.790845 0.790845i 0.0340641 0.0340641i
\(540\) 0 0
\(541\) 22.2024 22.2024i 0.954555 0.954555i −0.0444563 0.999011i \(-0.514156\pi\)
0.999011 + 0.0444563i \(0.0141555\pi\)
\(542\) −6.22205 −0.267260
\(543\) −2.45495 + 9.00852i −0.105352 + 0.386592i
\(544\) 5.47672 5.47672i 0.234813 0.234813i
\(545\) 0 0
\(546\) 16.2980 12.4188i 0.697492 0.531475i
\(547\) 19.3984i 0.829418i 0.909954 + 0.414709i \(0.136117\pi\)
−0.909954 + 0.414709i \(0.863883\pi\)
\(548\) −3.27814 3.27814i −0.140035 0.140035i
\(549\) −9.46450 5.57224i −0.403935 0.237817i
\(550\) 0 0
\(551\) 8.89010 8.89010i 0.378731 0.378731i
\(552\) 11.5299 + 20.1680i 0.490745 + 0.858408i
\(553\) 23.9158 + 23.9158i 1.01701 + 1.01701i
\(554\) 32.0809 + 32.0809i 1.36299 + 1.36299i
\(555\) 0 0
\(556\) 2.34316i 0.0993721i
\(557\) −12.2284 + 12.2284i −0.518134 + 0.518134i −0.917006 0.398873i \(-0.869402\pi\)
0.398873 + 0.917006i \(0.369402\pi\)
\(558\) 6.74375 11.4543i 0.285486 0.484900i
\(559\) 2.37869 + 1.82191i 0.100608 + 0.0770586i
\(560\) 0 0
\(561\) 1.73217 0.990268i 0.0731323 0.0418091i
\(562\) 1.81659i 0.0766284i
\(563\) 13.2701i 0.559267i 0.960107 + 0.279633i \(0.0902129\pi\)
−0.960107 + 0.279633i \(0.909787\pi\)
\(564\) −5.36393 9.38256i −0.225862 0.395077i
\(565\) 0 0
\(566\) 25.6922 + 25.6922i 1.07992 + 1.07992i
\(567\) 5.13647 17.9425i 0.215711 0.753516i
\(568\) 26.3932i 1.10744i
\(569\) −1.99616 −0.0836833 −0.0418417 0.999124i \(-0.513323\pi\)
−0.0418417 + 0.999124i \(0.513323\pi\)
\(570\) 0 0
\(571\) 8.10449i 0.339162i −0.985516 0.169581i \(-0.945758\pi\)
0.985516 0.169581i \(-0.0542415\pi\)
\(572\) −0.745479 + 0.0988121i −0.0311700 + 0.00413154i
\(573\) −3.70564 + 13.5980i −0.154805 + 0.568063i
\(574\) 10.1314 + 10.1314i 0.422876 + 0.422876i
\(575\) 0 0
\(576\) 7.76226 13.1843i 0.323427 0.549345i
\(577\) 22.0036 22.0036i 0.916023 0.916023i −0.0807147 0.996737i \(-0.525720\pi\)
0.996737 + 0.0807147i \(0.0257203\pi\)
\(578\) 10.3686 + 10.3686i 0.431275 + 0.431275i
\(579\) 2.46688 + 4.31505i 0.102520 + 0.179327i
\(580\) 0 0
\(581\) 29.8234i 1.23728i
\(582\) −31.4674 8.57532i −1.30437 0.355459i
\(583\) −0.0756932 0.0756932i −0.00313489 0.00313489i
\(584\) −38.5807 −1.59648
\(585\) 0 0
\(586\) −18.4796 −0.763384
\(587\) 6.82405 + 6.82405i 0.281659 + 0.281659i 0.833770 0.552112i \(-0.186178\pi\)
−0.552112 + 0.833770i \(0.686178\pi\)
\(588\) 2.27144 + 0.618998i 0.0936724 + 0.0255271i
\(589\) 4.79501i 0.197575i
\(590\) 0 0
\(591\) 3.77159 + 6.59725i 0.155143 + 0.271375i
\(592\) 14.3957 + 14.3957i 0.591659 + 0.591659i
\(593\) −1.95435 + 1.95435i −0.0802556 + 0.0802556i −0.746095 0.665839i \(-0.768074\pi\)
0.665839 + 0.746095i \(0.268074\pi\)
\(594\) −2.43887 + 2.37740i −0.100068 + 0.0975457i
\(595\) 0 0
\(596\) −5.98054 5.98054i −0.244972 0.244972i
\(597\) 1.72991 6.34795i 0.0708004 0.259804i
\(598\) −32.0341 + 4.24607i −1.30997 + 0.173635i
\(599\) 4.69516i 0.191839i 0.995389 + 0.0959195i \(0.0305791\pi\)
−0.995389 + 0.0959195i \(0.969421\pi\)
\(600\) 0 0
\(601\) 7.38898 0.301403 0.150701 0.988579i \(-0.451847\pi\)
0.150701 + 0.988579i \(0.451847\pi\)
\(602\) 2.72661i 0.111128i
\(603\) 38.1726 9.88100i 1.55451 0.402385i
\(604\) 2.50048 + 2.50048i 0.101743 + 0.101743i
\(605\) 0 0
\(606\) 8.64055 + 15.1140i 0.350998 + 0.613965i
\(607\) 5.61074i 0.227733i 0.993496 + 0.113867i \(0.0363236\pi\)
−0.993496 + 0.113867i \(0.963676\pi\)
\(608\) 4.76940i 0.193425i
\(609\) −22.8945 + 13.0886i −0.927733 + 0.530378i
\(610\) 0 0
\(611\) −44.2987 + 5.87173i −1.79213 + 0.237545i
\(612\) 3.61930 + 2.13087i 0.146301 + 0.0861352i
\(613\) −16.7181 + 16.7181i −0.675238 + 0.675238i −0.958919 0.283680i \(-0.908445\pi\)
0.283680 + 0.958919i \(0.408445\pi\)
\(614\) 50.1582i 2.02422i
\(615\) 0 0
\(616\) −1.43836 1.43836i −0.0579531 0.0579531i
\(617\) −30.6567 30.6567i −1.23419 1.23419i −0.962339 0.271854i \(-0.912363\pi\)
−0.271854 0.962339i \(-0.587637\pi\)
\(618\) 10.2682 + 17.9611i 0.413048 + 0.722501i
\(619\) 20.5920 20.5920i 0.827663 0.827663i −0.159530 0.987193i \(-0.550998\pi\)
0.987193 + 0.159530i \(0.0509979\pi\)
\(620\) 0 0
\(621\) −21.0762 + 20.5450i −0.845758 + 0.824441i
\(622\) −24.2131 24.2131i −0.970859 0.970859i
\(623\) 14.5869i 0.584410i
\(624\) 17.9917 + 23.6118i 0.720245 + 0.945227i
\(625\) 0 0
\(626\) −7.96826 + 7.96826i −0.318476 + 0.318476i
\(627\) −0.323043 + 1.18542i −0.0129011 + 0.0473410i
\(628\) −8.03189 −0.320507
\(629\) 8.42138 8.42138i 0.335782 0.335782i
\(630\) 0 0
\(631\) 2.48933 2.48933i 0.0990986 0.0990986i −0.655819 0.754918i \(-0.727677\pi\)
0.754918 + 0.655819i \(0.227677\pi\)
\(632\) −27.3085 + 27.3085i −1.08628 + 1.08628i
\(633\) 9.97866 + 2.71933i 0.396616 + 0.108084i
\(634\) 33.5491i 1.33241i
\(635\) 0 0
\(636\) 0.0592454 0.217403i 0.00234923 0.00862060i
\(637\) 5.91899 7.72786i 0.234519 0.306189i
\(638\) 4.81263 0.190534
\(639\) −32.3722 + 8.37957i −1.28063 + 0.331491i
\(640\) 0 0
\(641\) 27.5035 1.08632 0.543161 0.839629i \(-0.317227\pi\)
0.543161 + 0.839629i \(0.317227\pi\)
\(642\) −5.02127 8.78318i −0.198174 0.346645i
\(643\) −27.9426 + 27.9426i −1.10195 + 1.10195i −0.107771 + 0.994176i \(0.534371\pi\)
−0.994176 + 0.107771i \(0.965629\pi\)
\(644\) 4.18167 + 4.18167i 0.164781 + 0.164781i
\(645\) 0 0
\(646\) 7.53387 0.296416
\(647\) 16.9805i 0.667572i 0.942649 + 0.333786i \(0.108326\pi\)
−0.942649 + 0.333786i \(0.891674\pi\)
\(648\) 20.4879 + 5.86513i 0.804839 + 0.230404i
\(649\) 1.39688i 0.0548325i
\(650\) 0 0
\(651\) −2.64449 + 9.70403i −0.103646 + 0.380331i
\(652\) −2.20372 + 2.20372i −0.0863044 + 0.0863044i
\(653\) −42.0032 −1.64371 −0.821856 0.569695i \(-0.807061\pi\)
−0.821856 + 0.569695i \(0.807061\pi\)
\(654\) 10.3895 38.1248i 0.406263 1.49080i
\(655\) 0 0
\(656\) −14.6778 + 14.6778i −0.573074 + 0.573074i
\(657\) −12.2489 47.3206i −0.477877 1.84615i
\(658\) 28.7543 + 28.7543i 1.12096 + 1.12096i
\(659\) 7.23414i 0.281802i −0.990024 0.140901i \(-0.955000\pi\)
0.990024 0.140901i \(-0.0450000\pi\)
\(660\) 0 0
\(661\) −10.3889 + 10.3889i −0.404082 + 0.404082i −0.879669 0.475587i \(-0.842236\pi\)
0.475587 + 0.879669i \(0.342236\pi\)
\(662\) 14.5018i 0.563627i
\(663\) 13.8127 10.5250i 0.536441 0.408758i
\(664\) 34.0541 1.32155
\(665\) 0 0
\(666\) −10.3143 + 17.5189i −0.399670 + 0.678843i
\(667\) 41.5897 1.61036
\(668\) −1.98844 1.98844i −0.0769351 0.0769351i
\(669\) −8.85359 + 5.06152i −0.342299 + 0.195690i
\(670\) 0 0
\(671\) −1.07242 1.07242i −0.0414002 0.0414002i
\(672\) 2.63036 9.65221i 0.101468 0.372342i
\(673\) −25.8635 −0.996966 −0.498483 0.866899i \(-0.666109\pi\)
−0.498483 + 0.866899i \(0.666109\pi\)
\(674\) −35.9833 35.9833i −1.38603 1.38603i
\(675\) 0 0
\(676\) −6.31901 + 1.70511i −0.243039 + 0.0655810i
\(677\) −21.1738 −0.813775 −0.406887 0.913478i \(-0.633386\pi\)
−0.406887 + 0.913478i \(0.633386\pi\)
\(678\) −23.6011 41.2829i −0.906394 1.58546i
\(679\) 24.6792 0.947101
\(680\) 0 0
\(681\) −9.71501 16.9934i −0.372280 0.651190i
\(682\) 1.29788 1.29788i 0.0496985 0.0496985i
\(683\) 13.2249 13.2249i 0.506038 0.506038i −0.407270 0.913308i \(-0.633519\pi\)
0.913308 + 0.407270i \(0.133519\pi\)
\(684\) −2.50377 + 0.648101i −0.0957339 + 0.0247807i
\(685\) 0 0
\(686\) −31.8257 −1.21511
\(687\) 31.4166 17.9606i 1.19862 0.685240i
\(688\) 3.95017 0.150599
\(689\) −0.739648 0.566518i −0.0281783 0.0215826i
\(690\) 0 0
\(691\) 15.4010 + 15.4010i 0.585883 + 0.585883i 0.936514 0.350630i \(-0.114033\pi\)
−0.350630 + 0.936514i \(0.614033\pi\)
\(692\) −4.90847 −0.186592
\(693\) 1.30753 2.22086i 0.0496691 0.0843635i
\(694\) 12.7165 + 12.7165i 0.482712 + 0.482712i
\(695\) 0 0
\(696\) −14.9454 26.1423i −0.566502 0.990923i
\(697\) 8.58644 + 8.58644i 0.325235 + 0.325235i
\(698\) −0.869642 −0.0329164
\(699\) 6.85079 25.1392i 0.259121 0.950852i
\(700\) 0 0
\(701\) 14.2724 0.539063 0.269531 0.962992i \(-0.413131\pi\)
0.269531 + 0.962992i \(0.413131\pi\)
\(702\) −18.3238 + 23.3014i −0.691585 + 0.879455i
\(703\) 7.33376i 0.276598i
\(704\) 1.49390 1.49390i 0.0563035 0.0563035i
\(705\) 0 0
\(706\) 24.5057i 0.922284i
\(707\) −9.31508 9.31508i −0.350330 0.350330i
\(708\) 2.55271 1.45936i 0.0959368 0.0548463i
\(709\) 1.84603 1.84603i 0.0693291 0.0693291i −0.671592 0.740921i \(-0.734389\pi\)
0.740921 + 0.671592i \(0.234389\pi\)
\(710\) 0 0
\(711\) −42.1651 24.8247i −1.58131 0.931000i
\(712\) −16.6561 −0.624216
\(713\) 11.2160 11.2160i 0.420044 0.420044i
\(714\) −15.2469 4.15499i −0.570600 0.155497i
\(715\) 0 0
\(716\) 0.646800i 0.0241720i
\(717\) 10.9189 6.24226i 0.407775 0.233121i
\(718\) 8.50571i 0.317430i
\(719\) 45.7040 1.70447 0.852237 0.523156i \(-0.175246\pi\)
0.852237 + 0.523156i \(0.175246\pi\)
\(720\) 0 0
\(721\) −11.0698 11.0698i −0.412261 0.412261i
\(722\) 17.9769 17.9769i 0.669032 0.669032i
\(723\) 8.74530 4.99961i 0.325241 0.185938i
\(724\) −2.71404 −0.100866
\(725\) 0 0
\(726\) 25.7624 14.7282i 0.956134 0.546614i
\(727\) 5.12985 0.190256 0.0951279 0.995465i \(-0.469674\pi\)
0.0951279 + 0.995465i \(0.469674\pi\)
\(728\) −14.0551 10.7652i −0.520918 0.398986i
\(729\) −0.689112 + 26.9912i −0.0255227 + 0.999674i
\(730\) 0 0
\(731\) 2.31082i 0.0854689i
\(732\) 0.839386 3.08016i 0.0310246 0.113846i
\(733\) −6.65960 + 6.65960i −0.245978 + 0.245978i −0.819318 0.573340i \(-0.805647\pi\)
0.573340 + 0.819318i \(0.305647\pi\)
\(734\) −25.9629 + 25.9629i −0.958309 + 0.958309i
\(735\) 0 0
\(736\) −11.1561 + 11.1561i −0.411220 + 0.411220i
\(737\) 5.44492 0.200566
\(738\) −17.8623 10.5164i −0.657519 0.387115i
\(739\) 15.3715 15.3715i 0.565448 0.565448i −0.365402 0.930850i \(-0.619068\pi\)
0.930850 + 0.365402i \(0.119068\pi\)
\(740\) 0 0
\(741\) −1.43154 + 10.5973i −0.0525890 + 0.389300i
\(742\) 0.847831i 0.0311249i
\(743\) −10.7883 10.7883i −0.395784 0.395784i 0.480959 0.876743i \(-0.340288\pi\)
−0.876743 + 0.480959i \(0.840288\pi\)
\(744\) −11.0806 3.01963i −0.406236 0.110705i
\(745\) 0 0
\(746\) 22.7806 22.7806i 0.834056 0.834056i
\(747\) 10.8118 + 41.7686i 0.395583 + 1.52823i
\(748\) 0.410100 + 0.410100i 0.0149948 + 0.0149948i
\(749\) 5.41326 + 5.41326i 0.197796 + 0.197796i
\(750\) 0 0
\(751\) 47.2418i 1.72388i −0.507012 0.861939i \(-0.669250\pi\)
0.507012 0.861939i \(-0.330750\pi\)
\(752\) −41.6577 + 41.6577i −1.51910 + 1.51910i
\(753\) −9.19160 2.50484i −0.334960 0.0912814i
\(754\) 41.5235 5.50388i 1.51220 0.200439i
\(755\) 0 0
\(756\) 5.42449 + 0.0692351i 0.197287 + 0.00251806i
\(757\) 6.53480i 0.237511i −0.992924 0.118756i \(-0.962109\pi\)
0.992924 0.118756i \(-0.0378905\pi\)
\(758\) 5.02083i 0.182365i
\(759\) −3.52845 + 2.01718i −0.128074 + 0.0732191i
\(760\) 0 0
\(761\) −19.3550 19.3550i −0.701618 0.701618i 0.263139 0.964758i \(-0.415242\pi\)
−0.964758 + 0.263139i \(0.915242\pi\)
\(762\) 28.6977 + 50.1979i 1.03961 + 1.81848i
\(763\) 29.9004i 1.08247i
\(764\) −4.09672 −0.148214
\(765\) 0 0
\(766\) 6.92846i 0.250336i
\(767\) −1.59752 12.0523i −0.0576831 0.435185i
\(768\) 19.0200 + 5.18322i 0.686326 + 0.187033i
\(769\) −1.85581 1.85581i −0.0669221 0.0669221i 0.672854 0.739776i \(-0.265068\pi\)
−0.739776 + 0.672854i \(0.765068\pi\)
\(770\) 0 0
\(771\) −3.39277 + 12.4499i −0.122188 + 0.448372i
\(772\) −1.02161 + 1.02161i −0.0367686 + 0.0367686i
\(773\) −5.15489 5.15489i −0.185408 0.185408i 0.608299 0.793708i \(-0.291852\pi\)
−0.793708 + 0.608299i \(0.791852\pi\)
\(774\) 0.988473 + 3.81870i 0.0355299 + 0.137260i
\(775\) 0 0
\(776\) 28.1802i 1.01161i
\(777\) 4.04463 14.8419i 0.145100 0.532450i
\(778\) −21.5999 21.5999i −0.774396 0.774396i
\(779\) −7.47750 −0.267909
\(780\) 0 0
\(781\) −4.61756 −0.165229
\(782\) 17.6225 + 17.6225i 0.630180 + 0.630180i
\(783\) 27.3195 26.6309i 0.976320 0.951712i
\(784\) 12.8333i 0.458331i
\(785\) 0 0
\(786\) 23.4643 13.4143i 0.836942 0.478473i
\(787\) 10.3937 + 10.3937i 0.370494 + 0.370494i 0.867657 0.497163i \(-0.165625\pi\)
−0.497163 + 0.867657i \(0.665625\pi\)
\(788\) −1.56193 + 1.56193i −0.0556416 + 0.0556416i
\(789\) 38.7440 + 10.5583i 1.37932 + 0.375885i
\(790\) 0 0
\(791\) 25.4435 + 25.4435i 0.904667 + 0.904667i
\(792\) 2.53591 + 1.49302i 0.0901096 + 0.0530521i
\(793\) −10.4793 8.02639i −0.372130 0.285025i
\(794\) 30.0000i 1.06466i
\(795\) 0 0
\(796\) 1.91248 0.0677859
\(797\) 28.4028i 1.00608i −0.864264 0.503039i \(-0.832215\pi\)
0.864264 0.503039i \(-0.167785\pi\)
\(798\) 8.44806 4.82968i 0.299058 0.170969i
\(799\) 24.3695 + 24.3695i 0.862130 + 0.862130i
\(800\) 0 0
\(801\) −5.28815 20.4294i −0.186847 0.721836i
\(802\) 10.7954i 0.381197i
\(803\) 6.74979i 0.238195i
\(804\) 5.68847 + 9.95024i 0.200617 + 0.350918i
\(805\) 0 0
\(806\) 9.71387 12.6825i 0.342156 0.446721i
\(807\) 12.1796 44.6933i 0.428741 1.57328i
\(808\) 10.6365 10.6365i 0.374191 0.374191i
\(809\) 23.7943i 0.836561i −0.908318 0.418281i \(-0.862633\pi\)
0.908318 0.418281i \(-0.137367\pi\)
\(810\) 0 0
\(811\) 12.0402 + 12.0402i 0.422789 + 0.422789i 0.886163 0.463374i \(-0.153361\pi\)
−0.463374 + 0.886163i \(0.653361\pi\)
\(812\) −5.42040 5.42040i −0.190219 0.190219i
\(813\) −5.91310 + 3.38047i −0.207382 + 0.118558i
\(814\) −1.98505 + 1.98505i −0.0695761 + 0.0695761i
\(815\) 0 0
\(816\) 6.01953 22.0889i 0.210726 0.773266i
\(817\) 1.00619 + 1.00619i 0.0352021 + 0.0352021i
\(818\) 5.23435i 0.183015i
\(819\) 8.74159 20.6570i 0.305456 0.721813i
\(820\) 0 0
\(821\) −8.79819 + 8.79819i −0.307059 + 0.307059i −0.843768 0.536709i \(-0.819667\pi\)
0.536709 + 0.843768i \(0.319667\pi\)
\(822\) −24.3473 6.63498i −0.849209 0.231421i
\(823\) 6.05273 0.210985 0.105493 0.994420i \(-0.466358\pi\)
0.105493 + 0.994420i \(0.466358\pi\)
\(824\) 12.6402 12.6402i 0.440341 0.440341i
\(825\) 0 0
\(826\) −7.82317 + 7.82317i −0.272203 + 0.272203i
\(827\) 32.2394 32.2394i 1.12107 1.12107i 0.129495 0.991580i \(-0.458664\pi\)
0.991580 0.129495i \(-0.0413355\pi\)
\(828\) −7.37254 4.34059i −0.256214 0.150846i
\(829\) 14.4284i 0.501119i 0.968101 + 0.250559i \(0.0806145\pi\)
−0.968101 + 0.250559i \(0.919385\pi\)
\(830\) 0 0
\(831\) 47.9177 + 13.0582i 1.66225 + 0.452985i
\(832\) 11.1809 14.5979i 0.387630 0.506091i
\(833\) −7.50737 −0.260115
\(834\) 6.33024 + 11.0728i 0.219198 + 0.383420i
\(835\) 0 0
\(836\) −0.357136 −0.0123518
\(837\) 0.185701 14.5495i 0.00641878 0.502904i
\(838\) 12.6861 12.6861i 0.438233 0.438233i
\(839\) −16.5805 16.5805i −0.572423 0.572423i 0.360382 0.932805i \(-0.382646\pi\)
−0.932805 + 0.360382i \(0.882646\pi\)
\(840\) 0 0
\(841\) −24.9097 −0.858956
\(842\) 34.8119i 1.19970i
\(843\) −0.986965 1.72639i −0.0339929 0.0594602i
\(844\) 3.00632i 0.103482i
\(845\) 0 0
\(846\) −50.6955 29.8470i −1.74295 1.02616i
\(847\) −15.8779 + 15.8779i −0.545572 + 0.545572i
\(848\) −1.22829 −0.0421798
\(849\) 38.3752 + 10.4578i 1.31703 + 0.358910i
\(850\) 0 0
\(851\) −17.1544 + 17.1544i −0.588046 + 0.588046i
\(852\) −4.82410 8.43829i −0.165271 0.289091i
\(853\) 20.3214 + 20.3214i 0.695793 + 0.695793i 0.963500 0.267707i \(-0.0862660\pi\)
−0.267707 + 0.963500i \(0.586266\pi\)
\(854\) 12.0120i 0.411043i
\(855\) 0 0
\(856\) −6.18118 + 6.18118i −0.211269 + 0.211269i
\(857\) 23.5604i 0.804807i −0.915462 0.402404i \(-0.868175\pi\)
0.915462 0.402404i \(-0.131825\pi\)
\(858\) −3.25588 + 2.48092i −0.111154 + 0.0846971i
\(859\) 23.0208 0.785460 0.392730 0.919654i \(-0.371531\pi\)
0.392730 + 0.919654i \(0.371531\pi\)
\(860\) 0 0
\(861\) 15.1328 + 4.12390i 0.515724 + 0.140542i
\(862\) −57.3071 −1.95189
\(863\) 0.128867 + 0.128867i 0.00438669 + 0.00438669i 0.709297 0.704910i \(-0.249013\pi\)
−0.704910 + 0.709297i \(0.749013\pi\)
\(864\) −0.184710 + 14.4718i −0.00628395 + 0.492341i
\(865\) 0 0
\(866\) 36.4071 + 36.4071i 1.23716 + 1.23716i
\(867\) 15.4870 + 4.22043i 0.525967 + 0.143333i
\(868\) −2.92358 −0.0992327
\(869\) −4.77770 4.77770i −0.162072 0.162072i
\(870\) 0 0
\(871\) 46.9790 6.22699i 1.59182 0.210994i
\(872\) −34.1421 −1.15620
\(873\) −34.5640 + 8.94691i −1.16981 + 0.302807i
\(874\) −15.3466 −0.519105
\(875\) 0 0
\(876\) 12.3348 7.05170i 0.416754 0.238255i
\(877\) 23.8978 23.8978i 0.806973 0.806973i −0.177202 0.984175i \(-0.556704\pi\)
0.984175 + 0.177202i \(0.0567045\pi\)
\(878\) −37.7645 + 37.7645i −1.27449 + 1.27449i
\(879\) −17.5620 + 10.0401i −0.592352 + 0.338643i
\(880\) 0 0
\(881\) 23.2229 0.782400 0.391200 0.920306i \(-0.372060\pi\)
0.391200 + 0.920306i \(0.372060\pi\)
\(882\) 12.4061 3.21133i 0.417737 0.108131i
\(883\) 11.7041 0.393876 0.196938 0.980416i \(-0.436900\pi\)
0.196938 + 0.980416i \(0.436900\pi\)
\(884\) 4.00736 + 3.06935i 0.134782 + 0.103234i
\(885\) 0 0
\(886\) 33.9059 + 33.9059i 1.13909 + 1.13909i
\(887\) 6.56575 0.220456 0.110228 0.993906i \(-0.464842\pi\)
0.110228 + 0.993906i \(0.464842\pi\)
\(888\) 16.9474 + 4.61839i 0.568716 + 0.154983i
\(889\) −30.9380 30.9380i −1.03763 1.03763i
\(890\) 0 0
\(891\) −1.02612 + 3.58440i −0.0343763 + 0.120082i
\(892\) −2.09613 2.09613i −0.0701837 0.0701837i
\(893\) −21.2221 −0.710172
\(894\) −44.4185 12.1047i −1.48558 0.404840i
\(895\) 0 0
\(896\) −28.2849 −0.944932
\(897\) −28.1366 + 21.4396i −0.939454 + 0.715846i
\(898\) 42.3701i 1.41391i
\(899\) −14.5385 + 14.5385i −0.484887 + 0.484887i
\(900\) 0 0
\(901\) 0.718544i 0.0239382i
\(902\) −2.02396 2.02396i −0.0673905 0.0673905i
\(903\) −1.48138 2.59123i −0.0492973 0.0862306i
\(904\) −29.0529 + 29.0529i −0.966286 + 0.966286i
\(905\) 0 0
\(906\) 18.5715 + 5.06099i 0.616996 + 0.168140i
\(907\) −21.6880 −0.720139 −0.360069 0.932926i \(-0.617247\pi\)
−0.360069 + 0.932926i \(0.617247\pi\)
\(908\) 4.02328 4.02328i 0.133517 0.133517i
\(909\) 16.4230 + 9.66909i 0.544718 + 0.320703i
\(910\) 0 0
\(911\) 6.44406i 0.213501i −0.994286 0.106751i \(-0.965955\pi\)
0.994286 0.106751i \(-0.0340446\pi\)
\(912\) 6.99700 + 12.2391i 0.231694 + 0.405277i
\(913\) 5.95785i 0.197176i
\(914\) −28.2219 −0.933497
\(915\) 0 0
\(916\) 7.43805 + 7.43805i 0.245760 + 0.245760i
\(917\) −14.4615 + 14.4615i −0.477562 + 0.477562i
\(918\) 22.8600 + 0.291772i 0.754493 + 0.00962991i
\(919\) −31.6869 −1.04525 −0.522626 0.852562i \(-0.675048\pi\)
−0.522626 + 0.852562i \(0.675048\pi\)
\(920\) 0 0
\(921\) −27.2513 47.6677i −0.897959 1.57071i
\(922\) −29.3646 −0.967072
\(923\) −39.8404 + 5.28079i −1.31136 + 0.173819i
\(924\) 0.722763 + 0.196963i 0.0237772 + 0.00647961i
\(925\) 0 0
\(926\) 53.1209i 1.74566i
\(927\) 19.5167 + 11.4905i 0.641014 + 0.377397i
\(928\) 14.4609 14.4609i 0.474702 0.474702i
\(929\) 14.6798 14.6798i 0.481629 0.481629i −0.424022 0.905652i \(-0.639382\pi\)
0.905652 + 0.424022i \(0.139382\pi\)
\(930\) 0 0
\(931\) 3.26889 3.26889i 0.107134 0.107134i
\(932\) 7.57380 0.248088
\(933\) −36.1660 9.85575i −1.18402 0.322663i
\(934\) −23.3985 + 23.3985i −0.765624 + 0.765624i
\(935\) 0 0
\(936\) 23.5874 + 9.98167i 0.770977 + 0.326261i
\(937\) 0.784915i 0.0256421i 0.999918 + 0.0128210i \(0.00408117\pi\)
−0.999918 + 0.0128210i \(0.995919\pi\)
\(938\) −30.4940 30.4940i −0.995665 0.995665i
\(939\) −3.24341 + 11.9018i −0.105845 + 0.388401i
\(940\) 0 0
\(941\) 39.5408 39.5408i 1.28899 1.28899i 0.353595 0.935399i \(-0.384959\pi\)
0.935399 0.353595i \(-0.115041\pi\)
\(942\) −37.9554 + 21.6988i −1.23665 + 0.706985i
\(943\) −17.4906 17.4906i −0.569574 0.569574i
\(944\) −11.3338 11.3338i −0.368884 0.368884i
\(945\) 0 0
\(946\) 0.544698i 0.0177097i
\(947\) 19.7845 19.7845i 0.642910 0.642910i −0.308360 0.951270i \(-0.599780\pi\)
0.951270 + 0.308360i \(0.0997802\pi\)
\(948\) 3.73953 13.7223i 0.121454 0.445680i
\(949\) −7.71927 58.2373i −0.250578 1.89046i
\(950\) 0 0
\(951\) 18.2274 + 31.8833i 0.591065 + 1.03389i
\(952\) 13.6541i 0.442532i
\(953\) 52.5727i 1.70300i −0.524357 0.851498i \(-0.675694\pi\)
0.524357 0.851498i \(-0.324306\pi\)
\(954\) −0.307363 1.18741i −0.00995123 0.0384440i
\(955\) 0 0
\(956\) 2.58511 + 2.58511i 0.0836085 + 0.0836085i
\(957\) 4.57367 2.61473i 0.147846 0.0845222i
\(958\) 27.9336i 0.902495i
\(959\) 19.0950 0.616611
\(960\) 0 0
\(961\) 23.1584i 0.747046i
\(962\) −14.8569 + 19.3973i −0.479007 + 0.625393i
\(963\) −9.54390 5.61898i −0.307548 0.181069i
\(964\) 2.07049 + 2.07049i 0.0666861 + 0.0666861i
\(965\) 0 0
\(966\) 31.0580 + 8.46375i 0.999275 + 0.272317i
\(967\) −15.6621 + 15.6621i −0.503658 + 0.503658i −0.912573 0.408915i \(-0.865907\pi\)
0.408915 + 0.912573i \(0.365907\pi\)
\(968\) −18.1304 18.1304i −0.582732 0.582732i
\(969\) 7.15979 4.09319i 0.230006 0.131492i
\(970\) 0 0
\(971\) 18.1426i 0.582225i −0.956689 0.291113i \(-0.905975\pi\)
0.956689 0.291113i \(-0.0940254\pi\)
\(972\) −7.62227 + 1.86957i −0.244485 + 0.0599663i
\(973\) −6.82441 6.82441i −0.218781 0.218781i
\(974\) 38.6181 1.23740
\(975\) 0 0
\(976\) −17.4024 −0.557037
\(977\) −21.5034 21.5034i −0.687954 0.687954i 0.273826 0.961779i \(-0.411711\pi\)
−0.961779 + 0.273826i \(0.911711\pi\)
\(978\) −4.46035 + 16.3674i −0.142626 + 0.523372i
\(979\) 2.91403i 0.0931329i
\(980\) 0 0
\(981\) −10.8397 41.8764i −0.346086 1.33701i
\(982\) 37.3147 + 37.3147i 1.19076 + 1.19076i
\(983\) −31.4759 + 31.4759i −1.00392 + 1.00392i −0.00393200 + 0.999992i \(0.501252\pi\)
−0.999992 + 0.00393200i \(0.998748\pi\)
\(984\) −4.70891 + 17.2795i −0.150115 + 0.550851i
\(985\) 0 0
\(986\) −22.8428 22.8428i −0.727462 0.727462i
\(987\) 42.9489 + 11.7042i 1.36708 + 0.372548i
\(988\) −3.08138 + 0.408432i −0.0980317 + 0.0129940i
\(989\) 4.70717i 0.149679i
\(990\) 0 0
\(991\) −43.9818 −1.39713 −0.698563 0.715548i \(-0.746177\pi\)
−0.698563 + 0.715548i \(0.746177\pi\)
\(992\) 7.79970i 0.247641i
\(993\) −7.87889 13.7817i −0.250029 0.437349i
\(994\) 25.8604 + 25.8604i 0.820243 + 0.820243i
\(995\) 0 0
\(996\) −10.8876 + 6.22434i −0.344986 + 0.197226i
\(997\) 44.9600i 1.42390i 0.702231 + 0.711949i \(0.252187\pi\)
−0.702231 + 0.711949i \(0.747813\pi\)
\(998\) 40.2002i 1.27251i
\(999\) −0.284022 + 22.2528i −0.00898606 + 0.704048i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.n.r.749.15 40
3.2 odd 2 inner 975.2.n.r.749.6 40
5.2 odd 4 195.2.o.a.86.6 40
5.3 odd 4 975.2.o.p.476.15 40
5.4 even 2 975.2.n.q.749.6 40
13.5 odd 4 975.2.n.q.824.15 40
15.2 even 4 195.2.o.a.86.15 yes 40
15.8 even 4 975.2.o.p.476.6 40
15.14 odd 2 975.2.n.q.749.15 40
39.5 even 4 975.2.n.q.824.6 40
65.18 even 4 975.2.o.p.551.6 40
65.44 odd 4 inner 975.2.n.r.824.6 40
65.57 even 4 195.2.o.a.161.15 yes 40
195.44 even 4 inner 975.2.n.r.824.15 40
195.83 odd 4 975.2.o.p.551.15 40
195.122 odd 4 195.2.o.a.161.6 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.o.a.86.6 40 5.2 odd 4
195.2.o.a.86.15 yes 40 15.2 even 4
195.2.o.a.161.6 yes 40 195.122 odd 4
195.2.o.a.161.15 yes 40 65.57 even 4
975.2.n.q.749.6 40 5.4 even 2
975.2.n.q.749.15 40 15.14 odd 2
975.2.n.q.824.6 40 39.5 even 4
975.2.n.q.824.15 40 13.5 odd 4
975.2.n.r.749.6 40 3.2 odd 2 inner
975.2.n.r.749.15 40 1.1 even 1 trivial
975.2.n.r.824.6 40 65.44 odd 4 inner
975.2.n.r.824.15 40 195.44 even 4 inner
975.2.o.p.476.6 40 15.8 even 4
975.2.o.p.476.15 40 5.3 odd 4
975.2.o.p.551.6 40 65.18 even 4
975.2.o.p.551.15 40 195.83 odd 4