Properties

Label 975.2.o.p.476.6
Level $975$
Weight $2$
Character 975.476
Analytic conductor $7.785$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(476,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.476"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.o (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,12,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 476.6
Character \(\chi\) \(=\) 975.476
Dual form 975.2.o.p.551.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.11881 + 1.11881i) q^{2} +(-0.455401 - 1.67111i) q^{3} -0.503463i q^{4} +(2.37916 + 1.36015i) q^{6} +(-1.46633 + 1.46633i) q^{7} +(-1.67434 - 1.67434i) q^{8} +(-2.58522 + 1.52205i) q^{9} +(-0.292930 - 0.292930i) q^{11} +(-0.841342 + 0.229277i) q^{12} +(-2.19240 + 2.86241i) q^{13} -3.28107i q^{14} +4.75345 q^{16} +2.78074 q^{17} +(1.18948 - 4.59525i) q^{18} +(-1.21080 - 1.21080i) q^{19} +(3.11816 + 1.78263i) q^{21} +0.655464 q^{22} +5.66438 q^{23} +(-2.03551 + 3.56050i) q^{24} +(-0.749610 - 5.65536i) q^{26} +(3.72083 + 3.62704i) q^{27} +(0.738240 + 0.738240i) q^{28} -7.34233i q^{29} +(-1.98010 - 1.98010i) q^{31} +(-1.96952 + 1.96952i) q^{32} +(-0.356117 + 0.622918i) q^{33} +(-3.11111 + 3.11111i) q^{34} +(0.766296 + 1.30156i) q^{36} +(3.02847 - 3.02847i) q^{37} +2.70931 q^{38} +(5.78182 + 2.36020i) q^{39} +(3.08783 - 3.08783i) q^{41} +(-5.48304 + 1.49420i) q^{42} +0.831012i q^{43} +(-0.147479 + 0.147479i) q^{44} +(-6.33735 + 6.33735i) q^{46} +(-8.76367 - 8.76367i) q^{47} +(-2.16473 - 7.94354i) q^{48} +2.69978i q^{49} +(-1.26635 - 4.64692i) q^{51} +(1.44112 + 1.10379i) q^{52} +0.258401i q^{53} +(-8.22086 + 0.104926i) q^{54} +4.91025 q^{56} +(-1.47198 + 2.57478i) q^{57} +(8.21465 + 8.21465i) q^{58} +(-2.38433 - 2.38433i) q^{59} -3.66100 q^{61} +4.43070 q^{62} +(1.55895 - 6.02260i) q^{63} +5.09987i q^{64} +(-0.298499 - 1.09535i) q^{66} +(-9.29391 - 9.29391i) q^{67} -1.40000i q^{68} +(-2.57957 - 9.46581i) q^{69} +(7.88169 - 7.88169i) q^{71} +(6.87696 + 1.78010i) q^{72} +(11.5212 - 11.5212i) q^{73} +6.77656i q^{74} +(-0.609593 + 0.609593i) q^{76} +0.859060 q^{77} +(-9.10936 + 3.82814i) q^{78} +16.3100 q^{79} +(4.36672 - 7.86967i) q^{81} +6.90938i q^{82} +(10.1694 - 10.1694i) q^{83} +(0.897486 - 1.56988i) q^{84} +(-0.929743 - 0.929743i) q^{86} +(-12.2698 + 3.34370i) q^{87} +0.980926i q^{88} +(-4.97395 - 4.97395i) q^{89} +(-0.982449 - 7.41200i) q^{91} -2.85180i q^{92} +(-2.40722 + 4.21070i) q^{93} +19.6097 q^{94} +(4.18821 + 2.39437i) q^{96} +(8.41532 + 8.41532i) q^{97} +(-3.02053 - 3.02053i) q^{98} +(1.20314 + 0.311433i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 12 q^{6} + 16 q^{7} - 64 q^{16} - 4 q^{18} - 16 q^{19} - 12 q^{21} + 8 q^{24} + 24 q^{27} - 32 q^{28} + 32 q^{31} + 4 q^{33} - 16 q^{34} - 32 q^{37} - 8 q^{39} - 8 q^{42} - 40 q^{46} - 8 q^{48} - 32 q^{54}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.11881 + 1.11881i −0.791117 + 0.791117i −0.981676 0.190559i \(-0.938970\pi\)
0.190559 + 0.981676i \(0.438970\pi\)
\(3\) −0.455401 1.67111i −0.262926 0.964816i
\(4\) 0.503463i 0.251731i
\(5\) 0 0
\(6\) 2.37916 + 1.36015i 0.971287 + 0.555277i
\(7\) −1.46633 + 1.46633i −0.554219 + 0.554219i −0.927656 0.373437i \(-0.878179\pi\)
0.373437 + 0.927656i \(0.378179\pi\)
\(8\) −1.67434 1.67434i −0.591968 0.591968i
\(9\) −2.58522 + 1.52205i −0.861740 + 0.507350i
\(10\) 0 0
\(11\) −0.292930 0.292930i −0.0883216 0.0883216i 0.661566 0.749887i \(-0.269892\pi\)
−0.749887 + 0.661566i \(0.769892\pi\)
\(12\) −0.841342 + 0.229277i −0.242874 + 0.0661867i
\(13\) −2.19240 + 2.86241i −0.608063 + 0.793889i
\(14\) 3.28107i 0.876904i
\(15\) 0 0
\(16\) 4.75345 1.18836
\(17\) 2.78074 0.674427 0.337214 0.941428i \(-0.390516\pi\)
0.337214 + 0.941428i \(0.390516\pi\)
\(18\) 1.18948 4.59525i 0.280363 1.08311i
\(19\) −1.21080 1.21080i −0.277777 0.277777i 0.554444 0.832221i \(-0.312931\pi\)
−0.832221 + 0.554444i \(0.812931\pi\)
\(20\) 0 0
\(21\) 3.11816 + 1.78263i 0.680438 + 0.389001i
\(22\) 0.655464 0.139745
\(23\) 5.66438 1.18111 0.590553 0.806999i \(-0.298910\pi\)
0.590553 + 0.806999i \(0.298910\pi\)
\(24\) −2.03551 + 3.56050i −0.415496 + 0.726784i
\(25\) 0 0
\(26\) −0.749610 5.65536i −0.147011 1.10911i
\(27\) 3.72083 + 3.62704i 0.716074 + 0.698025i
\(28\) 0.738240 + 0.738240i 0.139514 + 0.139514i
\(29\) 7.34233i 1.36344i −0.731615 0.681718i \(-0.761233\pi\)
0.731615 0.681718i \(-0.238767\pi\)
\(30\) 0 0
\(31\) −1.98010 1.98010i −0.355636 0.355636i 0.506565 0.862202i \(-0.330915\pi\)
−0.862202 + 0.506565i \(0.830915\pi\)
\(32\) −1.96952 + 1.96952i −0.348166 + 0.348166i
\(33\) −0.356117 + 0.622918i −0.0619920 + 0.108436i
\(34\) −3.11111 + 3.11111i −0.533551 + 0.533551i
\(35\) 0 0
\(36\) 0.766296 + 1.30156i 0.127716 + 0.216927i
\(37\) 3.02847 3.02847i 0.497878 0.497878i −0.412899 0.910777i \(-0.635484\pi\)
0.910777 + 0.412899i \(0.135484\pi\)
\(38\) 2.70931 0.439508
\(39\) 5.78182 + 2.36020i 0.925832 + 0.377934i
\(40\) 0 0
\(41\) 3.08783 3.08783i 0.482238 0.482238i −0.423608 0.905846i \(-0.639236\pi\)
0.905846 + 0.423608i \(0.139236\pi\)
\(42\) −5.48304 + 1.49420i −0.846051 + 0.230561i
\(43\) 0.831012i 0.126728i 0.997990 + 0.0633640i \(0.0201829\pi\)
−0.997990 + 0.0633640i \(0.979817\pi\)
\(44\) −0.147479 + 0.147479i −0.0222333 + 0.0222333i
\(45\) 0 0
\(46\) −6.33735 + 6.33735i −0.934392 + 0.934392i
\(47\) −8.76367 8.76367i −1.27831 1.27831i −0.941611 0.336702i \(-0.890688\pi\)
−0.336702 0.941611i \(-0.609312\pi\)
\(48\) −2.16473 7.94354i −0.312451 1.14655i
\(49\) 2.69978i 0.385682i
\(50\) 0 0
\(51\) −1.26635 4.64692i −0.177324 0.650698i
\(52\) 1.44112 + 1.10379i 0.199847 + 0.153068i
\(53\) 0.258401i 0.0354940i 0.999843 + 0.0177470i \(0.00564935\pi\)
−0.999843 + 0.0177470i \(0.994351\pi\)
\(54\) −8.22086 + 0.104926i −1.11872 + 0.0142787i
\(55\) 0 0
\(56\) 4.91025 0.656160
\(57\) −1.47198 + 2.57478i −0.194969 + 0.341038i
\(58\) 8.21465 + 8.21465i 1.07864 + 1.07864i
\(59\) −2.38433 2.38433i −0.310414 0.310414i 0.534656 0.845070i \(-0.320441\pi\)
−0.845070 + 0.534656i \(0.820441\pi\)
\(60\) 0 0
\(61\) −3.66100 −0.468744 −0.234372 0.972147i \(-0.575303\pi\)
−0.234372 + 0.972147i \(0.575303\pi\)
\(62\) 4.43070 0.562699
\(63\) 1.55895 6.02260i 0.196409 0.758776i
\(64\) 5.09987i 0.637483i
\(65\) 0 0
\(66\) −0.298499 1.09535i −0.0367427 0.134829i
\(67\) −9.29391 9.29391i −1.13543 1.13543i −0.989259 0.146173i \(-0.953304\pi\)
−0.146173 0.989259i \(-0.546696\pi\)
\(68\) 1.40000i 0.169775i
\(69\) −2.57957 9.46581i −0.310543 1.13955i
\(70\) 0 0
\(71\) 7.88169 7.88169i 0.935385 0.935385i −0.0626508 0.998036i \(-0.519955\pi\)
0.998036 + 0.0626508i \(0.0199554\pi\)
\(72\) 6.87696 + 1.78010i 0.810457 + 0.209787i
\(73\) 11.5212 11.5212i 1.34845 1.34845i 0.461107 0.887345i \(-0.347453\pi\)
0.887345 0.461107i \(-0.152547\pi\)
\(74\) 6.77656i 0.787759i
\(75\) 0 0
\(76\) −0.609593 + 0.609593i −0.0699252 + 0.0699252i
\(77\) 0.859060 0.0978990
\(78\) −9.10936 + 3.82814i −1.03143 + 0.433451i
\(79\) 16.3100 1.83502 0.917512 0.397708i \(-0.130194\pi\)
0.917512 + 0.397708i \(0.130194\pi\)
\(80\) 0 0
\(81\) 4.36672 7.86967i 0.485191 0.874408i
\(82\) 6.90938i 0.763013i
\(83\) 10.1694 10.1694i 1.11624 1.11624i 0.123950 0.992288i \(-0.460444\pi\)
0.992288 0.123950i \(-0.0395564\pi\)
\(84\) 0.897486 1.56988i 0.0979237 0.171288i
\(85\) 0 0
\(86\) −0.929743 0.929743i −0.100257 0.100257i
\(87\) −12.2698 + 3.34370i −1.31546 + 0.358483i
\(88\) 0.980926i 0.104567i
\(89\) −4.97395 4.97395i −0.527238 0.527238i 0.392510 0.919748i \(-0.371607\pi\)
−0.919748 + 0.392510i \(0.871607\pi\)
\(90\) 0 0
\(91\) −0.982449 7.41200i −0.102989 0.776988i
\(92\) 2.85180i 0.297321i
\(93\) −2.40722 + 4.21070i −0.249617 + 0.436629i
\(94\) 19.6097 2.02259
\(95\) 0 0
\(96\) 4.18821 + 2.39437i 0.427458 + 0.244374i
\(97\) 8.41532 + 8.41532i 0.854447 + 0.854447i 0.990677 0.136231i \(-0.0434988\pi\)
−0.136231 + 0.990677i \(0.543499\pi\)
\(98\) −3.02053 3.02053i −0.305120 0.305120i
\(99\) 1.20314 + 0.311433i 0.120920 + 0.0313002i
\(100\) 0 0
\(101\) −6.35267 −0.632114 −0.316057 0.948740i \(-0.602359\pi\)
−0.316057 + 0.948740i \(0.602359\pi\)
\(102\) 6.61581 + 3.78220i 0.655063 + 0.374494i
\(103\) 7.54935i 0.743860i 0.928261 + 0.371930i \(0.121304\pi\)
−0.928261 + 0.371930i \(0.878696\pi\)
\(104\) 8.46346 1.12182i 0.829910 0.110003i
\(105\) 0 0
\(106\) −0.289101 0.289101i −0.0280799 0.0280799i
\(107\) 3.69172i 0.356892i −0.983950 0.178446i \(-0.942893\pi\)
0.983950 0.178446i \(-0.0571070\pi\)
\(108\) 1.82608 1.87330i 0.175715 0.180258i
\(109\) 10.1957 + 10.1957i 0.976570 + 0.976570i 0.999732 0.0231620i \(-0.00737335\pi\)
−0.0231620 + 0.999732i \(0.507373\pi\)
\(110\) 0 0
\(111\) −6.44008 3.68174i −0.611266 0.349456i
\(112\) −6.97011 + 6.97011i −0.658613 + 0.658613i
\(113\) 17.3519i 1.63233i 0.577820 + 0.816164i \(0.303903\pi\)
−0.577820 + 0.816164i \(0.696097\pi\)
\(114\) −1.23382 4.52755i −0.115558 0.424044i
\(115\) 0 0
\(116\) −3.69659 −0.343219
\(117\) 1.31111 10.7369i 0.121212 0.992627i
\(118\) 5.33522 0.491147
\(119\) −4.07746 + 4.07746i −0.373781 + 0.373781i
\(120\) 0 0
\(121\) 10.8284i 0.984399i
\(122\) 4.09596 4.09596i 0.370831 0.370831i
\(123\) −6.56631 3.75390i −0.592064 0.338478i
\(124\) −0.996906 + 0.996906i −0.0895248 + 0.0895248i
\(125\) 0 0
\(126\) 4.99396 + 8.48230i 0.444898 + 0.755663i
\(127\) 21.0990i 1.87224i −0.351686 0.936118i \(-0.614392\pi\)
0.351686 0.936118i \(-0.385608\pi\)
\(128\) −9.64482 9.64482i −0.852489 0.852489i
\(129\) 1.38871 0.378444i 0.122269 0.0333201i
\(130\) 0 0
\(131\) 9.86242i 0.861684i 0.902427 + 0.430842i \(0.141783\pi\)
−0.902427 + 0.430842i \(0.858217\pi\)
\(132\) 0.313616 + 0.179292i 0.0272968 + 0.0156053i
\(133\) 3.55086 0.307899
\(134\) 20.7962 1.79652
\(135\) 0 0
\(136\) −4.65589 4.65589i −0.399239 0.399239i
\(137\) −6.51118 6.51118i −0.556288 0.556288i 0.371961 0.928249i \(-0.378686\pi\)
−0.928249 + 0.371961i \(0.878686\pi\)
\(138\) 13.4765 + 7.70438i 1.14719 + 0.655840i
\(139\) −4.65409 −0.394755 −0.197377 0.980328i \(-0.563242\pi\)
−0.197377 + 0.980328i \(0.563242\pi\)
\(140\) 0 0
\(141\) −10.6541 + 18.6361i −0.897235 + 1.56944i
\(142\) 17.6362i 1.48000i
\(143\) 1.48070 0.196265i 0.123823 0.0164125i
\(144\) −12.2887 + 7.23500i −1.02406 + 0.602916i
\(145\) 0 0
\(146\) 25.7800i 2.13356i
\(147\) 4.51163 1.22948i 0.372113 0.101406i
\(148\) −1.52472 1.52472i −0.125331 0.125331i
\(149\) −11.8788 + 11.8788i −0.973150 + 0.973150i −0.999649 0.0264986i \(-0.991564\pi\)
0.0264986 + 0.999649i \(0.491564\pi\)
\(150\) 0 0
\(151\) 4.96656 4.96656i 0.404173 0.404173i −0.475528 0.879701i \(-0.657743\pi\)
0.879701 + 0.475528i \(0.157743\pi\)
\(152\) 4.05458i 0.328870i
\(153\) −7.18881 + 4.23242i −0.581181 + 0.342171i
\(154\) −0.961124 + 0.961124i −0.0774496 + 0.0774496i
\(155\) 0 0
\(156\) 1.18827 2.91093i 0.0951379 0.233061i
\(157\) 15.9533 1.27321 0.636606 0.771190i \(-0.280338\pi\)
0.636606 + 0.771190i \(0.280338\pi\)
\(158\) −18.2478 + 18.2478i −1.45172 + 1.45172i
\(159\) 0.431816 0.117676i 0.0342452 0.00933231i
\(160\) 0 0
\(161\) −8.30583 + 8.30583i −0.654591 + 0.654591i
\(162\) 3.91913 + 13.6902i 0.307916 + 1.07560i
\(163\) −4.37713 + 4.37713i −0.342843 + 0.342843i −0.857435 0.514592i \(-0.827943\pi\)
0.514592 + 0.857435i \(0.327943\pi\)
\(164\) −1.55461 1.55461i −0.121394 0.121394i
\(165\) 0 0
\(166\) 22.7553i 1.76615i
\(167\) −3.94953 3.94953i −0.305624 0.305624i 0.537585 0.843209i \(-0.319337\pi\)
−0.843209 + 0.537585i \(0.819337\pi\)
\(168\) −2.23613 8.20557i −0.172521 0.633073i
\(169\) −3.38676 12.5511i −0.260520 0.965468i
\(170\) 0 0
\(171\) 4.97309 + 1.28729i 0.380302 + 0.0984412i
\(172\) 0.418383 0.0319014
\(173\) 9.74943 0.741235 0.370618 0.928786i \(-0.379146\pi\)
0.370618 + 0.928786i \(0.379146\pi\)
\(174\) 9.98663 17.4686i 0.757084 1.32429i
\(175\) 0 0
\(176\) −1.39243 1.39243i −0.104958 0.104958i
\(177\) −2.89866 + 5.07031i −0.217876 + 0.381108i
\(178\) 11.1298 0.834213
\(179\) −1.28470 −0.0960232 −0.0480116 0.998847i \(-0.515288\pi\)
−0.0480116 + 0.998847i \(0.515288\pi\)
\(180\) 0 0
\(181\) 5.39074i 0.400690i 0.979725 + 0.200345i \(0.0642064\pi\)
−0.979725 + 0.200345i \(0.935794\pi\)
\(182\) 9.39177 + 7.19343i 0.696165 + 0.533212i
\(183\) 1.66723 + 6.11794i 0.123245 + 0.452251i
\(184\) −9.48409 9.48409i −0.699176 0.699176i
\(185\) 0 0
\(186\) −2.01775 7.40419i −0.147948 0.542901i
\(187\) −0.814560 0.814560i −0.0595665 0.0595665i
\(188\) −4.41218 + 4.41218i −0.321792 + 0.321792i
\(189\) −10.7744 + 0.137518i −0.783720 + 0.0100030i
\(190\) 0 0
\(191\) 8.13709i 0.588779i −0.955686 0.294390i \(-0.904884\pi\)
0.955686 0.294390i \(-0.0951163\pi\)
\(192\) 8.52244 2.32248i 0.615054 0.167611i
\(193\) −2.02917 + 2.02917i −0.146063 + 0.146063i −0.776357 0.630294i \(-0.782934\pi\)
0.630294 + 0.776357i \(0.282934\pi\)
\(194\) −18.8303 −1.35193
\(195\) 0 0
\(196\) 1.35924 0.0970884
\(197\) −3.10238 + 3.10238i −0.221036 + 0.221036i −0.808934 0.587899i \(-0.799955\pi\)
0.587899 + 0.808934i \(0.299955\pi\)
\(198\) −1.69452 + 0.997650i −0.120424 + 0.0708999i
\(199\) 3.79864i 0.269279i 0.990895 + 0.134639i \(0.0429876\pi\)
−0.990895 + 0.134639i \(0.957012\pi\)
\(200\) 0 0
\(201\) −11.2987 + 19.7636i −0.796949 + 1.39402i
\(202\) 7.10742 7.10742i 0.500076 0.500076i
\(203\) 10.7662 + 10.7662i 0.755642 + 0.755642i
\(204\) −2.33955 + 0.637560i −0.163801 + 0.0446381i
\(205\) 0 0
\(206\) −8.44627 8.44627i −0.588480 0.588480i
\(207\) −14.6437 + 8.62148i −1.01781 + 0.599234i
\(208\) −10.4215 + 13.6063i −0.722599 + 0.943428i
\(209\) 0.709359i 0.0490674i
\(210\) 0 0
\(211\) 5.97128 0.411080 0.205540 0.978649i \(-0.434105\pi\)
0.205540 + 0.978649i \(0.434105\pi\)
\(212\) 0.130095 0.00893496
\(213\) −16.7605 9.58185i −1.14841 0.656537i
\(214\) 4.13032 + 4.13032i 0.282343 + 0.282343i
\(215\) 0 0
\(216\) −0.157026 12.3028i −0.0106843 0.837101i
\(217\) 5.80694 0.394201
\(218\) −22.8140 −1.54516
\(219\) −24.4999 14.0064i −1.65555 0.946465i
\(220\) 0 0
\(221\) −6.09649 + 7.95960i −0.410094 + 0.535421i
\(222\) 11.3244 3.08605i 0.760042 0.207122i
\(223\) −4.16343 4.16343i −0.278804 0.278804i 0.553827 0.832631i \(-0.313167\pi\)
−0.832631 + 0.553827i \(0.813167\pi\)
\(224\) 5.77592i 0.385920i
\(225\) 0 0
\(226\) −19.4134 19.4134i −1.29136 1.29136i
\(227\) 7.99122 7.99122i 0.530396 0.530396i −0.390294 0.920690i \(-0.627627\pi\)
0.920690 + 0.390294i \(0.127627\pi\)
\(228\) 1.29631 + 0.741088i 0.0858501 + 0.0490798i
\(229\) −14.7738 + 14.7738i −0.976279 + 0.976279i −0.999725 0.0234464i \(-0.992536\pi\)
0.0234464 + 0.999725i \(0.492536\pi\)
\(230\) 0 0
\(231\) −0.391217 1.43558i −0.0257402 0.0944545i
\(232\) −12.2935 + 12.2935i −0.807110 + 0.807110i
\(233\) −15.0434 −0.985527 −0.492764 0.870163i \(-0.664013\pi\)
−0.492764 + 0.870163i \(0.664013\pi\)
\(234\) 10.5457 + 13.4794i 0.689391 + 0.881176i
\(235\) 0 0
\(236\) −1.20042 + 1.20042i −0.0781409 + 0.0781409i
\(237\) −7.42762 27.2559i −0.482475 1.77046i
\(238\) 9.12380i 0.591408i
\(239\) 5.13466 5.13466i 0.332134 0.332134i −0.521263 0.853396i \(-0.674539\pi\)
0.853396 + 0.521263i \(0.174539\pi\)
\(240\) 0 0
\(241\) 4.11251 4.11251i 0.264910 0.264910i −0.562135 0.827045i \(-0.690020\pi\)
0.827045 + 0.562135i \(0.190020\pi\)
\(242\) 12.1149 + 12.1149i 0.778774 + 0.778774i
\(243\) −15.1397 3.71341i −0.971212 0.238216i
\(244\) 1.84318i 0.117997i
\(245\) 0 0
\(246\) 11.5463 3.14654i 0.736167 0.200616i
\(247\) 6.12037 0.811246i 0.389430 0.0516183i
\(248\) 6.63071i 0.421050i
\(249\) −21.6254 12.3631i −1.37045 0.783477i
\(250\) 0 0
\(251\) 5.50029 0.347175 0.173588 0.984818i \(-0.444464\pi\)
0.173588 + 0.984818i \(0.444464\pi\)
\(252\) −3.03215 0.784874i −0.191008 0.0494424i
\(253\) −1.65926 1.65926i −0.104317 0.104317i
\(254\) 23.6058 + 23.6058i 1.48116 + 1.48116i
\(255\) 0 0
\(256\) 11.3817 0.711354
\(257\) −7.45007 −0.464723 −0.232361 0.972630i \(-0.574645\pi\)
−0.232361 + 0.972630i \(0.574645\pi\)
\(258\) −1.13030 + 1.97711i −0.0703692 + 0.123089i
\(259\) 8.88146i 0.551867i
\(260\) 0 0
\(261\) 11.1754 + 18.9815i 0.691740 + 1.17493i
\(262\) −11.0342 11.0342i −0.681692 0.681692i
\(263\) 23.1846i 1.42962i −0.699317 0.714812i \(-0.746512\pi\)
0.699317 0.714812i \(-0.253488\pi\)
\(264\) 1.63924 0.446715i 0.100888 0.0274934i
\(265\) 0 0
\(266\) −3.97273 + 3.97273i −0.243584 + 0.243584i
\(267\) −6.04688 + 10.5772i −0.370063 + 0.647312i
\(268\) −4.67914 + 4.67914i −0.285824 + 0.285824i
\(269\) 26.7447i 1.63065i −0.579002 0.815326i \(-0.696558\pi\)
0.579002 0.815326i \(-0.303442\pi\)
\(270\) 0 0
\(271\) −2.78066 + 2.78066i −0.168913 + 0.168913i −0.786501 0.617588i \(-0.788110\pi\)
0.617588 + 0.786501i \(0.288110\pi\)
\(272\) 13.2181 0.801464
\(273\) −11.9389 + 5.01721i −0.722572 + 0.303656i
\(274\) 14.5695 0.880177
\(275\) 0 0
\(276\) −4.76568 + 1.29872i −0.286860 + 0.0781735i
\(277\) 28.6741i 1.72286i −0.507874 0.861431i \(-0.669569\pi\)
0.507874 0.861431i \(-0.330431\pi\)
\(278\) 5.20703 5.20703i 0.312297 0.312297i
\(279\) 8.13280 + 2.10518i 0.486898 + 0.126034i
\(280\) 0 0
\(281\) 0.811843 + 0.811843i 0.0484305 + 0.0484305i 0.730907 0.682477i \(-0.239097\pi\)
−0.682477 + 0.730907i \(0.739097\pi\)
\(282\) −8.93030 32.7700i −0.531791 1.95143i
\(283\) 22.9639i 1.36506i 0.730857 + 0.682531i \(0.239121\pi\)
−0.730857 + 0.682531i \(0.760879\pi\)
\(284\) −3.96814 3.96814i −0.235466 0.235466i
\(285\) 0 0
\(286\) −1.43704 + 1.87621i −0.0849739 + 0.110942i
\(287\) 9.05553i 0.534531i
\(288\) 2.09393 8.08936i 0.123386 0.476670i
\(289\) −9.26751 −0.545148
\(290\) 0 0
\(291\) 10.2306 17.8953i 0.599728 1.04904i
\(292\) −5.80048 5.80048i −0.339447 0.339447i
\(293\) 8.25860 + 8.25860i 0.482472 + 0.482472i 0.905920 0.423448i \(-0.139180\pi\)
−0.423448 + 0.905920i \(0.639180\pi\)
\(294\) −3.67209 + 6.42320i −0.214161 + 0.374608i
\(295\) 0 0
\(296\) −10.1414 −0.589455
\(297\) −0.0274721 2.15241i −0.00159409 0.124895i
\(298\) 26.5802i 1.53975i
\(299\) −12.4186 + 16.2138i −0.718186 + 0.937666i
\(300\) 0 0
\(301\) −1.21853 1.21853i −0.0702351 0.0702351i
\(302\) 11.1133i 0.639496i
\(303\) 2.89301 + 10.6160i 0.166199 + 0.609874i
\(304\) −5.75549 5.75549i −0.330100 0.330100i
\(305\) 0 0
\(306\) 3.30763 12.7782i 0.189085 0.730479i
\(307\) −22.4159 + 22.4159i −1.27934 + 1.27934i −0.338310 + 0.941035i \(0.609855\pi\)
−0.941035 + 0.338310i \(0.890145\pi\)
\(308\) 0.432505i 0.0246443i
\(309\) 12.6158 3.43798i 0.717688 0.195580i
\(310\) 0 0
\(311\) 21.6419 1.22720 0.613600 0.789617i \(-0.289721\pi\)
0.613600 + 0.789617i \(0.289721\pi\)
\(312\) −5.72895 13.6325i −0.324338 0.771788i
\(313\) −7.12210 −0.402565 −0.201282 0.979533i \(-0.564511\pi\)
−0.201282 + 0.979533i \(0.564511\pi\)
\(314\) −17.8487 + 17.8487i −1.00726 + 1.00726i
\(315\) 0 0
\(316\) 8.21150i 0.461933i
\(317\) −14.9932 + 14.9932i −0.842104 + 0.842104i −0.989132 0.147028i \(-0.953029\pi\)
0.147028 + 0.989132i \(0.453029\pi\)
\(318\) −0.351462 + 0.614776i −0.0197090 + 0.0344749i
\(319\) −2.15078 + 2.15078i −0.120421 + 0.120421i
\(320\) 0 0
\(321\) −6.16927 + 1.68121i −0.344335 + 0.0938361i
\(322\) 18.5853i 1.03572i
\(323\) −3.36692 3.36692i −0.187340 0.187340i
\(324\) −3.96209 2.19848i −0.220116 0.122138i
\(325\) 0 0
\(326\) 9.79433i 0.542458i
\(327\) 12.3950 21.6812i 0.685445 1.19898i
\(328\) −10.3401 −0.570939
\(329\) 25.7008 1.41693
\(330\) 0 0
\(331\) −6.48090 6.48090i −0.356223 0.356223i 0.506196 0.862418i \(-0.331051\pi\)
−0.862418 + 0.506196i \(0.831051\pi\)
\(332\) −5.11992 5.11992i −0.280992 0.280992i
\(333\) −3.21978 + 12.4388i −0.176443 + 0.681640i
\(334\) 8.83753 0.483568
\(335\) 0 0
\(336\) 14.8220 + 8.47362i 0.808607 + 0.462274i
\(337\) 32.1622i 1.75199i 0.482323 + 0.875993i \(0.339793\pi\)
−0.482323 + 0.875993i \(0.660207\pi\)
\(338\) 17.8314 + 10.2531i 0.969900 + 0.557697i
\(339\) 28.9969 7.90207i 1.57490 0.429181i
\(340\) 0 0
\(341\) 1.16006i 0.0628207i
\(342\) −7.00416 + 4.12371i −0.378742 + 0.222985i
\(343\) −14.2230 14.2230i −0.767972 0.767972i
\(344\) 1.39139 1.39139i 0.0750190 0.0750190i
\(345\) 0 0
\(346\) −10.9077 + 10.9077i −0.586404 + 0.586404i
\(347\) 11.3661i 0.610165i 0.952326 + 0.305082i \(0.0986840\pi\)
−0.952326 + 0.305082i \(0.901316\pi\)
\(348\) 1.68343 + 6.17740i 0.0902413 + 0.331144i
\(349\) 0.388646 0.388646i 0.0208038 0.0208038i −0.696628 0.717432i \(-0.745317\pi\)
0.717432 + 0.696628i \(0.245317\pi\)
\(350\) 0 0
\(351\) −18.5396 + 2.69859i −0.989572 + 0.144040i
\(352\) 1.15386 0.0615011
\(353\) −10.9517 + 10.9517i −0.582900 + 0.582900i −0.935699 0.352799i \(-0.885230\pi\)
0.352799 + 0.935699i \(0.385230\pi\)
\(354\) −2.42967 8.91574i −0.129135 0.473866i
\(355\) 0 0
\(356\) −2.50420 + 2.50420i −0.132722 + 0.132722i
\(357\) 8.67078 + 4.95701i 0.458906 + 0.262353i
\(358\) 1.43734 1.43734i 0.0759655 0.0759655i
\(359\) 3.80124 + 3.80124i 0.200622 + 0.200622i 0.800266 0.599645i \(-0.204691\pi\)
−0.599645 + 0.800266i \(0.704691\pi\)
\(360\) 0 0
\(361\) 16.0679i 0.845680i
\(362\) −6.03120 6.03120i −0.316993 0.316993i
\(363\) −18.0954 + 4.93126i −0.949764 + 0.258824i
\(364\) −3.73166 + 0.494626i −0.195592 + 0.0259255i
\(365\) 0 0
\(366\) −8.71011 4.97950i −0.455285 0.260282i
\(367\) 23.2059 1.21134 0.605669 0.795717i \(-0.292906\pi\)
0.605669 + 0.795717i \(0.292906\pi\)
\(368\) 26.9254 1.40358
\(369\) −3.28288 + 12.6826i −0.170900 + 0.660227i
\(370\) 0 0
\(371\) −0.378899 0.378899i −0.0196715 0.0196715i
\(372\) 2.11993 + 1.21195i 0.109913 + 0.0628365i
\(373\) 20.3615 1.05428 0.527139 0.849779i \(-0.323265\pi\)
0.527139 + 0.849779i \(0.323265\pi\)
\(374\) 1.82267 0.0942481
\(375\) 0 0
\(376\) 29.3467i 1.51344i
\(377\) 21.0167 + 16.0973i 1.08242 + 0.829054i
\(378\) 11.9006 12.2083i 0.612101 0.627928i
\(379\) −2.24383 2.24383i −0.115258 0.115258i 0.647126 0.762383i \(-0.275971\pi\)
−0.762383 + 0.647126i \(0.775971\pi\)
\(380\) 0 0
\(381\) −35.2588 + 9.60852i −1.80636 + 0.492259i
\(382\) 9.10384 + 9.10384i 0.465793 + 0.465793i
\(383\) −3.09636 + 3.09636i −0.158217 + 0.158217i −0.781776 0.623559i \(-0.785686\pi\)
0.623559 + 0.781776i \(0.285686\pi\)
\(384\) −11.7253 + 20.5098i −0.598354 + 1.04664i
\(385\) 0 0
\(386\) 4.54050i 0.231105i
\(387\) −1.26484 2.14835i −0.0642955 0.109207i
\(388\) 4.23680 4.23680i 0.215091 0.215091i
\(389\) −19.3062 −0.978864 −0.489432 0.872041i \(-0.662796\pi\)
−0.489432 + 0.872041i \(0.662796\pi\)
\(390\) 0 0
\(391\) 15.7511 0.796570
\(392\) 4.52034 4.52034i 0.228312 0.228312i
\(393\) 16.4812 4.49136i 0.831366 0.226559i
\(394\) 6.94194i 0.349730i
\(395\) 0 0
\(396\) 0.156795 0.605737i 0.00787925 0.0304394i
\(397\) −13.4071 + 13.4071i −0.672884 + 0.672884i −0.958380 0.285496i \(-0.907842\pi\)
0.285496 + 0.958380i \(0.407842\pi\)
\(398\) −4.24995 4.24995i −0.213031 0.213031i
\(399\) −1.61707 5.93388i −0.0809545 0.297065i
\(400\) 0 0
\(401\) 4.82449 + 4.82449i 0.240923 + 0.240923i 0.817232 0.576309i \(-0.195507\pi\)
−0.576309 + 0.817232i \(0.695507\pi\)
\(402\) −9.47062 34.7528i −0.472351 1.73331i
\(403\) 10.0090 1.32668i 0.498585 0.0660867i
\(404\) 3.19833i 0.159123i
\(405\) 0 0
\(406\) −24.0907 −1.19560
\(407\) −1.77426 −0.0879467
\(408\) −5.66021 + 9.90081i −0.280222 + 0.490163i
\(409\) −2.33925 2.33925i −0.115669 0.115669i 0.646903 0.762572i \(-0.276064\pi\)
−0.762572 + 0.646903i \(0.776064\pi\)
\(410\) 0 0
\(411\) −7.91571 + 13.8461i −0.390453 + 0.682978i
\(412\) 3.80082 0.187253
\(413\) 6.99242 0.344074
\(414\) 6.73768 26.0292i 0.331139 1.27927i
\(415\) 0 0
\(416\) −1.31959 9.95556i −0.0646985 0.488112i
\(417\) 2.11948 + 7.77749i 0.103791 + 0.380866i
\(418\) −0.793637 0.793637i −0.0388180 0.0388180i
\(419\) 11.3389i 0.553942i −0.960878 0.276971i \(-0.910669\pi\)
0.960878 0.276971i \(-0.0893306\pi\)
\(420\) 0 0
\(421\) 15.5576 + 15.5576i 0.758230 + 0.758230i 0.976000 0.217770i \(-0.0698783\pi\)
−0.217770 + 0.976000i \(0.569878\pi\)
\(422\) −6.68071 + 6.68071i −0.325212 + 0.325212i
\(423\) 35.9948 + 9.31726i 1.75013 + 0.453021i
\(424\) 0.432650 0.432650i 0.0210113 0.0210113i
\(425\) 0 0
\(426\) 29.4720 8.03155i 1.42792 0.389130i
\(427\) 5.36823 5.36823i 0.259787 0.259787i
\(428\) −1.85864 −0.0898409
\(429\) −1.00229 2.38504i −0.0483912 0.115151i
\(430\) 0 0
\(431\) 25.6108 25.6108i 1.23363 1.23363i 0.271068 0.962560i \(-0.412623\pi\)
0.962560 0.271068i \(-0.0873767\pi\)
\(432\) 17.6868 + 17.2410i 0.850955 + 0.829507i
\(433\) 32.5410i 1.56382i 0.623392 + 0.781909i \(0.285754\pi\)
−0.623392 + 0.781909i \(0.714246\pi\)
\(434\) −6.49685 + 6.49685i −0.311859 + 0.311859i
\(435\) 0 0
\(436\) 5.13315 5.13315i 0.245833 0.245833i
\(437\) −6.85844 6.85844i −0.328084 0.328084i
\(438\) 43.0812 11.7402i 2.05850 0.560970i
\(439\) 33.7542i 1.61100i −0.592595 0.805501i \(-0.701896\pi\)
0.592595 0.805501i \(-0.298104\pi\)
\(440\) 0 0
\(441\) −4.10920 6.97952i −0.195676 0.332358i
\(442\) −2.08447 15.7261i −0.0991479 0.748012i
\(443\) 30.3054i 1.43985i −0.694050 0.719927i \(-0.744175\pi\)
0.694050 0.719927i \(-0.255825\pi\)
\(444\) −1.85362 + 3.24234i −0.0879689 + 0.153875i
\(445\) 0 0
\(446\) 9.31616 0.441133
\(447\) 25.2604 + 14.4412i 1.19478 + 0.683044i
\(448\) −7.47806 7.47806i −0.353305 0.353305i
\(449\) 18.9354 + 18.9354i 0.893616 + 0.893616i 0.994861 0.101246i \(-0.0322828\pi\)
−0.101246 + 0.994861i \(0.532283\pi\)
\(450\) 0 0
\(451\) −1.80903 −0.0851841
\(452\) 8.73603 0.410908
\(453\) −10.5615 6.03790i −0.496220 0.283685i
\(454\) 17.8813i 0.839211i
\(455\) 0 0
\(456\) 6.77565 1.84646i 0.317299 0.0864685i
\(457\) 12.6125 + 12.6125i 0.589987 + 0.589987i 0.937628 0.347641i \(-0.113017\pi\)
−0.347641 + 0.937628i \(0.613017\pi\)
\(458\) 33.0580i 1.54470i
\(459\) 10.3466 + 10.0858i 0.482940 + 0.470767i
\(460\) 0 0
\(461\) 13.1232 13.1232i 0.611207 0.611207i −0.332054 0.943260i \(-0.607742\pi\)
0.943260 + 0.332054i \(0.107742\pi\)
\(462\) 2.04384 + 1.16845i 0.0950881 + 0.0543611i
\(463\) 23.7400 23.7400i 1.10329 1.10329i 0.109278 0.994011i \(-0.465146\pi\)
0.994011 0.109278i \(-0.0348540\pi\)
\(464\) 34.9014i 1.62026i
\(465\) 0 0
\(466\) 16.8307 16.8307i 0.779667 0.779667i
\(467\) −20.9138 −0.967776 −0.483888 0.875130i \(-0.660776\pi\)
−0.483888 + 0.875130i \(0.660776\pi\)
\(468\) −5.40563 0.660093i −0.249875 0.0305128i
\(469\) 27.2558 1.25856
\(470\) 0 0
\(471\) −7.26515 26.6597i −0.334760 1.22841i
\(472\) 7.98436i 0.367510i
\(473\) 0.243428 0.243428i 0.0111928 0.0111928i
\(474\) 38.8042 + 22.1840i 1.78234 + 1.01895i
\(475\) 0 0
\(476\) 2.05285 + 2.05285i 0.0940923 + 0.0940923i
\(477\) −0.393299 0.668022i −0.0180079 0.0305866i
\(478\) 11.4894i 0.525513i
\(479\) 12.4837 + 12.4837i 0.570393 + 0.570393i 0.932238 0.361845i \(-0.117853\pi\)
−0.361845 + 0.932238i \(0.617853\pi\)
\(480\) 0 0
\(481\) 2.02910 + 15.3084i 0.0925190 + 0.698001i
\(482\) 9.20221i 0.419149i
\(483\) 17.6624 + 10.0975i 0.803669 + 0.459451i
\(484\) −5.45169 −0.247804
\(485\) 0 0
\(486\) 21.0930 12.7838i 0.956799 0.579886i
\(487\) −17.2586 17.2586i −0.782061 0.782061i 0.198117 0.980178i \(-0.436517\pi\)
−0.980178 + 0.198117i \(0.936517\pi\)
\(488\) 6.12976 + 6.12976i 0.277481 + 0.277481i
\(489\) 9.30801 + 5.32131i 0.420923 + 0.240638i
\(490\) 0 0
\(491\) −33.3522 −1.50516 −0.752582 0.658498i \(-0.771192\pi\)
−0.752582 + 0.658498i \(0.771192\pi\)
\(492\) −1.88995 + 3.30589i −0.0852055 + 0.149041i
\(493\) 20.4171i 0.919538i
\(494\) −5.93989 + 7.75515i −0.267248 + 0.348921i
\(495\) 0 0
\(496\) −9.41230 9.41230i −0.422625 0.422625i
\(497\) 23.1143i 1.03682i
\(498\) 38.0265 10.3628i 1.70401 0.464367i
\(499\) −17.9656 17.9656i −0.804252 0.804252i 0.179505 0.983757i \(-0.442550\pi\)
−0.983757 + 0.179505i \(0.942550\pi\)
\(500\) 0 0
\(501\) −4.80148 + 8.39872i −0.214514 + 0.375227i
\(502\) −6.15377 + 6.15377i −0.274656 + 0.274656i
\(503\) 38.5906i 1.72067i −0.509731 0.860334i \(-0.670255\pi\)
0.509731 0.860334i \(-0.329745\pi\)
\(504\) −12.6941 + 7.47365i −0.565439 + 0.332903i
\(505\) 0 0
\(506\) 3.71280 0.165054
\(507\) −19.4319 + 11.3754i −0.863002 + 0.505201i
\(508\) −10.6226 −0.471300
\(509\) −5.99503 + 5.99503i −0.265725 + 0.265725i −0.827375 0.561650i \(-0.810167\pi\)
0.561650 + 0.827375i \(0.310167\pi\)
\(510\) 0 0
\(511\) 33.7876i 1.49467i
\(512\) 6.55574 6.55574i 0.289725 0.289725i
\(513\) −0.113554 8.89681i −0.00501352 0.392804i
\(514\) 8.33520 8.33520i 0.367650 0.367650i
\(515\) 0 0
\(516\) −0.190532 0.699165i −0.00838772 0.0307790i
\(517\) 5.13428i 0.225805i
\(518\) −9.93664 9.93664i −0.436591 0.436591i
\(519\) −4.43990 16.2924i −0.194890 0.715156i
\(520\) 0 0
\(521\) 13.8731i 0.607791i −0.952705 0.303896i \(-0.901713\pi\)
0.952705 0.303896i \(-0.0982874\pi\)
\(522\) −33.7398 8.73356i −1.47675 0.382257i
\(523\) 24.2698 1.06124 0.530622 0.847609i \(-0.321958\pi\)
0.530622 + 0.847609i \(0.321958\pi\)
\(524\) 4.96536 0.216913
\(525\) 0 0
\(526\) 25.9391 + 25.9391i 1.13100 + 1.13100i
\(527\) −5.50613 5.50613i −0.239851 0.239851i
\(528\) −1.69279 + 2.96101i −0.0736690 + 0.128861i
\(529\) 9.08521 0.395009
\(530\) 0 0
\(531\) 9.79310 + 2.53495i 0.424984 + 0.110007i
\(532\) 1.78773i 0.0775077i
\(533\) 2.06887 + 15.6084i 0.0896127 + 0.676074i
\(534\) −5.06852 18.5991i −0.219336 0.804862i
\(535\) 0 0
\(536\) 31.1223i 1.34428i
\(537\) 0.585055 + 2.14688i 0.0252470 + 0.0926447i
\(538\) 29.9222 + 29.9222i 1.29004 + 1.29004i
\(539\) 0.790845 0.790845i 0.0340641 0.0340641i
\(540\) 0 0
\(541\) 22.2024 22.2024i 0.954555 0.954555i −0.0444563 0.999011i \(-0.514156\pi\)
0.999011 + 0.0444563i \(0.0141555\pi\)
\(542\) 6.22205i 0.267260i
\(543\) 9.00852 2.45495i 0.386592 0.105352i
\(544\) −5.47672 + 5.47672i −0.234813 + 0.234813i
\(545\) 0 0
\(546\) 7.74399 18.9706i 0.331412 0.811866i
\(547\) 19.3984 0.829418 0.414709 0.909954i \(-0.363883\pi\)
0.414709 + 0.909954i \(0.363883\pi\)
\(548\) −3.27814 + 3.27814i −0.140035 + 0.140035i
\(549\) 9.46450 5.57224i 0.403935 0.237817i
\(550\) 0 0
\(551\) −8.89010 + 8.89010i −0.378731 + 0.378731i
\(552\) −11.5299 + 20.1680i −0.490745 + 0.858408i
\(553\) −23.9158 + 23.9158i −1.01701 + 1.01701i
\(554\) 32.0809 + 32.0809i 1.36299 + 1.36299i
\(555\) 0 0
\(556\) 2.34316i 0.0993721i
\(557\) −12.2284 12.2284i −0.518134 0.518134i 0.398873 0.917006i \(-0.369402\pi\)
−0.917006 + 0.398873i \(0.869402\pi\)
\(558\) −11.4543 + 6.74375i −0.484900 + 0.285486i
\(559\) −2.37869 1.82191i −0.100608 0.0770586i
\(560\) 0 0
\(561\) −0.990268 + 1.73217i −0.0418091 + 0.0731323i
\(562\) −1.81659 −0.0766284
\(563\) 13.2701 0.559267 0.279633 0.960107i \(-0.409787\pi\)
0.279633 + 0.960107i \(0.409787\pi\)
\(564\) 9.38256 + 5.36393i 0.395077 + 0.225862i
\(565\) 0 0
\(566\) −25.6922 25.6922i −1.07992 1.07992i
\(567\) 5.13647 + 17.9425i 0.215711 + 0.753516i
\(568\) −26.3932 −1.10744
\(569\) −1.99616 −0.0836833 −0.0418417 0.999124i \(-0.513323\pi\)
−0.0418417 + 0.999124i \(0.513323\pi\)
\(570\) 0 0
\(571\) 8.10449i 0.339162i −0.985516 0.169581i \(-0.945758\pi\)
0.985516 0.169581i \(-0.0542415\pi\)
\(572\) −0.0988121 0.745479i −0.00413154 0.0311700i
\(573\) −13.5980 + 3.70564i −0.568063 + 0.154805i
\(574\) −10.1314 10.1314i −0.422876 0.422876i
\(575\) 0 0
\(576\) −7.76226 13.1843i −0.323427 0.549345i
\(577\) −22.0036 22.0036i −0.916023 0.916023i 0.0807147 0.996737i \(-0.474280\pi\)
−0.996737 + 0.0807147i \(0.974280\pi\)
\(578\) 10.3686 10.3686i 0.431275 0.431275i
\(579\) 4.31505 + 2.46688i 0.179327 + 0.102520i
\(580\) 0 0
\(581\) 29.8234i 1.23728i
\(582\) 8.57532 + 31.4674i 0.355459 + 1.30437i
\(583\) 0.0756932 0.0756932i 0.00313489 0.00313489i
\(584\) −38.5807 −1.59648
\(585\) 0 0
\(586\) −18.4796 −0.763384
\(587\) −6.82405 + 6.82405i −0.281659 + 0.281659i −0.833770 0.552112i \(-0.813822\pi\)
0.552112 + 0.833770i \(0.313822\pi\)
\(588\) −0.618998 2.27144i −0.0255271 0.0936724i
\(589\) 4.79501i 0.197575i
\(590\) 0 0
\(591\) 6.59725 + 3.77159i 0.271375 + 0.155143i
\(592\) 14.3957 14.3957i 0.591659 0.591659i
\(593\) 1.95435 + 1.95435i 0.0802556 + 0.0802556i 0.746095 0.665839i \(-0.231926\pi\)
−0.665839 + 0.746095i \(0.731926\pi\)
\(594\) 2.43887 + 2.37740i 0.100068 + 0.0975457i
\(595\) 0 0
\(596\) 5.98054 + 5.98054i 0.244972 + 0.244972i
\(597\) 6.34795 1.72991i 0.259804 0.0708004i
\(598\) −4.24607 32.0341i −0.173635 1.30997i
\(599\) 4.69516i 0.191839i 0.995389 + 0.0959195i \(0.0305791\pi\)
−0.995389 + 0.0959195i \(0.969421\pi\)
\(600\) 0 0
\(601\) 7.38898 0.301403 0.150701 0.988579i \(-0.451847\pi\)
0.150701 + 0.988579i \(0.451847\pi\)
\(602\) 2.72661 0.111128
\(603\) 38.1726 + 9.88100i 1.55451 + 0.402385i
\(604\) −2.50048 2.50048i −0.101743 0.101743i
\(605\) 0 0
\(606\) −15.1140 8.64055i −0.613965 0.350998i
\(607\) 5.61074 0.227733 0.113867 0.993496i \(-0.463676\pi\)
0.113867 + 0.993496i \(0.463676\pi\)
\(608\) 4.76940 0.193425
\(609\) 13.0886 22.8945i 0.530378 0.927733i
\(610\) 0 0
\(611\) 44.2987 5.87173i 1.79213 0.237545i
\(612\) 2.13087 + 3.61930i 0.0861352 + 0.146301i
\(613\) −16.7181 16.7181i −0.675238 0.675238i 0.283680 0.958919i \(-0.408445\pi\)
−0.958919 + 0.283680i \(0.908445\pi\)
\(614\) 50.1582i 2.02422i
\(615\) 0 0
\(616\) −1.43836 1.43836i −0.0579531 0.0579531i
\(617\) 30.6567 30.6567i 1.23419 1.23419i 0.271854 0.962339i \(-0.412363\pi\)
0.962339 0.271854i \(-0.0876366\pi\)
\(618\) −10.2682 + 17.9611i −0.413048 + 0.722501i
\(619\) −20.5920 + 20.5920i −0.827663 + 0.827663i −0.987193 0.159530i \(-0.949002\pi\)
0.159530 + 0.987193i \(0.449002\pi\)
\(620\) 0 0
\(621\) 21.0762 + 20.5450i 0.845758 + 0.824441i
\(622\) −24.2131 + 24.2131i −0.970859 + 0.970859i
\(623\) 14.5869 0.584410
\(624\) 27.4836 + 11.2191i 1.10022 + 0.449123i
\(625\) 0 0
\(626\) 7.96826 7.96826i 0.318476 0.318476i
\(627\) 1.18542 0.323043i 0.0473410 0.0129011i
\(628\) 8.03189i 0.320507i
\(629\) 8.42138 8.42138i 0.335782 0.335782i
\(630\) 0 0
\(631\) 2.48933 2.48933i 0.0990986 0.0990986i −0.655819 0.754918i \(-0.727677\pi\)
0.754918 + 0.655819i \(0.227677\pi\)
\(632\) −27.3085 27.3085i −1.08628 1.08628i
\(633\) −2.71933 9.97866i −0.108084 0.396616i
\(634\) 33.5491i 1.33241i
\(635\) 0 0
\(636\) −0.0592454 0.217403i −0.00234923 0.00862060i
\(637\) −7.72786 5.91899i −0.306189 0.234519i
\(638\) 4.81263i 0.190534i
\(639\) −8.37957 + 32.3722i −0.331491 + 1.28063i
\(640\) 0 0
\(641\) −27.5035 −1.08632 −0.543161 0.839629i \(-0.682773\pi\)
−0.543161 + 0.839629i \(0.682773\pi\)
\(642\) 5.02127 8.78318i 0.198174 0.346645i
\(643\) −27.9426 27.9426i −1.10195 1.10195i −0.994176 0.107771i \(-0.965629\pi\)
−0.107771 0.994176i \(-0.534371\pi\)
\(644\) 4.18167 + 4.18167i 0.164781 + 0.164781i
\(645\) 0 0
\(646\) 7.53387 0.296416
\(647\) −16.9805 −0.667572 −0.333786 0.942649i \(-0.608326\pi\)
−0.333786 + 0.942649i \(0.608326\pi\)
\(648\) −20.4879 + 5.86513i −0.804839 + 0.230404i
\(649\) 1.39688i 0.0548325i
\(650\) 0 0
\(651\) −2.64449 9.70403i −0.103646 0.380331i
\(652\) 2.20372 + 2.20372i 0.0863044 + 0.0863044i
\(653\) 42.0032i 1.64371i 0.569695 + 0.821856i \(0.307061\pi\)
−0.569695 + 0.821856i \(0.692939\pi\)
\(654\) 10.3895 + 38.1248i 0.406263 + 1.49080i
\(655\) 0 0
\(656\) 14.6778 14.6778i 0.573074 0.573074i
\(657\) −12.2489 + 47.3206i −0.477877 + 1.84615i
\(658\) −28.7543 + 28.7543i −1.12096 + 1.12096i
\(659\) 7.23414i 0.281802i −0.990024 0.140901i \(-0.955000\pi\)
0.990024 0.140901i \(-0.0450000\pi\)
\(660\) 0 0
\(661\) −10.3889 + 10.3889i −0.404082 + 0.404082i −0.879669 0.475587i \(-0.842236\pi\)
0.475587 + 0.879669i \(0.342236\pi\)
\(662\) 14.5018 0.563627
\(663\) 16.0777 + 6.56309i 0.624407 + 0.254889i
\(664\) −34.0541 −1.32155
\(665\) 0 0
\(666\) −10.3143 17.5189i −0.399670 0.678843i
\(667\) 41.5897i 1.61036i
\(668\) −1.98844 + 1.98844i −0.0769351 + 0.0769351i
\(669\) −5.06152 + 8.85359i −0.195690 + 0.342299i
\(670\) 0 0
\(671\) 1.07242 + 1.07242i 0.0414002 + 0.0414002i
\(672\) −9.65221 + 2.63036i −0.372342 + 0.101468i
\(673\) 25.8635i 0.996966i −0.866899 0.498483i \(-0.833891\pi\)
0.866899 0.498483i \(-0.166109\pi\)
\(674\) −35.9833 35.9833i −1.38603 1.38603i
\(675\) 0 0
\(676\) −6.31901 + 1.70511i −0.243039 + 0.0655810i
\(677\) 21.1738i 0.813775i −0.913478 0.406887i \(-0.866614\pi\)
0.913478 0.406887i \(-0.133386\pi\)
\(678\) −23.6011 + 41.2829i −0.906394 + 1.58546i
\(679\) −24.6792 −0.947101
\(680\) 0 0
\(681\) −16.9934 9.71501i −0.651190 0.372280i
\(682\) −1.29788 1.29788i −0.0496985 0.0496985i
\(683\) −13.2249 13.2249i −0.506038 0.506038i 0.407270 0.913308i \(-0.366481\pi\)
−0.913308 + 0.407270i \(0.866481\pi\)
\(684\) 0.648101 2.50377i 0.0247807 0.0957339i
\(685\) 0 0
\(686\) 31.8257 1.21511
\(687\) 31.4166 + 17.9606i 1.19862 + 0.685240i
\(688\) 3.95017i 0.150599i
\(689\) −0.739648 0.566518i −0.0281783 0.0215826i
\(690\) 0 0
\(691\) 15.4010 + 15.4010i 0.585883 + 0.585883i 0.936514 0.350630i \(-0.114033\pi\)
−0.350630 + 0.936514i \(0.614033\pi\)
\(692\) 4.90847i 0.186592i
\(693\) −2.22086 + 1.30753i −0.0843635 + 0.0496691i
\(694\) −12.7165 12.7165i −0.482712 0.482712i
\(695\) 0 0
\(696\) 26.1423 + 14.9454i 0.990923 + 0.566502i
\(697\) 8.58644 8.58644i 0.325235 0.325235i
\(698\) 0.869642i 0.0329164i
\(699\) 6.85079 + 25.1392i 0.259121 + 0.950852i
\(700\) 0 0
\(701\) −14.2724 −0.539063 −0.269531 0.962992i \(-0.586869\pi\)
−0.269531 + 0.962992i \(0.586869\pi\)
\(702\) 17.7231 23.7615i 0.668914 0.896819i
\(703\) −7.33376 −0.276598
\(704\) 1.49390 1.49390i 0.0563035 0.0563035i
\(705\) 0 0
\(706\) 24.5057i 0.922284i
\(707\) 9.31508 9.31508i 0.350330 0.350330i
\(708\) 2.55271 + 1.45936i 0.0959368 + 0.0548463i
\(709\) −1.84603 + 1.84603i −0.0693291 + 0.0693291i −0.740921 0.671592i \(-0.765611\pi\)
0.671592 + 0.740921i \(0.265611\pi\)
\(710\) 0 0
\(711\) −42.1651 + 24.8247i −1.58131 + 0.931000i
\(712\) 16.6561i 0.624216i
\(713\) −11.2160 11.2160i −0.420044 0.420044i
\(714\) −15.2469 + 4.15499i −0.570600 + 0.155497i
\(715\) 0 0
\(716\) 0.646800i 0.0241720i
\(717\) −10.9189 6.24226i −0.407775 0.233121i
\(718\) −8.50571 −0.317430
\(719\) 45.7040 1.70447 0.852237 0.523156i \(-0.175246\pi\)
0.852237 + 0.523156i \(0.175246\pi\)
\(720\) 0 0
\(721\) −11.0698 11.0698i −0.412261 0.412261i
\(722\) 17.9769 + 17.9769i 0.669032 + 0.669032i
\(723\) −8.74530 4.99961i −0.325241 0.185938i
\(724\) 2.71404 0.100866
\(725\) 0 0
\(726\) 14.7282 25.7624i 0.546614 0.956134i
\(727\) 5.12985i 0.190256i −0.995465 0.0951279i \(-0.969674\pi\)
0.995465 0.0951279i \(-0.0303260\pi\)
\(728\) −10.7652 + 14.0551i −0.398986 + 0.520918i
\(729\) 0.689112 + 26.9912i 0.0255227 + 0.999674i
\(730\) 0 0
\(731\) 2.31082i 0.0854689i
\(732\) 3.08016 0.839386i 0.113846 0.0310246i
\(733\) −6.65960 6.65960i −0.245978 0.245978i 0.573340 0.819318i \(-0.305647\pi\)
−0.819318 + 0.573340i \(0.805647\pi\)
\(734\) −25.9629 + 25.9629i −0.958309 + 0.958309i
\(735\) 0 0
\(736\) −11.1561 + 11.1561i −0.411220 + 0.411220i
\(737\) 5.44492i 0.200566i
\(738\) −10.5164 17.8623i −0.387115 0.657519i
\(739\) −15.3715 + 15.3715i −0.565448 + 0.565448i −0.930850 0.365402i \(-0.880932\pi\)
0.365402 + 0.930850i \(0.380932\pi\)
\(740\) 0 0
\(741\) −4.14291 9.85837i −0.152193 0.362156i
\(742\) 0.847831 0.0311249
\(743\) −10.7883 + 10.7883i −0.395784 + 0.395784i −0.876743 0.480959i \(-0.840288\pi\)
0.480959 + 0.876743i \(0.340288\pi\)
\(744\) 11.0806 3.01963i 0.406236 0.110705i
\(745\) 0 0
\(746\) −22.7806 + 22.7806i −0.834056 + 0.834056i
\(747\) −10.8118 + 41.7686i −0.395583 + 1.52823i
\(748\) −0.410100 + 0.410100i −0.0149948 + 0.0149948i
\(749\) 5.41326 + 5.41326i 0.197796 + 0.197796i
\(750\) 0 0
\(751\) 47.2418i 1.72388i −0.507012 0.861939i \(-0.669250\pi\)
0.507012 0.861939i \(-0.330750\pi\)
\(752\) −41.6577 41.6577i −1.51910 1.51910i
\(753\) −2.50484 9.19160i −0.0912814 0.334960i
\(754\) −41.5235 + 5.50388i −1.51220 + 0.200439i
\(755\) 0 0
\(756\) 0.0692351 + 5.42449i 0.00251806 + 0.197287i
\(757\) −6.53480 −0.237511 −0.118756 0.992924i \(-0.537891\pi\)
−0.118756 + 0.992924i \(0.537891\pi\)
\(758\) 5.02083 0.182365
\(759\) −2.01718 + 3.52845i −0.0732191 + 0.128074i
\(760\) 0 0
\(761\) 19.3550 + 19.3550i 0.701618 + 0.701618i 0.964758 0.263139i \(-0.0847579\pi\)
−0.263139 + 0.964758i \(0.584758\pi\)
\(762\) 28.6977 50.1979i 1.03961 1.81848i
\(763\) −29.9004 −1.08247
\(764\) −4.09672 −0.148214
\(765\) 0 0
\(766\) 6.92846i 0.250336i
\(767\) 12.0523 1.59752i 0.435185 0.0576831i
\(768\) −5.18322 19.0200i −0.187033 0.686326i
\(769\) 1.85581 + 1.85581i 0.0669221 + 0.0669221i 0.739776 0.672854i \(-0.234932\pi\)
−0.672854 + 0.739776i \(0.734932\pi\)
\(770\) 0 0
\(771\) 3.39277 + 12.4499i 0.122188 + 0.448372i
\(772\) 1.02161 + 1.02161i 0.0367686 + 0.0367686i
\(773\) −5.15489 + 5.15489i −0.185408 + 0.185408i −0.793708 0.608299i \(-0.791852\pi\)
0.608299 + 0.793708i \(0.291852\pi\)
\(774\) 3.81870 + 0.988473i 0.137260 + 0.0355299i
\(775\) 0 0
\(776\) 28.1802i 1.01161i
\(777\) 14.8419 4.04463i 0.532450 0.145100i
\(778\) 21.5999 21.5999i 0.774396 0.774396i
\(779\) −7.47750 −0.267909
\(780\) 0 0
\(781\) −4.61756 −0.165229
\(782\) −17.6225 + 17.6225i −0.630180 + 0.630180i
\(783\) 26.6309 27.3195i 0.951712 0.976320i
\(784\) 12.8333i 0.458331i
\(785\) 0 0
\(786\) −13.4143 + 23.4643i −0.478473 + 0.836942i
\(787\) 10.3937 10.3937i 0.370494 0.370494i −0.497163 0.867657i \(-0.665625\pi\)
0.867657 + 0.497163i \(0.165625\pi\)
\(788\) 1.56193 + 1.56193i 0.0556416 + 0.0556416i
\(789\) −38.7440 + 10.5583i −1.37932 + 0.375885i
\(790\) 0 0
\(791\) −25.4435 25.4435i −0.904667 0.904667i
\(792\) −1.49302 2.53591i −0.0530521 0.0901096i
\(793\) 8.02639 10.4793i 0.285025 0.372130i
\(794\) 30.0000i 1.06466i
\(795\) 0 0
\(796\) 1.91248 0.0677859
\(797\) 28.4028 1.00608 0.503039 0.864264i \(-0.332215\pi\)
0.503039 + 0.864264i \(0.332215\pi\)
\(798\) 8.44806 + 4.82968i 0.299058 + 0.170969i
\(799\) −24.3695 24.3695i −0.862130 0.862130i
\(800\) 0 0
\(801\) 20.4294 + 5.28815i 0.721836 + 0.186847i
\(802\) −10.7954 −0.381197
\(803\) −6.74979 −0.238195
\(804\) 9.95024 + 5.68847i 0.350918 + 0.200617i
\(805\) 0 0
\(806\) −9.71387 + 12.6825i −0.342156 + 0.446721i
\(807\) −44.6933 + 12.1796i −1.57328 + 0.428741i
\(808\) 10.6365 + 10.6365i 0.374191 + 0.374191i
\(809\) 23.7943i 0.836561i −0.908318 0.418281i \(-0.862633\pi\)
0.908318 0.418281i \(-0.137367\pi\)
\(810\) 0 0
\(811\) 12.0402 + 12.0402i 0.422789 + 0.422789i 0.886163 0.463374i \(-0.153361\pi\)
−0.463374 + 0.886163i \(0.653361\pi\)
\(812\) 5.42040 5.42040i 0.190219 0.190219i
\(813\) 5.91310 + 3.38047i 0.207382 + 0.118558i
\(814\) 1.98505 1.98505i 0.0695761 0.0695761i
\(815\) 0 0
\(816\) −6.01953 22.0889i −0.210726 0.773266i
\(817\) 1.00619 1.00619i 0.0352021 0.0352021i
\(818\) 5.23435 0.183015
\(819\) 13.8213 + 17.6663i 0.482955 + 0.617311i
\(820\) 0 0
\(821\) 8.79819 8.79819i 0.307059 0.307059i −0.536709 0.843768i \(-0.680333\pi\)
0.843768 + 0.536709i \(0.180333\pi\)
\(822\) −6.63498 24.3473i −0.231421 0.849209i
\(823\) 6.05273i 0.210985i 0.994420 + 0.105493i \(0.0336419\pi\)
−0.994420 + 0.105493i \(0.966358\pi\)
\(824\) 12.6402 12.6402i 0.440341 0.440341i
\(825\) 0 0
\(826\) −7.82317 + 7.82317i −0.272203 + 0.272203i
\(827\) 32.2394 + 32.2394i 1.12107 + 1.12107i 0.991580 + 0.129495i \(0.0413355\pi\)
0.129495 + 0.991580i \(0.458664\pi\)
\(828\) 4.34059 + 7.37254i 0.150846 + 0.256214i
\(829\) 14.4284i 0.501119i −0.968101 0.250559i \(-0.919385\pi\)
0.968101 0.250559i \(-0.0806145\pi\)
\(830\) 0 0
\(831\) −47.9177 + 13.0582i −1.66225 + 0.452985i
\(832\) −14.5979 11.1809i −0.506091 0.387630i
\(833\) 7.50737i 0.260115i
\(834\) −11.0728 6.33024i −0.383420 0.219198i
\(835\) 0 0
\(836\) 0.357136 0.0123518
\(837\) −0.185701 14.5495i −0.00641878 0.502904i
\(838\) 12.6861 + 12.6861i 0.438233 + 0.438233i
\(839\) −16.5805 16.5805i −0.572423 0.572423i 0.360382 0.932805i \(-0.382646\pi\)
−0.932805 + 0.360382i \(0.882646\pi\)
\(840\) 0 0
\(841\) −24.9097 −0.858956
\(842\) −34.8119 −1.19970
\(843\) 0.986965 1.72639i 0.0339929 0.0594602i
\(844\) 3.00632i 0.103482i
\(845\) 0 0
\(846\) −50.6955 + 29.8470i −1.74295 + 1.02616i
\(847\) 15.8779 + 15.8779i 0.545572 + 0.545572i
\(848\) 1.22829i 0.0421798i
\(849\) 38.3752 10.4578i 1.31703 0.358910i
\(850\) 0 0
\(851\) 17.1544 17.1544i 0.588046 0.588046i
\(852\) −4.82410 + 8.43829i −0.165271 + 0.289091i
\(853\) −20.3214 + 20.3214i −0.695793 + 0.695793i −0.963500 0.267707i \(-0.913734\pi\)
0.267707 + 0.963500i \(0.413734\pi\)
\(854\) 12.0120i 0.411043i
\(855\) 0 0
\(856\) −6.18118 + 6.18118i −0.211269 + 0.211269i
\(857\) 23.5604 0.804807 0.402404 0.915462i \(-0.368175\pi\)
0.402404 + 0.915462i \(0.368175\pi\)
\(858\) 3.78978 + 1.54703i 0.129381 + 0.0528146i
\(859\) −23.0208 −0.785460 −0.392730 0.919654i \(-0.628469\pi\)
−0.392730 + 0.919654i \(0.628469\pi\)
\(860\) 0 0
\(861\) 15.1328 4.12390i 0.515724 0.140542i
\(862\) 57.3071i 1.95189i
\(863\) 0.128867 0.128867i 0.00438669 0.00438669i −0.704910 0.709297i \(-0.749013\pi\)
0.709297 + 0.704910i \(0.249013\pi\)
\(864\) −14.4718 + 0.184710i −0.492341 + 0.00628395i
\(865\) 0 0
\(866\) −36.4071 36.4071i −1.23716 1.23716i
\(867\) 4.22043 + 15.4870i 0.143333 + 0.525967i
\(868\) 2.92358i 0.0992327i
\(869\) −4.77770 4.77770i −0.162072 0.162072i
\(870\) 0 0
\(871\) 46.9790 6.22699i 1.59182 0.210994i
\(872\) 34.1421i 1.15620i
\(873\) −34.5640 8.94691i −1.16981 0.302807i
\(874\) 15.3466 0.519105
\(875\) 0 0
\(876\) −7.05170 + 12.3348i −0.238255 + 0.416754i
\(877\) −23.8978 23.8978i −0.806973 0.806973i 0.177202 0.984175i \(-0.443296\pi\)
−0.984175 + 0.177202i \(0.943296\pi\)
\(878\) 37.7645 + 37.7645i 1.27449 + 1.27449i
\(879\) 10.0401 17.5620i 0.338643 0.592352i
\(880\) 0 0
\(881\) −23.2229 −0.782400 −0.391200 0.920306i \(-0.627940\pi\)
−0.391200 + 0.920306i \(0.627940\pi\)
\(882\) 12.4061 + 3.21133i 0.417737 + 0.108131i
\(883\) 11.7041i 0.393876i 0.980416 + 0.196938i \(0.0630998\pi\)
−0.980416 + 0.196938i \(0.936900\pi\)
\(884\) 4.00736 + 3.06935i 0.134782 + 0.103234i
\(885\) 0 0
\(886\) 33.9059 + 33.9059i 1.13909 + 1.13909i
\(887\) 6.56575i 0.220456i 0.993906 + 0.110228i \(0.0351582\pi\)
−0.993906 + 0.110228i \(0.964842\pi\)
\(888\) 4.61839 + 16.9474i 0.154983 + 0.568716i
\(889\) 30.9380 + 30.9380i 1.03763 + 1.03763i
\(890\) 0 0
\(891\) −3.58440 + 1.02612i −0.120082 + 0.0343763i
\(892\) −2.09613 + 2.09613i −0.0701837 + 0.0701837i
\(893\) 21.2221i 0.710172i
\(894\) −44.4185 + 12.1047i −1.48558 + 0.404840i
\(895\) 0 0
\(896\) 28.2849 0.944932
\(897\) 32.7504 + 13.3691i 1.09351 + 0.446380i
\(898\) −42.3701 −1.41391
\(899\) −14.5385 + 14.5385i −0.484887 + 0.484887i
\(900\) 0 0
\(901\) 0.718544i 0.0239382i
\(902\) 2.02396 2.02396i 0.0673905 0.0673905i
\(903\) −1.48138 + 2.59123i −0.0492973 + 0.0862306i
\(904\) 29.0529 29.0529i 0.966286 0.966286i
\(905\) 0 0
\(906\) 18.5715 5.06099i 0.616996 0.168140i
\(907\) 21.6880i 0.720139i 0.932926 + 0.360069i \(0.117247\pi\)
−0.932926 + 0.360069i \(0.882753\pi\)
\(908\) −4.02328 4.02328i −0.133517 0.133517i
\(909\) 16.4230 9.66909i 0.544718 0.320703i
\(910\) 0 0
\(911\) 6.44406i 0.213501i 0.994286 + 0.106751i \(0.0340446\pi\)
−0.994286 + 0.106751i \(0.965955\pi\)
\(912\) −6.99700 + 12.2391i −0.231694 + 0.405277i
\(913\) −5.95785 −0.197176
\(914\) −28.2219 −0.933497
\(915\) 0 0
\(916\) 7.43805 + 7.43805i 0.245760 + 0.245760i
\(917\) −14.4615 14.4615i −0.477562 0.477562i
\(918\) −22.8600 + 0.291772i −0.754493 + 0.00962991i
\(919\) 31.6869 1.04525 0.522626 0.852562i \(-0.324952\pi\)
0.522626 + 0.852562i \(0.324952\pi\)
\(920\) 0 0
\(921\) 47.6677 + 27.2513i 1.57071 + 0.897959i
\(922\) 29.3646i 0.967072i
\(923\) 5.28079 + 39.8404i 0.173819 + 1.31136i
\(924\) −0.722763 + 0.196963i −0.0237772 + 0.00647961i
\(925\) 0 0
\(926\) 53.1209i 1.74566i
\(927\) −11.4905 19.5167i −0.377397 0.641014i
\(928\) 14.4609 + 14.4609i 0.474702 + 0.474702i
\(929\) 14.6798 14.6798i 0.481629 0.481629i −0.424022 0.905652i \(-0.639382\pi\)
0.905652 + 0.424022i \(0.139382\pi\)
\(930\) 0 0
\(931\) 3.26889 3.26889i 0.107134 0.107134i
\(932\) 7.57380i 0.248088i
\(933\) −9.85575 36.1660i −0.322663 1.18402i
\(934\) 23.3985 23.3985i 0.765624 0.765624i
\(935\) 0 0
\(936\) −20.1724 + 15.7820i −0.659357 + 0.515850i
\(937\) 0.784915 0.0256421 0.0128210 0.999918i \(-0.495919\pi\)
0.0128210 + 0.999918i \(0.495919\pi\)
\(938\) −30.4940 + 30.4940i −0.995665 + 0.995665i
\(939\) 3.24341 + 11.9018i 0.105845 + 0.388401i
\(940\) 0 0
\(941\) −39.5408 + 39.5408i −1.28899 + 1.28899i −0.353595 + 0.935399i \(0.615041\pi\)
−0.935399 + 0.353595i \(0.884959\pi\)
\(942\) 37.9554 + 21.6988i 1.23665 + 0.706985i
\(943\) 17.4906 17.4906i 0.569574 0.569574i
\(944\) −11.3338 11.3338i −0.368884 0.368884i
\(945\) 0 0
\(946\) 0.544698i 0.0177097i
\(947\) 19.7845 + 19.7845i 0.642910 + 0.642910i 0.951270 0.308360i \(-0.0997802\pi\)
−0.308360 + 0.951270i \(0.599780\pi\)
\(948\) −13.7223 + 3.73953i −0.445680 + 0.121454i
\(949\) 7.71927 + 58.2373i 0.250578 + 1.89046i
\(950\) 0 0
\(951\) 31.8833 + 18.2274i 1.03389 + 0.591065i
\(952\) 13.6541 0.442532
\(953\) −52.5727 −1.70300 −0.851498 0.524357i \(-0.824306\pi\)
−0.851498 + 0.524357i \(0.824306\pi\)
\(954\) 1.18741 + 0.307363i 0.0384440 + 0.00995123i
\(955\) 0 0
\(956\) −2.58511 2.58511i −0.0836085 0.0836085i
\(957\) 4.57367 + 2.61473i 0.147846 + 0.0845222i
\(958\) −27.9336 −0.902495
\(959\) 19.0950 0.616611
\(960\) 0 0
\(961\) 23.1584i 0.747046i
\(962\) −19.3973 14.8569i −0.625393 0.479007i
\(963\) 5.61898 + 9.54390i 0.181069 + 0.307548i
\(964\) −2.07049 2.07049i −0.0666861 0.0666861i
\(965\) 0 0
\(966\) −31.0580 + 8.46375i −0.999275 + 0.272317i
\(967\) 15.6621 + 15.6621i 0.503658 + 0.503658i 0.912573 0.408915i \(-0.134093\pi\)
−0.408915 + 0.912573i \(0.634093\pi\)
\(968\) −18.1304 + 18.1304i −0.582732 + 0.582732i
\(969\) −4.09319 + 7.15979i −0.131492 + 0.230006i
\(970\) 0 0
\(971\) 18.1426i 0.582225i 0.956689 + 0.291113i \(0.0940254\pi\)
−0.956689 + 0.291113i \(0.905975\pi\)
\(972\) −1.86957 + 7.62227i −0.0599663 + 0.244485i
\(973\) 6.82441 6.82441i 0.218781 0.218781i
\(974\) 38.6181 1.23740
\(975\) 0 0
\(976\) −17.4024 −0.557037
\(977\) 21.5034 21.5034i 0.687954 0.687954i −0.273826 0.961779i \(-0.588289\pi\)
0.961779 + 0.273826i \(0.0882891\pi\)
\(978\) −16.3674 + 4.46035i −0.523372 + 0.142626i
\(979\) 2.91403i 0.0931329i
\(980\) 0 0
\(981\) −41.8764 10.8397i −1.33701 0.346086i
\(982\) 37.3147 37.3147i 1.19076 1.19076i
\(983\) 31.4759 + 31.4759i 1.00392 + 1.00392i 0.999992 + 0.00393200i \(0.00125160\pi\)
0.00393200 + 0.999992i \(0.498748\pi\)
\(984\) 4.70891 + 17.2795i 0.150115 + 0.550851i
\(985\) 0 0
\(986\) 22.8428 + 22.8428i 0.727462 + 0.727462i
\(987\) −11.7042 42.9489i −0.372548 1.36708i
\(988\) −0.408432 3.08138i −0.0129940 0.0980317i
\(989\) 4.70717i 0.149679i
\(990\) 0 0
\(991\) −43.9818 −1.39713 −0.698563 0.715548i \(-0.746177\pi\)
−0.698563 + 0.715548i \(0.746177\pi\)
\(992\) 7.79970 0.247641
\(993\) −7.87889 + 13.7817i −0.250029 + 0.437349i
\(994\) −25.8604 25.8604i −0.820243 0.820243i
\(995\) 0 0
\(996\) −6.22434 + 10.8876i −0.197226 + 0.344986i
\(997\) 44.9600 1.42390 0.711949 0.702231i \(-0.247813\pi\)
0.711949 + 0.702231i \(0.247813\pi\)
\(998\) 40.2002 1.27251
\(999\) 22.2528 0.284022i 0.704048 0.00898606i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.o.p.476.6 40
3.2 odd 2 inner 975.2.o.p.476.15 40
5.2 odd 4 975.2.n.r.749.6 40
5.3 odd 4 975.2.n.q.749.15 40
5.4 even 2 195.2.o.a.86.15 yes 40
13.5 odd 4 inner 975.2.o.p.551.15 40
15.2 even 4 975.2.n.r.749.15 40
15.8 even 4 975.2.n.q.749.6 40
15.14 odd 2 195.2.o.a.86.6 40
39.5 even 4 inner 975.2.o.p.551.6 40
65.18 even 4 975.2.n.r.824.15 40
65.44 odd 4 195.2.o.a.161.6 yes 40
65.57 even 4 975.2.n.q.824.6 40
195.44 even 4 195.2.o.a.161.15 yes 40
195.83 odd 4 975.2.n.r.824.6 40
195.122 odd 4 975.2.n.q.824.15 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.o.a.86.6 40 15.14 odd 2
195.2.o.a.86.15 yes 40 5.4 even 2
195.2.o.a.161.6 yes 40 65.44 odd 4
195.2.o.a.161.15 yes 40 195.44 even 4
975.2.n.q.749.6 40 15.8 even 4
975.2.n.q.749.15 40 5.3 odd 4
975.2.n.q.824.6 40 65.57 even 4
975.2.n.q.824.15 40 195.122 odd 4
975.2.n.r.749.6 40 5.2 odd 4
975.2.n.r.749.15 40 15.2 even 4
975.2.n.r.824.6 40 195.83 odd 4
975.2.n.r.824.15 40 65.18 even 4
975.2.o.p.476.6 40 1.1 even 1 trivial
975.2.o.p.476.15 40 3.2 odd 2 inner
975.2.o.p.551.6 40 39.5 even 4 inner
975.2.o.p.551.15 40 13.5 odd 4 inner