Properties

Label 195.2.o.a.86.6
Level $195$
Weight $2$
Character 195.86
Analytic conductor $1.557$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [195,2,Mod(86,195)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(195, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("195.86"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 195.o (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.55708283941\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 86.6
Character \(\chi\) \(=\) 195.86
Dual form 195.2.o.a.161.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.11881 + 1.11881i) q^{2} +(0.455401 - 1.67111i) q^{3} -0.503463i q^{4} +(0.707107 - 0.707107i) q^{5} +(1.36015 + 2.37916i) q^{6} +(1.46633 - 1.46633i) q^{7} +(-1.67434 - 1.67434i) q^{8} +(-2.58522 - 1.52205i) q^{9} +1.58223i q^{10} +(0.292930 + 0.292930i) q^{11} +(-0.841342 - 0.229277i) q^{12} +(2.19240 - 2.86241i) q^{13} +3.28107i q^{14} +(-0.859636 - 1.50367i) q^{15} +4.75345 q^{16} +2.78074 q^{17} +(4.59525 - 1.18948i) q^{18} +(-1.21080 - 1.21080i) q^{19} +(-0.356002 - 0.356002i) q^{20} +(-1.78263 - 3.11816i) q^{21} -0.655464 q^{22} +5.66438 q^{23} +(-3.56050 + 2.03551i) q^{24} -1.00000i q^{25} +(0.749610 + 5.65536i) q^{26} +(-3.72083 + 3.62704i) q^{27} +(-0.738240 - 0.738240i) q^{28} +7.34233i q^{29} +(2.64409 + 0.720551i) q^{30} +(-1.98010 - 1.98010i) q^{31} +(-1.96952 + 1.96952i) q^{32} +(0.622918 - 0.356117i) q^{33} +(-3.11111 + 3.11111i) q^{34} -2.07370i q^{35} +(-0.766296 + 1.30156i) q^{36} +(-3.02847 + 3.02847i) q^{37} +2.70931 q^{38} +(-3.78498 - 4.96729i) q^{39} -2.36787 q^{40} +(-3.08783 + 3.08783i) q^{41} +(5.48304 + 1.49420i) q^{42} -0.831012i q^{43} +(0.147479 - 0.147479i) q^{44} +(-2.90428 + 0.751774i) q^{45} +(-6.33735 + 6.33735i) q^{46} +(-8.76367 - 8.76367i) q^{47} +(2.16473 - 7.94354i) q^{48} +2.69978i q^{49} +(1.11881 + 1.11881i) q^{50} +(1.26635 - 4.64692i) q^{51} +(-1.44112 - 1.10379i) q^{52} +0.258401i q^{53} +(0.104926 - 8.22086i) q^{54} +0.414265 q^{55} -4.91025 q^{56} +(-2.57478 + 1.47198i) q^{57} +(-8.21465 - 8.21465i) q^{58} +(2.38433 + 2.38433i) q^{59} +(-0.757042 + 0.432795i) q^{60} -3.66100 q^{61} +4.43070 q^{62} +(-6.02260 + 1.55895i) q^{63} +5.09987i q^{64} +(-0.473767 - 3.57429i) q^{65} +(-0.298499 + 1.09535i) q^{66} +(9.29391 + 9.29391i) q^{67} -1.40000i q^{68} +(2.57957 - 9.46581i) q^{69} +(2.32007 + 2.32007i) q^{70} +(-7.88169 + 7.88169i) q^{71} +(1.78010 + 6.87696i) q^{72} +(-11.5212 + 11.5212i) q^{73} -6.77656i q^{74} +(-1.67111 - 0.455401i) q^{75} +(-0.609593 + 0.609593i) q^{76} +0.859060 q^{77} +(9.79210 + 1.32278i) q^{78} +16.3100 q^{79} +(3.36120 - 3.36120i) q^{80} +(4.36672 + 7.86967i) q^{81} -6.90938i q^{82} +(10.1694 - 10.1694i) q^{83} +(-1.56988 + 0.897486i) q^{84} +(1.96628 - 1.96628i) q^{85} +(0.929743 + 0.929743i) q^{86} +(12.2698 + 3.34370i) q^{87} -0.980926i q^{88} +(4.97395 + 4.97395i) q^{89} +(2.40824 - 4.09042i) q^{90} +(-0.982449 - 7.41200i) q^{91} -2.85180i q^{92} +(-4.21070 + 2.40722i) q^{93} +19.6097 q^{94} -1.71233 q^{95} +(2.39437 + 4.18821i) q^{96} +(-8.41532 - 8.41532i) q^{97} +(-3.02053 - 3.02053i) q^{98} +(-0.311433 - 1.20314i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 12 q^{6} - 16 q^{7} + 4 q^{15} - 64 q^{16} + 4 q^{18} - 16 q^{19} - 12 q^{21} + 8 q^{24} - 24 q^{27} + 32 q^{28} + 32 q^{31} - 4 q^{33} - 16 q^{34} + 32 q^{37} - 8 q^{39} + 8 q^{42} - 8 q^{45} - 40 q^{46}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/195\mathbb{Z}\right)^\times\).

\(n\) \(106\) \(131\) \(157\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.11881 + 1.11881i −0.791117 + 0.791117i −0.981676 0.190559i \(-0.938970\pi\)
0.190559 + 0.981676i \(0.438970\pi\)
\(3\) 0.455401 1.67111i 0.262926 0.964816i
\(4\) 0.503463i 0.251731i
\(5\) 0.707107 0.707107i 0.316228 0.316228i
\(6\) 1.36015 + 2.37916i 0.555277 + 0.971287i
\(7\) 1.46633 1.46633i 0.554219 0.554219i −0.373437 0.927656i \(-0.621821\pi\)
0.927656 + 0.373437i \(0.121821\pi\)
\(8\) −1.67434 1.67434i −0.591968 0.591968i
\(9\) −2.58522 1.52205i −0.861740 0.507350i
\(10\) 1.58223i 0.500346i
\(11\) 0.292930 + 0.292930i 0.0883216 + 0.0883216i 0.749887 0.661566i \(-0.230108\pi\)
−0.661566 + 0.749887i \(0.730108\pi\)
\(12\) −0.841342 0.229277i −0.242874 0.0661867i
\(13\) 2.19240 2.86241i 0.608063 0.793889i
\(14\) 3.28107i 0.876904i
\(15\) −0.859636 1.50367i −0.221957 0.388246i
\(16\) 4.75345 1.18836
\(17\) 2.78074 0.674427 0.337214 0.941428i \(-0.390516\pi\)
0.337214 + 0.941428i \(0.390516\pi\)
\(18\) 4.59525 1.18948i 1.08311 0.280363i
\(19\) −1.21080 1.21080i −0.277777 0.277777i 0.554444 0.832221i \(-0.312931\pi\)
−0.832221 + 0.554444i \(0.812931\pi\)
\(20\) −0.356002 0.356002i −0.0796044 0.0796044i
\(21\) −1.78263 3.11816i −0.389001 0.680438i
\(22\) −0.655464 −0.139745
\(23\) 5.66438 1.18111 0.590553 0.806999i \(-0.298910\pi\)
0.590553 + 0.806999i \(0.298910\pi\)
\(24\) −3.56050 + 2.03551i −0.726784 + 0.415496i
\(25\) 1.00000i 0.200000i
\(26\) 0.749610 + 5.65536i 0.147011 + 1.10911i
\(27\) −3.72083 + 3.62704i −0.716074 + 0.698025i
\(28\) −0.738240 0.738240i −0.139514 0.139514i
\(29\) 7.34233i 1.36344i 0.731615 + 0.681718i \(0.238767\pi\)
−0.731615 + 0.681718i \(0.761233\pi\)
\(30\) 2.64409 + 0.720551i 0.482742 + 0.131554i
\(31\) −1.98010 1.98010i −0.355636 0.355636i 0.506565 0.862202i \(-0.330915\pi\)
−0.862202 + 0.506565i \(0.830915\pi\)
\(32\) −1.96952 + 1.96952i −0.348166 + 0.348166i
\(33\) 0.622918 0.356117i 0.108436 0.0619920i
\(34\) −3.11111 + 3.11111i −0.533551 + 0.533551i
\(35\) 2.07370i 0.350519i
\(36\) −0.766296 + 1.30156i −0.127716 + 0.216927i
\(37\) −3.02847 + 3.02847i −0.497878 + 0.497878i −0.910777 0.412899i \(-0.864516\pi\)
0.412899 + 0.910777i \(0.364516\pi\)
\(38\) 2.70931 0.439508
\(39\) −3.78498 4.96729i −0.606082 0.795403i
\(40\) −2.36787 −0.374393
\(41\) −3.08783 + 3.08783i −0.482238 + 0.482238i −0.905846 0.423608i \(-0.860764\pi\)
0.423608 + 0.905846i \(0.360764\pi\)
\(42\) 5.48304 + 1.49420i 0.846051 + 0.230561i
\(43\) 0.831012i 0.126728i −0.997990 0.0633640i \(-0.979817\pi\)
0.997990 0.0633640i \(-0.0201829\pi\)
\(44\) 0.147479 0.147479i 0.0222333 0.0222333i
\(45\) −2.90428 + 0.751774i −0.432944 + 0.112068i
\(46\) −6.33735 + 6.33735i −0.934392 + 0.934392i
\(47\) −8.76367 8.76367i −1.27831 1.27831i −0.941611 0.336702i \(-0.890688\pi\)
−0.336702 0.941611i \(-0.609312\pi\)
\(48\) 2.16473 7.94354i 0.312451 1.14655i
\(49\) 2.69978i 0.385682i
\(50\) 1.11881 + 1.11881i 0.158223 + 0.158223i
\(51\) 1.26635 4.64692i 0.177324 0.650698i
\(52\) −1.44112 1.10379i −0.199847 0.153068i
\(53\) 0.258401i 0.0354940i 0.999843 + 0.0177470i \(0.00564935\pi\)
−0.999843 + 0.0177470i \(0.994351\pi\)
\(54\) 0.104926 8.22086i 0.0142787 1.11872i
\(55\) 0.414265 0.0558595
\(56\) −4.91025 −0.656160
\(57\) −2.57478 + 1.47198i −0.341038 + 0.194969i
\(58\) −8.21465 8.21465i −1.07864 1.07864i
\(59\) 2.38433 + 2.38433i 0.310414 + 0.310414i 0.845070 0.534656i \(-0.179559\pi\)
−0.534656 + 0.845070i \(0.679559\pi\)
\(60\) −0.757042 + 0.432795i −0.0977337 + 0.0558736i
\(61\) −3.66100 −0.468744 −0.234372 0.972147i \(-0.575303\pi\)
−0.234372 + 0.972147i \(0.575303\pi\)
\(62\) 4.43070 0.562699
\(63\) −6.02260 + 1.55895i −0.758776 + 0.196409i
\(64\) 5.09987i 0.637483i
\(65\) −0.473767 3.57429i −0.0587635 0.443336i
\(66\) −0.298499 + 1.09535i −0.0367427 + 0.134829i
\(67\) 9.29391 + 9.29391i 1.13543 + 1.13543i 0.989259 + 0.146173i \(0.0466957\pi\)
0.146173 + 0.989259i \(0.453304\pi\)
\(68\) 1.40000i 0.169775i
\(69\) 2.57957 9.46581i 0.310543 1.13955i
\(70\) 2.32007 + 2.32007i 0.277301 + 0.277301i
\(71\) −7.88169 + 7.88169i −0.935385 + 0.935385i −0.998036 0.0626508i \(-0.980045\pi\)
0.0626508 + 0.998036i \(0.480045\pi\)
\(72\) 1.78010 + 6.87696i 0.209787 + 0.810457i
\(73\) −11.5212 + 11.5212i −1.34845 + 1.34845i −0.461107 + 0.887345i \(0.652547\pi\)
−0.887345 + 0.461107i \(0.847453\pi\)
\(74\) 6.77656i 0.787759i
\(75\) −1.67111 0.455401i −0.192963 0.0525852i
\(76\) −0.609593 + 0.609593i −0.0699252 + 0.0699252i
\(77\) 0.859060 0.0978990
\(78\) 9.79210 + 1.32278i 1.10874 + 0.149775i
\(79\) 16.3100 1.83502 0.917512 0.397708i \(-0.130194\pi\)
0.917512 + 0.397708i \(0.130194\pi\)
\(80\) 3.36120 3.36120i 0.375793 0.375793i
\(81\) 4.36672 + 7.86967i 0.485191 + 0.874408i
\(82\) 6.90938i 0.763013i
\(83\) 10.1694 10.1694i 1.11624 1.11624i 0.123950 0.992288i \(-0.460444\pi\)
0.992288 0.123950i \(-0.0395564\pi\)
\(84\) −1.56988 + 0.897486i −0.171288 + 0.0979237i
\(85\) 1.96628 1.96628i 0.213273 0.213273i
\(86\) 0.929743 + 0.929743i 0.100257 + 0.100257i
\(87\) 12.2698 + 3.34370i 1.31546 + 0.358483i
\(88\) 0.980926i 0.104567i
\(89\) 4.97395 + 4.97395i 0.527238 + 0.527238i 0.919748 0.392510i \(-0.128393\pi\)
−0.392510 + 0.919748i \(0.628393\pi\)
\(90\) 2.40824 4.09042i 0.253851 0.431168i
\(91\) −0.982449 7.41200i −0.102989 0.776988i
\(92\) 2.85180i 0.297321i
\(93\) −4.21070 + 2.40722i −0.436629 + 0.249617i
\(94\) 19.6097 2.02259
\(95\) −1.71233 −0.175682
\(96\) 2.39437 + 4.18821i 0.244374 + 0.427458i
\(97\) −8.41532 8.41532i −0.854447 0.854447i 0.136231 0.990677i \(-0.456501\pi\)
−0.990677 + 0.136231i \(0.956501\pi\)
\(98\) −3.02053 3.02053i −0.305120 0.305120i
\(99\) −0.311433 1.20314i −0.0313002 0.120920i
\(100\) −0.503463 −0.0503463
\(101\) 6.35267 0.632114 0.316057 0.948740i \(-0.397641\pi\)
0.316057 + 0.948740i \(0.397641\pi\)
\(102\) 3.78220 + 6.61581i 0.374494 + 0.655063i
\(103\) 7.54935i 0.743860i −0.928261 0.371930i \(-0.878696\pi\)
0.928261 0.371930i \(-0.121304\pi\)
\(104\) −8.46346 + 1.12182i −0.829910 + 0.110003i
\(105\) −3.46538 0.944364i −0.338186 0.0921605i
\(106\) −0.289101 0.289101i −0.0280799 0.0280799i
\(107\) 3.69172i 0.356892i −0.983950 0.178446i \(-0.942893\pi\)
0.983950 0.178446i \(-0.0571070\pi\)
\(108\) 1.82608 + 1.87330i 0.175715 + 0.180258i
\(109\) 10.1957 + 10.1957i 0.976570 + 0.976570i 0.999732 0.0231620i \(-0.00737335\pi\)
−0.0231620 + 0.999732i \(0.507373\pi\)
\(110\) −0.463483 + 0.463483i −0.0441914 + 0.0441914i
\(111\) 3.68174 + 6.44008i 0.349456 + 0.611266i
\(112\) 6.97011 6.97011i 0.658613 0.658613i
\(113\) 17.3519i 1.63233i 0.577820 + 0.816164i \(0.303903\pi\)
−0.577820 + 0.816164i \(0.696097\pi\)
\(114\) 1.23382 4.52755i 0.115558 0.424044i
\(115\) 4.00532 4.00532i 0.373498 0.373498i
\(116\) 3.69659 0.343219
\(117\) −10.0246 + 4.06301i −0.926772 + 0.375625i
\(118\) −5.33522 −0.491147
\(119\) 4.07746 4.07746i 0.373781 0.373781i
\(120\) −1.07833 + 3.95697i −0.0984377 + 0.361221i
\(121\) 10.8284i 0.984399i
\(122\) 4.09596 4.09596i 0.370831 0.370831i
\(123\) 3.75390 + 6.56631i 0.338478 + 0.592064i
\(124\) −0.996906 + 0.996906i −0.0895248 + 0.0895248i
\(125\) −0.707107 0.707107i −0.0632456 0.0632456i
\(126\) 4.99396 8.48230i 0.444898 0.755663i
\(127\) 21.0990i 1.87224i 0.351686 + 0.936118i \(0.385608\pi\)
−0.351686 + 0.936118i \(0.614392\pi\)
\(128\) −9.64482 9.64482i −0.852489 0.852489i
\(129\) −1.38871 0.378444i −0.122269 0.0333201i
\(130\) 4.52900 + 3.46889i 0.397219 + 0.304242i
\(131\) 9.86242i 0.861684i −0.902427 0.430842i \(-0.858217\pi\)
0.902427 0.430842i \(-0.141783\pi\)
\(132\) −0.179292 0.313616i −0.0156053 0.0272968i
\(133\) −3.55086 −0.307899
\(134\) −20.7962 −1.79652
\(135\) −0.0663153 + 5.19573i −0.00570751 + 0.447177i
\(136\) −4.65589 4.65589i −0.399239 0.399239i
\(137\) −6.51118 6.51118i −0.556288 0.556288i 0.371961 0.928249i \(-0.378686\pi\)
−0.928249 + 0.371961i \(0.878686\pi\)
\(138\) 7.70438 + 13.4765i 0.655840 + 1.14719i
\(139\) −4.65409 −0.394755 −0.197377 0.980328i \(-0.563242\pi\)
−0.197377 + 0.980328i \(0.563242\pi\)
\(140\) −1.04403 −0.0882366
\(141\) −18.6361 + 10.6541i −1.56944 + 0.897235i
\(142\) 17.6362i 1.48000i
\(143\) 1.48070 0.196265i 0.123823 0.0164125i
\(144\) −12.2887 7.23500i −1.02406 0.602916i
\(145\) 5.19181 + 5.19181i 0.431156 + 0.431156i
\(146\) 25.7800i 2.13356i
\(147\) 4.51163 + 1.22948i 0.372113 + 0.101406i
\(148\) 1.52472 + 1.52472i 0.125331 + 0.125331i
\(149\) 11.8788 11.8788i 0.973150 0.973150i −0.0264986 0.999649i \(-0.508436\pi\)
0.999649 + 0.0264986i \(0.00843576\pi\)
\(150\) 2.37916 1.36015i 0.194257 0.111055i
\(151\) 4.96656 4.96656i 0.404173 0.404173i −0.475528 0.879701i \(-0.657743\pi\)
0.879701 + 0.475528i \(0.157743\pi\)
\(152\) 4.05458i 0.328870i
\(153\) −7.18881 4.23242i −0.581181 0.342171i
\(154\) −0.961124 + 0.961124i −0.0774496 + 0.0774496i
\(155\) −2.80028 −0.224924
\(156\) −2.50084 + 1.90560i −0.200228 + 0.152570i
\(157\) −15.9533 −1.27321 −0.636606 0.771190i \(-0.719662\pi\)
−0.636606 + 0.771190i \(0.719662\pi\)
\(158\) −18.2478 + 18.2478i −1.45172 + 1.45172i
\(159\) 0.431816 + 0.117676i 0.0342452 + 0.00933231i
\(160\) 2.78533i 0.220199i
\(161\) 8.30583 8.30583i 0.654591 0.654591i
\(162\) −13.6902 3.91913i −1.07560 0.307916i
\(163\) 4.37713 4.37713i 0.342843 0.342843i −0.514592 0.857435i \(-0.672057\pi\)
0.857435 + 0.514592i \(0.172057\pi\)
\(164\) 1.55461 + 1.55461i 0.121394 + 0.121394i
\(165\) 0.188657 0.692282i 0.0146869 0.0538941i
\(166\) 22.7553i 1.76615i
\(167\) −3.94953 3.94953i −0.305624 0.305624i 0.537585 0.843209i \(-0.319337\pi\)
−0.843209 + 0.537585i \(0.819337\pi\)
\(168\) −2.23613 + 8.20557i −0.172521 + 0.633073i
\(169\) −3.38676 12.5511i −0.260520 0.965468i
\(170\) 4.39977i 0.337447i
\(171\) 1.28729 + 4.97309i 0.0984412 + 0.380302i
\(172\) −0.418383 −0.0319014
\(173\) 9.74943 0.741235 0.370618 0.928786i \(-0.379146\pi\)
0.370618 + 0.928786i \(0.379146\pi\)
\(174\) −17.4686 + 9.98663i −1.32429 + 0.757084i
\(175\) −1.46633 1.46633i −0.110844 0.110844i
\(176\) 1.39243 + 1.39243i 0.104958 + 0.104958i
\(177\) 5.07031 2.89866i 0.381108 0.217876i
\(178\) −11.1298 −0.834213
\(179\) 1.28470 0.0960232 0.0480116 0.998847i \(-0.484712\pi\)
0.0480116 + 0.998847i \(0.484712\pi\)
\(180\) 0.378490 + 1.46220i 0.0282110 + 0.108986i
\(181\) 5.39074i 0.400690i 0.979725 + 0.200345i \(0.0642064\pi\)
−0.979725 + 0.200345i \(0.935794\pi\)
\(182\) 9.39177 + 7.19343i 0.696165 + 0.533212i
\(183\) −1.66723 + 6.11794i −0.123245 + 0.452251i
\(184\) −9.48409 9.48409i −0.699176 0.699176i
\(185\) 4.28291i 0.314886i
\(186\) 2.01775 7.40419i 0.147948 0.542901i
\(187\) 0.814560 + 0.814560i 0.0595665 + 0.0595665i
\(188\) −4.41218 + 4.41218i −0.321792 + 0.321792i
\(189\) −0.137518 + 10.7744i −0.0100030 + 0.783720i
\(190\) 1.91577 1.91577i 0.138985 0.138985i
\(191\) 8.13709i 0.588779i 0.955686 + 0.294390i \(0.0951163\pi\)
−0.955686 + 0.294390i \(0.904884\pi\)
\(192\) 8.52244 + 2.32248i 0.615054 + 0.167611i
\(193\) 2.02917 2.02917i 0.146063 0.146063i −0.630294 0.776357i \(-0.717066\pi\)
0.776357 + 0.630294i \(0.217066\pi\)
\(194\) 18.8303 1.35193
\(195\) −6.18879 0.836019i −0.443188 0.0598686i
\(196\) 1.35924 0.0970884
\(197\) −3.10238 + 3.10238i −0.221036 + 0.221036i −0.808934 0.587899i \(-0.799955\pi\)
0.587899 + 0.808934i \(0.299955\pi\)
\(198\) 1.69452 + 0.997650i 0.120424 + 0.0708999i
\(199\) 3.79864i 0.269279i 0.990895 + 0.134639i \(0.0429876\pi\)
−0.990895 + 0.134639i \(0.957012\pi\)
\(200\) −1.67434 + 1.67434i −0.118394 + 0.118394i
\(201\) 19.7636 11.2987i 1.39402 0.796949i
\(202\) −7.10742 + 7.10742i −0.500076 + 0.500076i
\(203\) 10.7662 + 10.7662i 0.755642 + 0.755642i
\(204\) −2.33955 0.637560i −0.163801 0.0446381i
\(205\) 4.36685i 0.304994i
\(206\) 8.44627 + 8.44627i 0.588480 + 0.588480i
\(207\) −14.6437 8.62148i −1.01781 0.599234i
\(208\) 10.4215 13.6063i 0.722599 0.943428i
\(209\) 0.709359i 0.0490674i
\(210\) 4.93366 2.82053i 0.340455 0.194635i
\(211\) 5.97128 0.411080 0.205540 0.978649i \(-0.434105\pi\)
0.205540 + 0.978649i \(0.434105\pi\)
\(212\) 0.130095 0.00893496
\(213\) 9.58185 + 16.7605i 0.656537 + 1.14841i
\(214\) 4.13032 + 4.13032i 0.282343 + 0.282343i
\(215\) −0.587614 0.587614i −0.0400749 0.0400749i
\(216\) 12.3028 + 0.157026i 0.837101 + 0.0106843i
\(217\) −5.80694 −0.394201
\(218\) −22.8140 −1.54516
\(219\) 14.0064 + 24.4999i 0.946465 + 1.65555i
\(220\) 0.208567i 0.0140616i
\(221\) 6.09649 7.95960i 0.410094 0.535421i
\(222\) −11.3244 3.08605i −0.760042 0.207122i
\(223\) 4.16343 + 4.16343i 0.278804 + 0.278804i 0.832631 0.553827i \(-0.186833\pi\)
−0.553827 + 0.832631i \(0.686833\pi\)
\(224\) 5.77592i 0.385920i
\(225\) −1.52205 + 2.58522i −0.101470 + 0.172348i
\(226\) −19.4134 19.4134i −1.29136 1.29136i
\(227\) 7.99122 7.99122i 0.530396 0.530396i −0.390294 0.920690i \(-0.627627\pi\)
0.920690 + 0.390294i \(0.127627\pi\)
\(228\) 0.741088 + 1.29631i 0.0490798 + 0.0858501i
\(229\) −14.7738 + 14.7738i −0.976279 + 0.976279i −0.999725 0.0234464i \(-0.992536\pi\)
0.0234464 + 0.999725i \(0.492536\pi\)
\(230\) 8.96237i 0.590961i
\(231\) 0.391217 1.43558i 0.0257402 0.0944545i
\(232\) 12.2935 12.2935i 0.807110 0.807110i
\(233\) −15.0434 −0.985527 −0.492764 0.870163i \(-0.664013\pi\)
−0.492764 + 0.870163i \(0.664013\pi\)
\(234\) 6.66984 15.7613i 0.436021 1.03035i
\(235\) −12.3937 −0.808476
\(236\) 1.20042 1.20042i 0.0781409 0.0781409i
\(237\) 7.42762 27.2559i 0.482475 1.77046i
\(238\) 9.12380i 0.591408i
\(239\) −5.13466 + 5.13466i −0.332134 + 0.332134i −0.853396 0.521263i \(-0.825461\pi\)
0.521263 + 0.853396i \(0.325461\pi\)
\(240\) −4.08624 7.14762i −0.263766 0.461377i
\(241\) 4.11251 4.11251i 0.264910 0.264910i −0.562135 0.827045i \(-0.690020\pi\)
0.827045 + 0.562135i \(0.190020\pi\)
\(242\) 12.1149 + 12.1149i 0.778774 + 0.778774i
\(243\) 15.1397 3.71341i 0.971212 0.238216i
\(244\) 1.84318i 0.117997i
\(245\) 1.90903 + 1.90903i 0.121963 + 0.121963i
\(246\) −11.5463 3.14654i −0.736167 0.200616i
\(247\) −6.12037 + 0.811246i −0.389430 + 0.0516183i
\(248\) 6.63071i 0.421050i
\(249\) −12.3631 21.6254i −0.783477 1.37045i
\(250\) 1.58223 0.100069
\(251\) −5.50029 −0.347175 −0.173588 0.984818i \(-0.555536\pi\)
−0.173588 + 0.984818i \(0.555536\pi\)
\(252\) 0.784874 + 3.03215i 0.0494424 + 0.191008i
\(253\) 1.65926 + 1.65926i 0.104317 + 0.104317i
\(254\) −23.6058 23.6058i −1.48116 1.48116i
\(255\) −2.39042 4.18131i −0.149694 0.261844i
\(256\) 11.3817 0.711354
\(257\) −7.45007 −0.464723 −0.232361 0.972630i \(-0.574645\pi\)
−0.232361 + 0.972630i \(0.574645\pi\)
\(258\) 1.97711 1.13030i 0.123089 0.0703692i
\(259\) 8.88146i 0.551867i
\(260\) −1.79952 + 0.238524i −0.111602 + 0.0147926i
\(261\) 11.1754 18.9815i 0.691740 1.17493i
\(262\) 11.0342 + 11.0342i 0.681692 + 0.681692i
\(263\) 23.1846i 1.42962i −0.699317 0.714812i \(-0.746512\pi\)
0.699317 0.714812i \(-0.253488\pi\)
\(264\) −1.63924 0.446715i −0.100888 0.0274934i
\(265\) 0.182717 + 0.182717i 0.0112242 + 0.0112242i
\(266\) 3.97273 3.97273i 0.243584 0.243584i
\(267\) 10.5772 6.04688i 0.647312 0.370063i
\(268\) 4.67914 4.67914i 0.285824 0.285824i
\(269\) 26.7447i 1.63065i 0.579002 + 0.815326i \(0.303442\pi\)
−0.579002 + 0.815326i \(0.696558\pi\)
\(270\) −5.73883 5.88722i −0.349254 0.358285i
\(271\) −2.78066 + 2.78066i −0.168913 + 0.168913i −0.786501 0.617588i \(-0.788110\pi\)
0.617588 + 0.786501i \(0.288110\pi\)
\(272\) 13.2181 0.801464
\(273\) −12.8337 1.73365i −0.776729 0.104925i
\(274\) 14.5695 0.880177
\(275\) 0.292930 0.292930i 0.0176643 0.0176643i
\(276\) −4.76568 1.29872i −0.286860 0.0781735i
\(277\) 28.6741i 1.72286i 0.507874 + 0.861431i \(0.330431\pi\)
−0.507874 + 0.861431i \(0.669569\pi\)
\(278\) 5.20703 5.20703i 0.312297 0.312297i
\(279\) 2.10518 + 8.13280i 0.126034 + 0.486898i
\(280\) −3.47207 + 3.47207i −0.207496 + 0.207496i
\(281\) −0.811843 0.811843i −0.0484305 0.0484305i 0.682477 0.730907i \(-0.260903\pi\)
−0.730907 + 0.682477i \(0.760903\pi\)
\(282\) 8.93030 32.7700i 0.531791 1.95143i
\(283\) 22.9639i 1.36506i −0.730857 0.682531i \(-0.760879\pi\)
0.730857 0.682531i \(-0.239121\pi\)
\(284\) 3.96814 + 3.96814i 0.235466 + 0.235466i
\(285\) −0.779798 + 2.86150i −0.0461912 + 0.169500i
\(286\) −1.43704 + 1.87621i −0.0849739 + 0.110942i
\(287\) 9.05553i 0.534531i
\(288\) 8.08936 2.09393i 0.476670 0.123386i
\(289\) −9.26751 −0.545148
\(290\) −11.6173 −0.682190
\(291\) −17.8953 + 10.2306i −1.04904 + 0.599728i
\(292\) 5.80048 + 5.80048i 0.339447 + 0.339447i
\(293\) 8.25860 + 8.25860i 0.482472 + 0.482472i 0.905920 0.423448i \(-0.139180\pi\)
−0.423448 + 0.905920i \(0.639180\pi\)
\(294\) −6.42320 + 3.67209i −0.374608 + 0.214161i
\(295\) 3.37196 0.196323
\(296\) 10.1414 0.589455
\(297\) −2.15241 0.0274721i −0.124895 0.00159409i
\(298\) 26.5802i 1.53975i
\(299\) 12.4186 16.2138i 0.718186 0.937666i
\(300\) −0.229277 + 0.841342i −0.0132373 + 0.0485749i
\(301\) −1.21853 1.21853i −0.0702351 0.0702351i
\(302\) 11.1133i 0.639496i
\(303\) 2.89301 10.6160i 0.166199 0.609874i
\(304\) −5.75549 5.75549i −0.330100 0.330100i
\(305\) −2.58872 + 2.58872i −0.148230 + 0.148230i
\(306\) 12.7782 3.30763i 0.730479 0.189085i
\(307\) 22.4159 22.4159i 1.27934 1.27934i 0.338310 0.941035i \(-0.390145\pi\)
0.941035 0.338310i \(-0.109855\pi\)
\(308\) 0.432505i 0.0246443i
\(309\) −12.6158 3.43798i −0.717688 0.195580i
\(310\) 3.13298 3.13298i 0.177941 0.177941i
\(311\) −21.6419 −1.22720 −0.613600 0.789617i \(-0.710279\pi\)
−0.613600 + 0.789617i \(0.710279\pi\)
\(312\) −1.97959 + 14.6542i −0.112072 + 0.829633i
\(313\) 7.12210 0.402565 0.201282 0.979533i \(-0.435489\pi\)
0.201282 + 0.979533i \(0.435489\pi\)
\(314\) 17.8487 17.8487i 1.00726 1.00726i
\(315\) −3.15627 + 5.36096i −0.177836 + 0.302056i
\(316\) 8.21150i 0.461933i
\(317\) −14.9932 + 14.9932i −0.842104 + 0.842104i −0.989132 0.147028i \(-0.953029\pi\)
0.147028 + 0.989132i \(0.453029\pi\)
\(318\) −0.614776 + 0.351462i −0.0344749 + 0.0197090i
\(319\) −2.15078 + 2.15078i −0.120421 + 0.120421i
\(320\) 3.60615 + 3.60615i 0.201590 + 0.201590i
\(321\) −6.16927 1.68121i −0.344335 0.0938361i
\(322\) 18.5853i 1.03572i
\(323\) −3.36692 3.36692i −0.187340 0.187340i
\(324\) 3.96209 2.19848i 0.220116 0.122138i
\(325\) −2.86241 2.19240i −0.158778 0.121613i
\(326\) 9.79433i 0.542458i
\(327\) 21.6812 12.3950i 1.19898 0.685445i
\(328\) 10.3401 0.570939
\(329\) −25.7008 −1.41693
\(330\) 0.563461 + 0.985602i 0.0310175 + 0.0542556i
\(331\) −6.48090 6.48090i −0.356223 0.356223i 0.506196 0.862418i \(-0.331051\pi\)
−0.862418 + 0.506196i \(0.831051\pi\)
\(332\) −5.11992 5.11992i −0.280992 0.280992i
\(333\) 12.4388 3.21978i 0.681640 0.176443i
\(334\) 8.83753 0.483568
\(335\) 13.1436 0.718110
\(336\) −8.47362 14.8220i −0.462274 0.808607i
\(337\) 32.1622i 1.75199i −0.482323 0.875993i \(-0.660207\pi\)
0.482323 0.875993i \(-0.339793\pi\)
\(338\) 17.8314 + 10.2531i 0.969900 + 0.557697i
\(339\) 28.9969 + 7.90207i 1.57490 + 0.429181i
\(340\) −0.989947 0.989947i −0.0536874 0.0536874i
\(341\) 1.16006i 0.0628207i
\(342\) −7.00416 4.12371i −0.378742 0.222985i
\(343\) 14.2230 + 14.2230i 0.767972 + 0.767972i
\(344\) −1.39139 + 1.39139i −0.0750190 + 0.0750190i
\(345\) −4.86931 8.51736i −0.262155 0.458559i
\(346\) −10.9077 + 10.9077i −0.586404 + 0.586404i
\(347\) 11.3661i 0.610165i 0.952326 + 0.305082i \(0.0986840\pi\)
−0.952326 + 0.305082i \(0.901316\pi\)
\(348\) 1.68343 6.17740i 0.0902413 0.331144i
\(349\) 0.388646 0.388646i 0.0208038 0.0208038i −0.696628 0.717432i \(-0.745317\pi\)
0.717432 + 0.696628i \(0.245317\pi\)
\(350\) 3.28107 0.175381
\(351\) 2.22453 + 18.6025i 0.118737 + 0.992926i
\(352\) −1.15386 −0.0615011
\(353\) −10.9517 + 10.9517i −0.582900 + 0.582900i −0.935699 0.352799i \(-0.885230\pi\)
0.352799 + 0.935699i \(0.385230\pi\)
\(354\) −2.42967 + 8.91574i −0.129135 + 0.473866i
\(355\) 11.1464i 0.591589i
\(356\) 2.50420 2.50420i 0.132722 0.132722i
\(357\) −4.95701 8.67078i −0.262353 0.458906i
\(358\) −1.43734 + 1.43734i −0.0759655 + 0.0759655i
\(359\) −3.80124 3.80124i −0.200622 0.200622i 0.599645 0.800266i \(-0.295309\pi\)
−0.800266 + 0.599645i \(0.795309\pi\)
\(360\) 6.12147 + 3.60402i 0.322630 + 0.189949i
\(361\) 16.0679i 0.845680i
\(362\) −6.03120 6.03120i −0.316993 0.316993i
\(363\) −18.0954 4.93126i −0.949764 0.258824i
\(364\) −3.73166 + 0.494626i −0.195592 + 0.0259255i
\(365\) 16.2934i 0.852836i
\(366\) −4.97950 8.71011i −0.260282 0.455285i
\(367\) −23.2059 −1.21134 −0.605669 0.795717i \(-0.707094\pi\)
−0.605669 + 0.795717i \(0.707094\pi\)
\(368\) 26.9254 1.40358
\(369\) 12.6826 3.28288i 0.660227 0.170900i
\(370\) −4.79175 4.79175i −0.249111 0.249111i
\(371\) 0.378899 + 0.378899i 0.0196715 + 0.0196715i
\(372\) 1.21195 + 2.11993i 0.0628365 + 0.109913i
\(373\) −20.3615 −1.05428 −0.527139 0.849779i \(-0.676735\pi\)
−0.527139 + 0.849779i \(0.676735\pi\)
\(374\) −1.82267 −0.0942481
\(375\) −1.50367 + 0.859636i −0.0776492 + 0.0443914i
\(376\) 29.3467i 1.51344i
\(377\) 21.0167 + 16.0973i 1.08242 + 0.829054i
\(378\) −11.9006 12.2083i −0.612101 0.627928i
\(379\) −2.24383 2.24383i −0.115258 0.115258i 0.647126 0.762383i \(-0.275971\pi\)
−0.762383 + 0.647126i \(0.775971\pi\)
\(380\) 0.862095i 0.0442246i
\(381\) 35.2588 + 9.60852i 1.80636 + 0.492259i
\(382\) −9.10384 9.10384i −0.465793 0.465793i
\(383\) −3.09636 + 3.09636i −0.158217 + 0.158217i −0.781776 0.623559i \(-0.785686\pi\)
0.623559 + 0.781776i \(0.285686\pi\)
\(384\) −20.5098 + 11.7253i −1.04664 + 0.598354i
\(385\) 0.607447 0.607447i 0.0309584 0.0309584i
\(386\) 4.54050i 0.231105i
\(387\) −1.26484 + 2.14835i −0.0642955 + 0.109207i
\(388\) −4.23680 + 4.23680i −0.215091 + 0.215091i
\(389\) 19.3062 0.978864 0.489432 0.872041i \(-0.337204\pi\)
0.489432 + 0.872041i \(0.337204\pi\)
\(390\) 7.85941 5.98872i 0.397977 0.303251i
\(391\) 15.7511 0.796570
\(392\) 4.52034 4.52034i 0.228312 0.228312i
\(393\) −16.4812 4.49136i −0.831366 0.226559i
\(394\) 6.94194i 0.349730i
\(395\) 11.5329 11.5329i 0.580286 0.580286i
\(396\) −0.605737 + 0.156795i −0.0304394 + 0.00787925i
\(397\) 13.4071 13.4071i 0.672884 0.672884i −0.285496 0.958380i \(-0.592158\pi\)
0.958380 + 0.285496i \(0.0921582\pi\)
\(398\) −4.24995 4.24995i −0.213031 0.213031i
\(399\) −1.61707 + 5.93388i −0.0809545 + 0.297065i
\(400\) 4.75345i 0.237673i
\(401\) −4.82449 4.82449i −0.240923 0.240923i 0.576309 0.817232i \(-0.304493\pi\)
−0.817232 + 0.576309i \(0.804493\pi\)
\(402\) −9.47062 + 34.7528i −0.472351 + 1.73331i
\(403\) −10.0090 + 1.32668i −0.498585 + 0.0660867i
\(404\) 3.19833i 0.159123i
\(405\) 8.65244 + 2.47696i 0.429943 + 0.123081i
\(406\) −24.0907 −1.19560
\(407\) −1.77426 −0.0879467
\(408\) −9.90081 + 5.66021i −0.490163 + 0.280222i
\(409\) −2.33925 2.33925i −0.115669 0.115669i 0.646903 0.762572i \(-0.276064\pi\)
−0.762572 + 0.646903i \(0.776064\pi\)
\(410\) −4.88567 4.88567i −0.241286 0.241286i
\(411\) −13.8461 + 7.91571i −0.682978 + 0.390453i
\(412\) −3.80082 −0.187253
\(413\) 6.99242 0.344074
\(414\) 26.0292 6.73768i 1.27927 0.331139i
\(415\) 14.3817i 0.705971i
\(416\) 1.31959 + 9.95556i 0.0646985 + 0.488112i
\(417\) −2.11948 + 7.77749i −0.103791 + 0.380866i
\(418\) 0.793637 + 0.793637i 0.0388180 + 0.0388180i
\(419\) 11.3389i 0.553942i 0.960878 + 0.276971i \(0.0893306\pi\)
−0.960878 + 0.276971i \(0.910669\pi\)
\(420\) −0.475452 + 1.74469i −0.0231997 + 0.0851321i
\(421\) 15.5576 + 15.5576i 0.758230 + 0.758230i 0.976000 0.217770i \(-0.0698783\pi\)
−0.217770 + 0.976000i \(0.569878\pi\)
\(422\) −6.68071 + 6.68071i −0.325212 + 0.325212i
\(423\) 9.31726 + 35.9948i 0.453021 + 1.75013i
\(424\) 0.432650 0.432650i 0.0210113 0.0210113i
\(425\) 2.78074i 0.134885i
\(426\) −29.4720 8.03155i −1.42792 0.389130i
\(427\) −5.36823 + 5.36823i −0.259787 + 0.259787i
\(428\) −1.85864 −0.0898409
\(429\) 0.346333 2.56380i 0.0167211 0.123781i
\(430\) 1.31485 0.0634079
\(431\) −25.6108 + 25.6108i −1.23363 + 1.23363i −0.271068 + 0.962560i \(0.587377\pi\)
−0.962560 + 0.271068i \(0.912623\pi\)
\(432\) −17.6868 + 17.2410i −0.850955 + 0.829507i
\(433\) 32.5410i 1.56382i −0.623392 0.781909i \(-0.714246\pi\)
0.623392 0.781909i \(-0.285754\pi\)
\(434\) 6.49685 6.49685i 0.311859 0.311859i
\(435\) 11.0404 6.31173i 0.529349 0.302624i
\(436\) 5.13315 5.13315i 0.245833 0.245833i
\(437\) −6.85844 6.85844i −0.328084 0.328084i
\(438\) −43.0812 11.7402i −2.05850 0.560970i
\(439\) 33.7542i 1.61100i −0.592595 0.805501i \(-0.701896\pi\)
0.592595 0.805501i \(-0.298104\pi\)
\(440\) −0.693620 0.693620i −0.0330670 0.0330670i
\(441\) 4.10920 6.97952i 0.195676 0.332358i
\(442\) 2.08447 + 15.7261i 0.0991479 + 0.748012i
\(443\) 30.3054i 1.43985i −0.694050 0.719927i \(-0.744175\pi\)
0.694050 0.719927i \(-0.255825\pi\)
\(444\) 3.24234 1.85362i 0.153875 0.0879689i
\(445\) 7.03423 0.333454
\(446\) −9.31616 −0.441133
\(447\) −14.4412 25.2604i −0.683044 1.19478i
\(448\) 7.47806 + 7.47806i 0.353305 + 0.353305i
\(449\) −18.9354 18.9354i −0.893616 0.893616i 0.101246 0.994861i \(-0.467717\pi\)
−0.994861 + 0.101246i \(0.967717\pi\)
\(450\) −1.18948 4.59525i −0.0560727 0.216622i
\(451\) −1.80903 −0.0851841
\(452\) 8.73603 0.410908
\(453\) −6.03790 10.5615i −0.283685 0.496220i
\(454\) 17.8813i 0.839211i
\(455\) −5.93577 4.54638i −0.278273 0.213137i
\(456\) 6.77565 + 1.84646i 0.317299 + 0.0864685i
\(457\) −12.6125 12.6125i −0.589987 0.589987i 0.347641 0.937628i \(-0.386983\pi\)
−0.937628 + 0.347641i \(0.886983\pi\)
\(458\) 33.0580i 1.54470i
\(459\) −10.3466 + 10.0858i −0.482940 + 0.470767i
\(460\) −2.01653 2.01653i −0.0940212 0.0940212i
\(461\) −13.1232 + 13.1232i −0.611207 + 0.611207i −0.943260 0.332054i \(-0.892258\pi\)
0.332054 + 0.943260i \(0.392258\pi\)
\(462\) 1.16845 + 2.04384i 0.0543611 + 0.0950881i
\(463\) −23.7400 + 23.7400i −1.10329 + 1.10329i −0.109278 + 0.994011i \(0.534854\pi\)
−0.994011 + 0.109278i \(0.965146\pi\)
\(464\) 34.9014i 1.62026i
\(465\) −1.27525 + 4.67958i −0.0591384 + 0.217010i
\(466\) 16.8307 16.8307i 0.779667 0.779667i
\(467\) −20.9138 −0.967776 −0.483888 0.875130i \(-0.660776\pi\)
−0.483888 + 0.875130i \(0.660776\pi\)
\(468\) 2.04557 + 5.04700i 0.0945566 + 0.233297i
\(469\) 27.2558 1.25856
\(470\) 13.8662 13.8662i 0.639599 0.639599i
\(471\) −7.26515 + 26.6597i −0.334760 + 1.22841i
\(472\) 7.98436i 0.367510i
\(473\) 0.243428 0.243428i 0.0111928 0.0111928i
\(474\) 22.1840 + 38.8042i 1.01895 + 1.78234i
\(475\) −1.21080 + 1.21080i −0.0555554 + 0.0555554i
\(476\) −2.05285 2.05285i −0.0940923 0.0940923i
\(477\) 0.393299 0.668022i 0.0180079 0.0305866i
\(478\) 11.4894i 0.525513i
\(479\) −12.4837 12.4837i −0.570393 0.570393i 0.361845 0.932238i \(-0.382147\pi\)
−0.932238 + 0.361845i \(0.882147\pi\)
\(480\) 4.65459 + 1.26844i 0.212452 + 0.0578961i
\(481\) 2.02910 + 15.3084i 0.0925190 + 0.698001i
\(482\) 9.20221i 0.419149i
\(483\) −10.0975 17.6624i −0.459451 0.803669i
\(484\) −5.45169 −0.247804
\(485\) −11.9011 −0.540399
\(486\) −12.7838 + 21.0930i −0.579886 + 0.956799i
\(487\) 17.2586 + 17.2586i 0.782061 + 0.782061i 0.980178 0.198117i \(-0.0634827\pi\)
−0.198117 + 0.980178i \(0.563483\pi\)
\(488\) 6.12976 + 6.12976i 0.277481 + 0.277481i
\(489\) −5.32131 9.30801i −0.240638 0.420923i
\(490\) −4.27168 −0.192975
\(491\) 33.3522 1.50516 0.752582 0.658498i \(-0.228808\pi\)
0.752582 + 0.658498i \(0.228808\pi\)
\(492\) 3.30589 1.88995i 0.149041 0.0852055i
\(493\) 20.4171i 0.919538i
\(494\) 5.93989 7.75515i 0.267248 0.348921i
\(495\) −1.07097 0.630532i −0.0481363 0.0283403i
\(496\) −9.41230 9.41230i −0.422625 0.422625i
\(497\) 23.1143i 1.03682i
\(498\) 38.0265 + 10.3628i 1.70401 + 0.464367i
\(499\) −17.9656 17.9656i −0.804252 0.804252i 0.179505 0.983757i \(-0.442550\pi\)
−0.983757 + 0.179505i \(0.942550\pi\)
\(500\) −0.356002 + 0.356002i −0.0159209 + 0.0159209i
\(501\) −8.39872 + 4.80148i −0.375227 + 0.214514i
\(502\) 6.15377 6.15377i 0.274656 0.274656i
\(503\) 38.5906i 1.72067i −0.509731 0.860334i \(-0.670255\pi\)
0.509731 0.860334i \(-0.329745\pi\)
\(504\) 12.6941 + 7.47365i 0.565439 + 0.332903i
\(505\) 4.49202 4.49202i 0.199892 0.199892i
\(506\) −3.71280 −0.165054
\(507\) −22.5166 0.0561329i −0.999997 0.00249295i
\(508\) 10.6226 0.471300
\(509\) 5.99503 5.99503i 0.265725 0.265725i −0.561650 0.827375i \(-0.689833\pi\)
0.827375 + 0.561650i \(0.189833\pi\)
\(510\) 7.35251 + 2.00366i 0.325574 + 0.0887236i
\(511\) 33.7876i 1.49467i
\(512\) 6.55574 6.55574i 0.289725 0.289725i
\(513\) 8.89681 + 0.113554i 0.392804 + 0.00501352i
\(514\) 8.33520 8.33520i 0.367650 0.367650i
\(515\) −5.33820 5.33820i −0.235229 0.235229i
\(516\) −0.190532 + 0.699165i −0.00838772 + 0.0307790i
\(517\) 5.13428i 0.225805i
\(518\) −9.93664 9.93664i −0.436591 0.436591i
\(519\) 4.43990 16.2924i 0.194890 0.715156i
\(520\) −5.19132 + 6.77781i −0.227655 + 0.297227i
\(521\) 13.8731i 0.607791i 0.952705 + 0.303896i \(0.0982874\pi\)
−0.952705 + 0.303896i \(0.901713\pi\)
\(522\) 8.73356 + 33.7398i 0.382257 + 1.47675i
\(523\) −24.2698 −1.06124 −0.530622 0.847609i \(-0.678042\pi\)
−0.530622 + 0.847609i \(0.678042\pi\)
\(524\) −4.96536 −0.216913
\(525\) −3.11816 + 1.78263i −0.136088 + 0.0778002i
\(526\) 25.9391 + 25.9391i 1.13100 + 1.13100i
\(527\) −5.50613 5.50613i −0.239851 0.239851i
\(528\) 2.96101 1.69279i 0.128861 0.0736690i
\(529\) 9.08521 0.395009
\(530\) −0.408850 −0.0177593
\(531\) −2.53495 9.79310i −0.110007 0.424984i
\(532\) 1.78773i 0.0775077i
\(533\) 2.06887 + 15.6084i 0.0896127 + 0.676074i
\(534\) −5.06852 + 18.5991i −0.219336 + 0.804862i
\(535\) −2.61044 2.61044i −0.112859 0.112859i
\(536\) 31.1223i 1.34428i
\(537\) 0.585055 2.14688i 0.0252470 0.0926447i
\(538\) −29.9222 29.9222i −1.29004 1.29004i
\(539\) −0.790845 + 0.790845i −0.0340641 + 0.0340641i
\(540\) 2.61586 + 0.0333873i 0.112569 + 0.00143676i
\(541\) 22.2024 22.2024i 0.954555 0.954555i −0.0444563 0.999011i \(-0.514156\pi\)
0.999011 + 0.0444563i \(0.0141555\pi\)
\(542\) 6.22205i 0.267260i
\(543\) 9.00852 + 2.45495i 0.386592 + 0.105352i
\(544\) −5.47672 + 5.47672i −0.234813 + 0.234813i
\(545\) 14.4189 0.617637
\(546\) 16.2980 12.4188i 0.697492 0.531475i
\(547\) −19.3984 −0.829418 −0.414709 0.909954i \(-0.636117\pi\)
−0.414709 + 0.909954i \(0.636117\pi\)
\(548\) −3.27814 + 3.27814i −0.140035 + 0.140035i
\(549\) 9.46450 + 5.57224i 0.403935 + 0.237817i
\(550\) 0.655464i 0.0279491i
\(551\) 8.89010 8.89010i 0.378731 0.378731i
\(552\) −20.1680 + 11.5299i −0.858408 + 0.490745i
\(553\) 23.9158 23.9158i 1.01701 1.01701i
\(554\) −32.0809 32.0809i −1.36299 1.36299i
\(555\) 7.15721 + 1.95044i 0.303807 + 0.0827916i
\(556\) 2.34316i 0.0993721i
\(557\) −12.2284 12.2284i −0.518134 0.518134i 0.398873 0.917006i \(-0.369402\pi\)
−0.917006 + 0.398873i \(0.869402\pi\)
\(558\) −11.4543 6.74375i −0.484900 0.285486i
\(559\) −2.37869 1.82191i −0.100608 0.0770586i
\(560\) 9.85722i 0.416544i
\(561\) 1.73217 0.990268i 0.0731323 0.0418091i
\(562\) 1.81659 0.0766284
\(563\) 13.2701 0.559267 0.279633 0.960107i \(-0.409787\pi\)
0.279633 + 0.960107i \(0.409787\pi\)
\(564\) 5.36393 + 9.38256i 0.225862 + 0.395077i
\(565\) 12.2696 + 12.2696i 0.516187 + 0.516187i
\(566\) 25.6922 + 25.6922i 1.07992 + 1.07992i
\(567\) 17.9425 + 5.13647i 0.753516 + 0.215711i
\(568\) 26.3932 1.10744
\(569\) 1.99616 0.0836833 0.0418417 0.999124i \(-0.486677\pi\)
0.0418417 + 0.999124i \(0.486677\pi\)
\(570\) −2.32902 4.07391i −0.0975519 0.170637i
\(571\) 8.10449i 0.339162i −0.985516 0.169581i \(-0.945758\pi\)
0.985516 0.169581i \(-0.0542415\pi\)
\(572\) −0.0988121 0.745479i −0.00413154 0.0311700i
\(573\) 13.5980 + 3.70564i 0.568063 + 0.154805i
\(574\) −10.1314 10.1314i −0.422876 0.422876i
\(575\) 5.66438i 0.236221i
\(576\) 7.76226 13.1843i 0.323427 0.549345i
\(577\) 22.0036 + 22.0036i 0.916023 + 0.916023i 0.996737 0.0807147i \(-0.0257203\pi\)
−0.0807147 + 0.996737i \(0.525720\pi\)
\(578\) 10.3686 10.3686i 0.431275 0.431275i
\(579\) −2.46688 4.31505i −0.102520 0.179327i
\(580\) 2.61388 2.61388i 0.108536 0.108536i
\(581\) 29.8234i 1.23728i
\(582\) 8.57532 31.4674i 0.355459 1.30437i
\(583\) −0.0756932 + 0.0756932i −0.00313489 + 0.00313489i
\(584\) 38.5807 1.59648
\(585\) −4.21546 + 9.96142i −0.174288 + 0.411854i
\(586\) −18.4796 −0.763384
\(587\) −6.82405 + 6.82405i −0.281659 + 0.281659i −0.833770 0.552112i \(-0.813822\pi\)
0.552112 + 0.833770i \(0.313822\pi\)
\(588\) 0.618998 2.27144i 0.0255271 0.0936724i
\(589\) 4.79501i 0.197575i
\(590\) −3.77257 + 3.77257i −0.155314 + 0.155314i
\(591\) 3.77159 + 6.59725i 0.155143 + 0.271375i
\(592\) −14.3957 + 14.3957i −0.591659 + 0.591659i
\(593\) 1.95435 + 1.95435i 0.0802556 + 0.0802556i 0.746095 0.665839i \(-0.231926\pi\)
−0.665839 + 0.746095i \(0.731926\pi\)
\(594\) 2.43887 2.37740i 0.100068 0.0975457i
\(595\) 5.76641i 0.236400i
\(596\) −5.98054 5.98054i −0.244972 0.244972i
\(597\) 6.34795 + 1.72991i 0.259804 + 0.0708004i
\(598\) 4.24607 + 32.0341i 0.173635 + 1.30997i
\(599\) 4.69516i 0.191839i −0.995389 0.0959195i \(-0.969421\pi\)
0.995389 0.0959195i \(-0.0305791\pi\)
\(600\) 2.03551 + 3.56050i 0.0830993 + 0.145357i
\(601\) 7.38898 0.301403 0.150701 0.988579i \(-0.451847\pi\)
0.150701 + 0.988579i \(0.451847\pi\)
\(602\) 2.72661 0.111128
\(603\) −9.88100 38.1726i −0.402385 1.55451i
\(604\) −2.50048 2.50048i −0.101743 0.101743i
\(605\) −7.65682 7.65682i −0.311294 0.311294i
\(606\) 8.64055 + 15.1140i 0.350998 + 0.613965i
\(607\) −5.61074 −0.227733 −0.113867 0.993496i \(-0.536324\pi\)
−0.113867 + 0.993496i \(0.536324\pi\)
\(608\) 4.76940 0.193425
\(609\) 22.8945 13.0886i 0.927733 0.530378i
\(610\) 5.79256i 0.234534i
\(611\) −44.2987 + 5.87173i −1.79213 + 0.237545i
\(612\) −2.13087 + 3.61930i −0.0861352 + 0.146301i
\(613\) 16.7181 + 16.7181i 0.675238 + 0.675238i 0.958919 0.283680i \(-0.0915555\pi\)
−0.283680 + 0.958919i \(0.591555\pi\)
\(614\) 50.1582i 2.02422i
\(615\) 7.29749 + 1.98867i 0.294263 + 0.0801909i
\(616\) −1.43836 1.43836i −0.0579531 0.0579531i
\(617\) 30.6567 30.6567i 1.23419 1.23419i 0.271854 0.962339i \(-0.412363\pi\)
0.962339 0.271854i \(-0.0876366\pi\)
\(618\) 17.9611 10.2682i 0.722501 0.413048i
\(619\) −20.5920 + 20.5920i −0.827663 + 0.827663i −0.987193 0.159530i \(-0.949002\pi\)
0.159530 + 0.987193i \(0.449002\pi\)
\(620\) 1.40984i 0.0566204i
\(621\) −21.0762 + 20.5450i −0.845758 + 0.824441i
\(622\) 24.2131 24.2131i 0.970859 0.970859i
\(623\) 14.5869 0.584410
\(624\) −17.9917 23.6118i −0.720245 0.945227i
\(625\) −1.00000 −0.0400000
\(626\) −7.96826 + 7.96826i −0.318476 + 0.318476i
\(627\) −1.18542 0.323043i −0.0473410 0.0129011i
\(628\) 8.03189i 0.320507i
\(629\) −8.42138 + 8.42138i −0.335782 + 0.335782i
\(630\) −2.46663 9.52915i −0.0982727 0.379651i
\(631\) 2.48933 2.48933i 0.0990986 0.0990986i −0.655819 0.754918i \(-0.727677\pi\)
0.754918 + 0.655819i \(0.227677\pi\)
\(632\) −27.3085 27.3085i −1.08628 1.08628i
\(633\) 2.71933 9.97866i 0.108084 0.396616i
\(634\) 33.5491i 1.33241i
\(635\) 14.9193 + 14.9193i 0.592053 + 0.592053i
\(636\) 0.0592454 0.217403i 0.00234923 0.00862060i
\(637\) 7.72786 + 5.91899i 0.306189 + 0.234519i
\(638\) 4.81263i 0.190534i
\(639\) 32.3722 8.37957i 1.28063 0.331491i
\(640\) −13.6398 −0.539162
\(641\) 27.5035 1.08632 0.543161 0.839629i \(-0.317227\pi\)
0.543161 + 0.839629i \(0.317227\pi\)
\(642\) 8.78318 5.02127i 0.346645 0.198174i
\(643\) 27.9426 + 27.9426i 1.10195 + 1.10195i 0.994176 + 0.107771i \(0.0343713\pi\)
0.107771 + 0.994176i \(0.465629\pi\)
\(644\) −4.18167 4.18167i −0.164781 0.164781i
\(645\) −1.24957 + 0.714368i −0.0492017 + 0.0281282i
\(646\) 7.53387 0.296416
\(647\) −16.9805 −0.667572 −0.333786 0.942649i \(-0.608326\pi\)
−0.333786 + 0.942649i \(0.608326\pi\)
\(648\) 5.86513 20.4879i 0.230404 0.804839i
\(649\) 1.39688i 0.0548325i
\(650\) 5.65536 0.749610i 0.221821 0.0294021i
\(651\) −2.64449 + 9.70403i −0.103646 + 0.380331i
\(652\) −2.20372 2.20372i −0.0863044 0.0863044i
\(653\) 42.0032i 1.64371i 0.569695 + 0.821856i \(0.307061\pi\)
−0.569695 + 0.821856i \(0.692939\pi\)
\(654\) −10.3895 + 38.1248i −0.406263 + 1.49080i
\(655\) −6.97379 6.97379i −0.272488 0.272488i
\(656\) −14.6778 + 14.6778i −0.573074 + 0.573074i
\(657\) 47.3206 12.2489i 1.84615 0.477877i
\(658\) 28.7543 28.7543i 1.12096 1.12096i
\(659\) 7.23414i 0.281802i 0.990024 + 0.140901i \(0.0450000\pi\)
−0.990024 + 0.140901i \(0.955000\pi\)
\(660\) −0.348538 0.0949816i −0.0135668 0.00369716i
\(661\) −10.3889 + 10.3889i −0.404082 + 0.404082i −0.879669 0.475587i \(-0.842236\pi\)
0.475587 + 0.879669i \(0.342236\pi\)
\(662\) 14.5018 0.563627
\(663\) −10.5250 13.8127i −0.408758 0.536441i
\(664\) −34.0541 −1.32155
\(665\) −2.51084 + 2.51084i −0.0973661 + 0.0973661i
\(666\) −10.3143 + 17.5189i −0.399670 + 0.678843i
\(667\) 41.5897i 1.61036i
\(668\) −1.98844 + 1.98844i −0.0769351 + 0.0769351i
\(669\) 8.85359 5.06152i 0.342299 0.195690i
\(670\) −14.7051 + 14.7051i −0.568109 + 0.568109i
\(671\) −1.07242 1.07242i −0.0414002 0.0414002i
\(672\) 9.65221 + 2.63036i 0.372342 + 0.101468i
\(673\) 25.8635i 0.996966i 0.866899 + 0.498483i \(0.166109\pi\)
−0.866899 + 0.498483i \(0.833891\pi\)
\(674\) 35.9833 + 35.9833i 1.38603 + 1.38603i
\(675\) 3.62704 + 3.72083i 0.139605 + 0.143215i
\(676\) −6.31901 + 1.70511i −0.243039 + 0.0655810i
\(677\) 21.1738i 0.813775i −0.913478 0.406887i \(-0.866614\pi\)
0.913478 0.406887i \(-0.133386\pi\)
\(678\) −41.2829 + 23.6011i −1.58546 + 0.906394i
\(679\) −24.6792 −0.947101
\(680\) −6.58442 −0.252501
\(681\) −9.71501 16.9934i −0.372280 0.651190i
\(682\) 1.29788 + 1.29788i 0.0496985 + 0.0496985i
\(683\) −13.2249 13.2249i −0.506038 0.506038i 0.407270 0.913308i \(-0.366481\pi\)
−0.913308 + 0.407270i \(0.866481\pi\)
\(684\) 2.50377 0.648101i 0.0957339 0.0247807i
\(685\) −9.20820 −0.351827
\(686\) −31.8257 −1.21511
\(687\) 17.9606 + 31.4166i 0.685240 + 1.19862i
\(688\) 3.95017i 0.150599i
\(689\) 0.739648 + 0.566518i 0.0281783 + 0.0215826i
\(690\) 14.9771 + 4.08147i 0.570169 + 0.155379i
\(691\) 15.4010 + 15.4010i 0.585883 + 0.585883i 0.936514 0.350630i \(-0.114033\pi\)
−0.350630 + 0.936514i \(0.614033\pi\)
\(692\) 4.90847i 0.186592i
\(693\) −2.22086 1.30753i −0.0843635 0.0496691i
\(694\) −12.7165 12.7165i −0.482712 0.482712i
\(695\) −3.29094 + 3.29094i −0.124832 + 0.124832i
\(696\) −14.9454 26.1423i −0.566502 0.990923i
\(697\) −8.58644 + 8.58644i −0.325235 + 0.325235i
\(698\) 0.869642i 0.0329164i
\(699\) −6.85079 + 25.1392i −0.259121 + 0.950852i
\(700\) −0.738240 + 0.738240i −0.0279029 + 0.0279029i
\(701\) 14.2724 0.539063 0.269531 0.962992i \(-0.413131\pi\)
0.269531 + 0.962992i \(0.413131\pi\)
\(702\) −23.3014 18.3238i −0.879455 0.691585i
\(703\) 7.33376 0.276598
\(704\) −1.49390 + 1.49390i −0.0563035 + 0.0563035i
\(705\) −5.64411 + 20.7113i −0.212569 + 0.780031i
\(706\) 24.5057i 0.922284i
\(707\) 9.31508 9.31508i 0.350330 0.350330i
\(708\) −1.45936 2.55271i −0.0548463 0.0959368i
\(709\) −1.84603 + 1.84603i −0.0693291 + 0.0693291i −0.740921 0.671592i \(-0.765611\pi\)
0.671592 + 0.740921i \(0.265611\pi\)
\(710\) −12.4707 12.4707i −0.468016 0.468016i
\(711\) −42.1651 24.8247i −1.58131 0.931000i
\(712\) 16.6561i 0.624216i
\(713\) −11.2160 11.2160i −0.420044 0.420044i
\(714\) 15.2469 + 4.15499i 0.570600 + 0.155497i
\(715\) 0.908235 1.18580i 0.0339661 0.0443462i
\(716\) 0.646800i 0.0241720i
\(717\) 6.24226 + 10.9189i 0.233121 + 0.407775i
\(718\) 8.50571 0.317430
\(719\) −45.7040 −1.70447 −0.852237 0.523156i \(-0.824754\pi\)
−0.852237 + 0.523156i \(0.824754\pi\)
\(720\) −13.8053 + 3.57352i −0.514495 + 0.133177i
\(721\) −11.0698 11.0698i −0.412261 0.412261i
\(722\) 17.9769 + 17.9769i 0.669032 + 0.669032i
\(723\) −4.99961 8.74530i −0.185938 0.325241i
\(724\) 2.71404 0.100866
\(725\) 7.34233 0.272687
\(726\) 25.7624 14.7282i 0.956134 0.546614i
\(727\) 5.12985i 0.190256i 0.995465 + 0.0951279i \(0.0303260\pi\)
−0.995465 + 0.0951279i \(0.969674\pi\)
\(728\) −10.7652 + 14.0551i −0.398986 + 0.520918i
\(729\) 0.689112 26.9912i 0.0255227 0.999674i
\(730\) −18.2292 18.2292i −0.674692 0.674692i
\(731\) 2.31082i 0.0854689i
\(732\) 3.08016 + 0.839386i 0.113846 + 0.0310246i
\(733\) 6.65960 + 6.65960i 0.245978 + 0.245978i 0.819318 0.573340i \(-0.194353\pi\)
−0.573340 + 0.819318i \(0.694353\pi\)
\(734\) 25.9629 25.9629i 0.958309 0.958309i
\(735\) 4.05958 2.32083i 0.149740 0.0856050i
\(736\) −11.1561 + 11.1561i −0.411220 + 0.411220i
\(737\) 5.44492i 0.200566i
\(738\) −10.5164 + 17.8623i −0.387115 + 0.657519i
\(739\) −15.3715 + 15.3715i −0.565448 + 0.565448i −0.930850 0.365402i \(-0.880932\pi\)
0.365402 + 0.930850i \(0.380932\pi\)
\(740\) 2.15628 0.0792666
\(741\) −1.43154 + 10.5973i −0.0525890 + 0.389300i
\(742\) −0.847831 −0.0311249
\(743\) −10.7883 + 10.7883i −0.395784 + 0.395784i −0.876743 0.480959i \(-0.840288\pi\)
0.480959 + 0.876743i \(0.340288\pi\)
\(744\) 11.0806 + 3.01963i 0.406236 + 0.110705i
\(745\) 16.7992i 0.615474i
\(746\) 22.7806 22.7806i 0.834056 0.834056i
\(747\) −41.7686 + 10.8118i −1.52823 + 0.395583i
\(748\) 0.410100 0.410100i 0.0149948 0.0149948i
\(749\) −5.41326 5.41326i −0.197796 0.197796i
\(750\) 0.720551 2.64409i 0.0263108 0.0965484i
\(751\) 47.2418i 1.72388i −0.507012 0.861939i \(-0.669250\pi\)
0.507012 0.861939i \(-0.330750\pi\)
\(752\) −41.6577 41.6577i −1.51910 1.51910i
\(753\) −2.50484 + 9.19160i −0.0912814 + 0.334960i
\(754\) −41.5235 + 5.50388i −1.51220 + 0.200439i
\(755\) 7.02378i 0.255622i
\(756\) 5.42449 + 0.0692351i 0.197287 + 0.00251806i
\(757\) 6.53480 0.237511 0.118756 0.992924i \(-0.462109\pi\)
0.118756 + 0.992924i \(0.462109\pi\)
\(758\) 5.02083 0.182365
\(759\) 3.52845 2.01718i 0.128074 0.0732191i
\(760\) 2.86702 + 2.86702i 0.103998 + 0.103998i
\(761\) −19.3550 19.3550i −0.701618 0.701618i 0.263139 0.964758i \(-0.415242\pi\)
−0.964758 + 0.263139i \(0.915242\pi\)
\(762\) −50.1979 + 28.6977i −1.81848 + 1.03961i
\(763\) 29.9004 1.08247
\(764\) 4.09672 0.148214
\(765\) −8.07603 + 2.09048i −0.291990 + 0.0755816i
\(766\) 6.92846i 0.250336i
\(767\) 12.0523 1.59752i 0.435185 0.0576831i
\(768\) 5.18322 19.0200i 0.187033 0.686326i
\(769\) 1.85581 + 1.85581i 0.0669221 + 0.0669221i 0.739776 0.672854i \(-0.234932\pi\)
−0.672854 + 0.739776i \(0.734932\pi\)
\(770\) 1.35923i 0.0489834i
\(771\) −3.39277 + 12.4499i −0.122188 + 0.448372i
\(772\) −1.02161 1.02161i −0.0367686 0.0367686i
\(773\) −5.15489 + 5.15489i −0.185408 + 0.185408i −0.793708 0.608299i \(-0.791852\pi\)
0.608299 + 0.793708i \(0.291852\pi\)
\(774\) −0.988473 3.81870i −0.0355299 0.137260i
\(775\) −1.98010 + 1.98010i −0.0711272 + 0.0711272i
\(776\) 28.1802i 1.01161i
\(777\) 14.8419 + 4.04463i 0.532450 + 0.145100i
\(778\) −21.5999 + 21.5999i −0.774396 + 0.774396i
\(779\) 7.47750 0.267909
\(780\) −0.420904 + 3.11582i −0.0150708 + 0.111564i
\(781\) −4.61756 −0.165229
\(782\) −17.6225 + 17.6225i −0.630180 + 0.630180i
\(783\) −26.6309 27.3195i −0.951712 0.976320i
\(784\) 12.8333i 0.458331i
\(785\) −11.2807 + 11.2807i −0.402625 + 0.402625i
\(786\) 23.4643 13.4143i 0.836942 0.478473i
\(787\) −10.3937 + 10.3937i −0.370494 + 0.370494i −0.867657 0.497163i \(-0.834375\pi\)
0.497163 + 0.867657i \(0.334375\pi\)
\(788\) 1.56193 + 1.56193i 0.0556416 + 0.0556416i
\(789\) −38.7440 10.5583i −1.37932 0.375885i
\(790\) 25.8063i 0.918147i
\(791\) 25.4435 + 25.4435i 0.904667 + 0.904667i
\(792\) −1.49302 + 2.53591i −0.0530521 + 0.0901096i
\(793\) −8.02639 + 10.4793i −0.285025 + 0.372130i
\(794\) 30.0000i 1.06466i
\(795\) 0.388549 0.222130i 0.0137804 0.00787816i
\(796\) 1.91248 0.0677859
\(797\) 28.4028 1.00608 0.503039 0.864264i \(-0.332215\pi\)
0.503039 + 0.864264i \(0.332215\pi\)
\(798\) −4.82968 8.44806i −0.170969 0.299058i
\(799\) −24.3695 24.3695i −0.862130 0.862130i
\(800\) 1.96952 + 1.96952i 0.0696331 + 0.0696331i
\(801\) −5.28815 20.4294i −0.186847 0.721836i
\(802\) 10.7954 0.381197
\(803\) −6.74979 −0.238195
\(804\) −5.68847 9.95024i −0.200617 0.350918i
\(805\) 11.7462i 0.414000i
\(806\) 9.71387 12.6825i 0.342156 0.446721i
\(807\) 44.6933 + 12.1796i 1.57328 + 0.428741i
\(808\) −10.6365 10.6365i −0.374191 0.374191i
\(809\) 23.7943i 0.836561i 0.908318 + 0.418281i \(0.137367\pi\)
−0.908318 + 0.418281i \(0.862633\pi\)
\(810\) −12.4517 + 6.90917i −0.437507 + 0.242764i
\(811\) 12.0402 + 12.0402i 0.422789 + 0.422789i 0.886163 0.463374i \(-0.153361\pi\)
−0.463374 + 0.886163i \(0.653361\pi\)
\(812\) 5.42040 5.42040i 0.190219 0.190219i
\(813\) 3.38047 + 5.91310i 0.118558 + 0.207382i
\(814\) 1.98505 1.98505i 0.0695761 0.0695761i
\(815\) 6.19019i 0.216833i
\(816\) 6.01953 22.0889i 0.210726 0.773266i
\(817\) −1.00619 + 1.00619i −0.0352021 + 0.0352021i
\(818\) 5.23435 0.183015
\(819\) −8.74159 + 20.6570i −0.305456 + 0.721813i
\(820\) 2.19855 0.0767766
\(821\) −8.79819 + 8.79819i −0.307059 + 0.307059i −0.843768 0.536709i \(-0.819667\pi\)
0.536709 + 0.843768i \(0.319667\pi\)
\(822\) 6.63498 24.3473i 0.231421 0.849209i
\(823\) 6.05273i 0.210985i −0.994420 0.105493i \(-0.966358\pi\)
0.994420 0.105493i \(-0.0336419\pi\)
\(824\) −12.6402 + 12.6402i −0.440341 + 0.440341i
\(825\) −0.356117 0.622918i −0.0123984 0.0216872i
\(826\) −7.82317 + 7.82317i −0.272203 + 0.272203i
\(827\) 32.2394 + 32.2394i 1.12107 + 1.12107i 0.991580 + 0.129495i \(0.0413355\pi\)
0.129495 + 0.991580i \(0.458664\pi\)
\(828\) −4.34059 + 7.37254i −0.150846 + 0.256214i
\(829\) 14.4284i 0.501119i −0.968101 0.250559i \(-0.919385\pi\)
0.968101 0.250559i \(-0.0806145\pi\)
\(830\) 16.0904 + 16.0904i 0.558506 + 0.558506i
\(831\) 47.9177 + 13.0582i 1.66225 + 0.452985i
\(832\) 14.5979 + 11.1809i 0.506091 + 0.387630i
\(833\) 7.50737i 0.260115i
\(834\) −6.33024 11.0728i −0.219198 0.383420i
\(835\) −5.58548 −0.193293
\(836\) −0.357136 −0.0123518
\(837\) 14.5495 + 0.185701i 0.502904 + 0.00641878i
\(838\) −12.6861 12.6861i −0.438233 0.438233i
\(839\) 16.5805 + 16.5805i 0.572423 + 0.572423i 0.932805 0.360382i \(-0.117354\pi\)
−0.360382 + 0.932805i \(0.617354\pi\)
\(840\) 4.22103 + 7.38340i 0.145639 + 0.254751i
\(841\) −24.9097 −0.858956
\(842\) −34.8119 −1.19970
\(843\) −1.72639 + 0.986965i −0.0594602 + 0.0339929i
\(844\) 3.00632i 0.103482i
\(845\) −11.2698 6.48016i −0.387692 0.222924i
\(846\) −50.6955 29.8470i −1.74295 1.02616i
\(847\) −15.8779 15.8779i −0.545572 0.545572i
\(848\) 1.22829i 0.0421798i
\(849\) −38.3752 10.4578i −1.31703 0.358910i
\(850\) 3.11111 + 3.11111i 0.106710 + 0.106710i
\(851\) −17.1544 + 17.1544i −0.588046 + 0.588046i
\(852\) 8.43829 4.82410i 0.289091 0.165271i
\(853\) 20.3214 20.3214i 0.695793 0.695793i −0.267707 0.963500i \(-0.586266\pi\)
0.963500 + 0.267707i \(0.0862660\pi\)
\(854\) 12.0120i 0.411043i
\(855\) 4.42675 + 2.60626i 0.151392 + 0.0891321i
\(856\) −6.18118 + 6.18118i −0.211269 + 0.211269i
\(857\) 23.5604 0.804807 0.402404 0.915462i \(-0.368175\pi\)
0.402404 + 0.915462i \(0.368175\pi\)
\(858\) 2.48092 + 3.25588i 0.0846971 + 0.111154i
\(859\) −23.0208 −0.785460 −0.392730 0.919654i \(-0.628469\pi\)
−0.392730 + 0.919654i \(0.628469\pi\)
\(860\) −0.295842 + 0.295842i −0.0100881 + 0.0100881i
\(861\) 15.1328 + 4.12390i 0.515724 + 0.140542i
\(862\) 57.3071i 1.95189i
\(863\) 0.128867 0.128867i 0.00438669 0.00438669i −0.704910 0.709297i \(-0.749013\pi\)
0.709297 + 0.704910i \(0.249013\pi\)
\(864\) 0.184710 14.4718i 0.00628395 0.492341i
\(865\) 6.89389 6.89389i 0.234399 0.234399i
\(866\) 36.4071 + 36.4071i 1.23716 + 1.23716i
\(867\) −4.22043 + 15.4870i −0.143333 + 0.525967i
\(868\) 2.92358i 0.0992327i
\(869\) 4.77770 + 4.77770i 0.162072 + 0.162072i
\(870\) −5.29052 + 19.4137i −0.179365 + 0.658188i
\(871\) 46.9790 6.22699i 1.59182 0.210994i
\(872\) 34.1421i 1.15620i
\(873\) 8.94691 + 34.5640i 0.302807 + 1.16981i
\(874\) 15.3466 0.519105
\(875\) −2.07370 −0.0701038
\(876\) 12.3348 7.05170i 0.416754 0.238255i
\(877\) 23.8978 + 23.8978i 0.806973 + 0.806973i 0.984175 0.177202i \(-0.0567045\pi\)
−0.177202 + 0.984175i \(0.556704\pi\)
\(878\) 37.7645 + 37.7645i 1.27449 + 1.27449i
\(879\) 17.5620 10.0401i 0.592352 0.338643i
\(880\) 1.96919 0.0663813
\(881\) 23.2229 0.782400 0.391200 0.920306i \(-0.372060\pi\)
0.391200 + 0.920306i \(0.372060\pi\)
\(882\) 3.21133 + 12.4061i 0.108131 + 0.417737i
\(883\) 11.7041i 0.393876i −0.980416 0.196938i \(-0.936900\pi\)
0.980416 0.196938i \(-0.0630998\pi\)
\(884\) −4.00736 3.06935i −0.134782 0.103234i
\(885\) 1.53559 5.63491i 0.0516184 0.189415i
\(886\) 33.9059 + 33.9059i 1.13909 + 1.13909i
\(887\) 6.56575i 0.220456i 0.993906 + 0.110228i \(0.0351582\pi\)
−0.993906 + 0.110228i \(0.964842\pi\)
\(888\) 4.61839 16.9474i 0.154983 0.568716i
\(889\) 30.9380 + 30.9380i 1.03763 + 1.03763i
\(890\) −7.86995 + 7.86995i −0.263801 + 0.263801i
\(891\) −1.02612 + 3.58440i −0.0343763 + 0.120082i
\(892\) 2.09613 2.09613i 0.0701837 0.0701837i
\(893\) 21.2221i 0.710172i
\(894\) 44.4185 + 12.1047i 1.48558 + 0.404840i
\(895\) 0.908422 0.908422i 0.0303652 0.0303652i
\(896\) −28.2849 −0.944932
\(897\) −21.4396 28.1366i −0.715846 0.939454i
\(898\) 42.3701 1.41391
\(899\) 14.5385 14.5385i 0.484887 0.484887i
\(900\) 1.30156 + 0.766296i 0.0433854 + 0.0255432i
\(901\) 0.718544i 0.0239382i
\(902\) 2.02396 2.02396i 0.0673905 0.0673905i
\(903\) −2.59123 + 1.48138i −0.0862306 + 0.0492973i
\(904\) 29.0529 29.0529i 0.966286 0.966286i
\(905\) 3.81183 + 3.81183i 0.126709 + 0.126709i
\(906\) 18.5715 + 5.06099i 0.616996 + 0.168140i
\(907\) 21.6880i 0.720139i −0.932926 0.360069i \(-0.882753\pi\)
0.932926 0.360069i \(-0.117247\pi\)
\(908\) −4.02328 4.02328i −0.133517 0.133517i
\(909\) −16.4230 9.66909i −0.544718 0.320703i
\(910\) 11.7275 1.55446i 0.388763 0.0515300i
\(911\) 6.44406i 0.213501i −0.994286 0.106751i \(-0.965955\pi\)
0.994286 0.106751i \(-0.0340446\pi\)
\(912\) −12.2391 + 6.99700i −0.405277 + 0.231694i
\(913\) 5.95785 0.197176
\(914\) 28.2219 0.933497
\(915\) 3.14713 + 5.50494i 0.104041 + 0.181988i
\(916\) 7.43805 + 7.43805i 0.245760 + 0.245760i
\(917\) −14.4615 14.4615i −0.477562 0.477562i
\(918\) 0.291772 22.8600i 0.00962991 0.754493i
\(919\) 31.6869 1.04525 0.522626 0.852562i \(-0.324952\pi\)
0.522626 + 0.852562i \(0.324952\pi\)
\(920\) −13.4125 −0.442198
\(921\) −27.2513 47.6677i −0.897959 1.57071i
\(922\) 29.3646i 0.967072i
\(923\) 5.28079 + 39.8404i 0.173819 + 1.31136i
\(924\) −0.722763 0.196963i −0.0237772 0.00647961i
\(925\) 3.02847 + 3.02847i 0.0995756 + 0.0995756i
\(926\) 53.1209i 1.74566i
\(927\) −11.4905 + 19.5167i −0.377397 + 0.641014i
\(928\) −14.4609 14.4609i −0.474702 0.474702i
\(929\) −14.6798 + 14.6798i −0.481629 + 0.481629i −0.905652 0.424022i \(-0.860618\pi\)
0.424022 + 0.905652i \(0.360618\pi\)
\(930\) −3.80879 6.66231i −0.124895 0.218466i
\(931\) 3.26889 3.26889i 0.107134 0.107134i
\(932\) 7.57380i 0.248088i
\(933\) −9.85575 + 36.1660i −0.322663 + 1.18402i
\(934\) 23.3985 23.3985i 0.765624 0.765624i
\(935\) 1.15196 0.0376732
\(936\) 23.5874 + 9.98167i 0.770977 + 0.326261i
\(937\) −0.784915 −0.0256421 −0.0128210 0.999918i \(-0.504081\pi\)
−0.0128210 + 0.999918i \(0.504081\pi\)
\(938\) −30.4940 + 30.4940i −0.995665 + 0.995665i
\(939\) 3.24341 11.9018i 0.105845 0.388401i
\(940\) 6.23977i 0.203519i
\(941\) 39.5408 39.5408i 1.28899 1.28899i 0.353595 0.935399i \(-0.384959\pi\)
0.935399 0.353595i \(-0.115041\pi\)
\(942\) −21.6988 37.9554i −0.706985 1.23665i
\(943\) −17.4906 + 17.4906i −0.569574 + 0.569574i
\(944\) 11.3338 + 11.3338i 0.368884 + 0.368884i
\(945\) 7.52139 + 7.71587i 0.244671 + 0.250997i
\(946\) 0.544698i 0.0177097i
\(947\) 19.7845 + 19.7845i 0.642910 + 0.642910i 0.951270 0.308360i \(-0.0997802\pi\)
−0.308360 + 0.951270i \(0.599780\pi\)
\(948\) −13.7223 3.73953i −0.445680 0.121454i
\(949\) 7.71927 + 58.2373i 0.250578 + 1.89046i
\(950\) 2.70931i 0.0879016i
\(951\) 18.2274 + 31.8833i 0.591065 + 1.03389i
\(952\) −13.6541 −0.442532
\(953\) −52.5727 −1.70300 −0.851498 0.524357i \(-0.824306\pi\)
−0.851498 + 0.524357i \(0.824306\pi\)
\(954\) 0.307363 + 1.18741i 0.00995123 + 0.0384440i
\(955\) 5.75379 + 5.75379i 0.186188 + 0.186188i
\(956\) 2.58511 + 2.58511i 0.0836085 + 0.0836085i
\(957\) 2.61473 + 4.57367i 0.0845222 + 0.147846i
\(958\) 27.9336 0.902495
\(959\) −19.0950 −0.616611
\(960\) 7.66852 4.38403i 0.247500 0.141494i
\(961\) 23.1584i 0.747046i
\(962\) −19.3973 14.8569i −0.625393 0.479007i
\(963\) −5.61898 + 9.54390i −0.181069 + 0.307548i
\(964\) −2.07049 2.07049i −0.0666861 0.0666861i
\(965\) 2.86968i 0.0923782i
\(966\) 31.0580 + 8.46375i 0.999275 + 0.272317i
\(967\) −15.6621 15.6621i −0.503658 0.503658i 0.408915 0.912573i \(-0.365907\pi\)
−0.912573 + 0.408915i \(0.865907\pi\)
\(968\) −18.1304 + 18.1304i −0.582732 + 0.582732i
\(969\) −7.15979 + 4.09319i −0.230006 + 0.131492i
\(970\) 13.3150 13.3150i 0.427519 0.427519i
\(971\) 18.1426i 0.582225i −0.956689 0.291113i \(-0.905975\pi\)
0.956689 0.291113i \(-0.0940254\pi\)
\(972\) −1.86957 7.62227i −0.0599663 0.244485i
\(973\) −6.82441 + 6.82441i −0.218781 + 0.218781i
\(974\) −38.6181 −1.23740
\(975\) −4.96729 + 3.78498i −0.159081 + 0.121216i
\(976\) −17.4024 −0.557037
\(977\) 21.5034 21.5034i 0.687954 0.687954i −0.273826 0.961779i \(-0.588289\pi\)
0.961779 + 0.273826i \(0.0882891\pi\)
\(978\) 16.3674 + 4.46035i 0.523372 + 0.142626i
\(979\) 2.91403i 0.0931329i
\(980\) 0.961126 0.961126i 0.0307020 0.0307020i
\(981\) −10.8397 41.8764i −0.346086 1.33701i
\(982\) −37.3147 + 37.3147i −1.19076 + 1.19076i
\(983\) 31.4759 + 31.4759i 1.00392 + 1.00392i 0.999992 + 0.00393200i \(0.00125160\pi\)
0.00393200 + 0.999992i \(0.498748\pi\)
\(984\) 4.70891 17.2795i 0.150115 0.550851i
\(985\) 4.38743i 0.139795i
\(986\) −22.8428 22.8428i −0.727462 0.727462i
\(987\) −11.7042 + 42.9489i −0.372548 + 1.36708i
\(988\) 0.408432 + 3.08138i 0.0129940 + 0.0980317i
\(989\) 4.70717i 0.149679i
\(990\) 1.90365 0.492760i 0.0605020 0.0156610i
\(991\) −43.9818 −1.39713 −0.698563 0.715548i \(-0.746177\pi\)
−0.698563 + 0.715548i \(0.746177\pi\)
\(992\) 7.79970 0.247641
\(993\) −13.7817 + 7.87889i −0.437349 + 0.250029i
\(994\) −25.8604 25.8604i −0.820243 0.820243i
\(995\) 2.68605 + 2.68605i 0.0851534 + 0.0851534i
\(996\) −10.8876 + 6.22434i −0.344986 + 0.197226i
\(997\) −44.9600 −1.42390 −0.711949 0.702231i \(-0.752187\pi\)
−0.711949 + 0.702231i \(0.752187\pi\)
\(998\) 40.2002 1.27251
\(999\) 0.284022 22.2528i 0.00898606 0.704048i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 195.2.o.a.86.6 40
3.2 odd 2 inner 195.2.o.a.86.15 yes 40
5.2 odd 4 975.2.n.q.749.6 40
5.3 odd 4 975.2.n.r.749.15 40
5.4 even 2 975.2.o.p.476.15 40
13.5 odd 4 inner 195.2.o.a.161.15 yes 40
15.2 even 4 975.2.n.q.749.15 40
15.8 even 4 975.2.n.r.749.6 40
15.14 odd 2 975.2.o.p.476.6 40
39.5 even 4 inner 195.2.o.a.161.6 yes 40
65.18 even 4 975.2.n.q.824.15 40
65.44 odd 4 975.2.o.p.551.6 40
65.57 even 4 975.2.n.r.824.6 40
195.44 even 4 975.2.o.p.551.15 40
195.83 odd 4 975.2.n.q.824.6 40
195.122 odd 4 975.2.n.r.824.15 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.o.a.86.6 40 1.1 even 1 trivial
195.2.o.a.86.15 yes 40 3.2 odd 2 inner
195.2.o.a.161.6 yes 40 39.5 even 4 inner
195.2.o.a.161.15 yes 40 13.5 odd 4 inner
975.2.n.q.749.6 40 5.2 odd 4
975.2.n.q.749.15 40 15.2 even 4
975.2.n.q.824.6 40 195.83 odd 4
975.2.n.q.824.15 40 65.18 even 4
975.2.n.r.749.6 40 15.8 even 4
975.2.n.r.749.15 40 5.3 odd 4
975.2.n.r.824.6 40 65.57 even 4
975.2.n.r.824.15 40 195.122 odd 4
975.2.o.p.476.6 40 15.14 odd 2
975.2.o.p.476.15 40 5.4 even 2
975.2.o.p.551.6 40 65.44 odd 4
975.2.o.p.551.15 40 195.44 even 4