Properties

Label 975.2.o
Level $975$
Weight $2$
Character orbit 975.o
Rep. character $\chi_{975}(476,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $164$
Newform subspaces $17$
Sturm bound $280$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.o (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 39 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 17 \)
Sturm bound: \(280\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(2\), \(7\), \(11\), \(37\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(975, [\chi])\).

Total New Old
Modular forms 304 188 116
Cusp forms 256 164 92
Eisenstein series 48 24 24

Trace form

\( 164 q + 4 q^{3} - 16 q^{6} + 12 q^{7} + 4 q^{9} + 8 q^{13} - 132 q^{16} - 12 q^{18} + 24 q^{19} + 12 q^{21} + 16 q^{22} - 28 q^{24} + 4 q^{27} - 36 q^{28} - 48 q^{31} + 20 q^{33} - 8 q^{34} - 36 q^{37}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(975, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
975.2.o.a 975.o 39.f $4$ $7.785$ \(\Q(\zeta_{12})\) None 975.2.o.a \(0\) \(-6\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1-2\zeta_{12}-2\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+\cdots\)
975.2.o.b 975.o 39.f $4$ $7.785$ \(\Q(i, \sqrt{11})\) None 975.2.o.b \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{3}q^{3}+2\beta _{2}q^{4}+(-3-\beta _{3})q^{9}+\cdots\)
975.2.o.c 975.o 39.f $4$ $7.785$ \(\Q(i, \sqrt{6})\) None 975.2.o.c \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{1}q^{2}+\beta _{3}q^{3}+\beta _{2}q^{4}-3q^{6}+(-1+\cdots)q^{7}+\cdots\)
975.2.o.d 975.o 39.f $4$ $7.785$ \(\Q(i, \sqrt{6})\) None 975.2.o.c \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{1}q^{2}+\beta _{3}q^{3}+\beta _{2}q^{4}-3q^{6}+(1+\cdots)q^{7}+\cdots\)
975.2.o.e 975.o 39.f $4$ $7.785$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-3}) \) 975.2.o.e \(0\) \(0\) \(0\) \(-10\) $\mathrm{U}(1)[D_{4}]$ \(q+(2\zeta_{12}-\zeta_{12}^{3})q^{3}-2\zeta_{12}^{3}q^{4}+(-2+\cdots)q^{7}+\cdots\)
975.2.o.f 975.o 39.f $4$ $7.785$ \(\Q(i, \sqrt{6})\) None 975.2.o.c \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{1}q^{2}+\beta _{1}q^{3}+\beta _{2}q^{4}+3\beta _{2}q^{6}+\cdots\)
975.2.o.g 975.o 39.f $4$ $7.785$ \(\Q(i, \sqrt{6})\) None 975.2.o.c \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{1}q^{2}+\beta _{1}q^{3}+\beta _{2}q^{4}+3\beta _{2}q^{6}+\cdots\)
975.2.o.h 975.o 39.f $4$ $7.785$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-3}) \) 975.2.o.e \(0\) \(0\) \(0\) \(10\) $\mathrm{U}(1)[D_{4}]$ \(q+(-2\zeta_{12}+\zeta_{12}^{3})q^{3}-2\zeta_{12}^{3}q^{4}+\cdots\)
975.2.o.i 975.o 39.f $4$ $7.785$ \(\Q(i, \sqrt{11})\) None 975.2.o.b \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{3}q^{3}+2\beta _{2}q^{4}+(-3-\beta _{3})q^{9}+\cdots\)
975.2.o.j 975.o 39.f $4$ $7.785$ \(\Q(\zeta_{8})\) None 39.2.f.a \(0\) \(4\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{4}]$ \(q+\zeta_{8}q^{2}+(1+\zeta_{8}+\zeta_{8}^{3})q^{3}-\zeta_{8}^{2}q^{4}+\cdots\)
975.2.o.k 975.o 39.f $4$ $7.785$ \(\Q(\zeta_{12})\) None 975.2.o.a \(0\) \(6\) \(0\) \(4\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1-2\zeta_{12}-2\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+\cdots\)
975.2.o.l 975.o 39.f $8$ $7.785$ 8.0.619810816.2 None 975.2.o.l \(-6\) \(-2\) \(0\) \(-14\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-1+\beta _{3}+\beta _{4}-\beta _{7})q^{2}+(-\beta _{1}+\cdots)q^{3}+\cdots\)
975.2.o.m 975.o 39.f $8$ $7.785$ 8.0.619810816.2 None 975.2.o.l \(-6\) \(2\) \(0\) \(14\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-1+\beta _{3}+\beta _{4}-\beta _{7})q^{2}+(-\beta _{6}+\cdots)q^{3}+\cdots\)
975.2.o.n 975.o 39.f $8$ $7.785$ 8.0.619810816.2 None 975.2.o.l \(6\) \(-2\) \(0\) \(-14\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1-\beta _{3}-\beta _{4}+\beta _{7})q^{2}+(\beta _{6}+\beta _{7})q^{3}+\cdots\)
975.2.o.o 975.o 39.f $8$ $7.785$ 8.0.619810816.2 None 975.2.o.l \(6\) \(2\) \(0\) \(14\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1-\beta _{3}-\beta _{4}+\beta _{7})q^{2}+(\beta _{1}+\beta _{5}+\cdots)q^{3}+\cdots\)
975.2.o.p 975.o 39.f $40$ $7.785$ None 195.2.o.a \(0\) \(0\) \(0\) \(16\) $\mathrm{SU}(2)[C_{4}]$
975.2.o.q 975.o 39.f $48$ $7.785$ None 195.2.n.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(975, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(975, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 2}\)