L(s) = 1 | + (1.11 + 1.11i)2-s + (−0.455 − 1.67i)3-s + 0.503i·4-s + (1.36 − 2.37i)6-s + (−1.46 − 1.46i)7-s + (1.67 − 1.67i)8-s + (−2.58 + 1.52i)9-s + (0.292 − 0.292i)11-s + (0.841 − 0.229i)12-s + (−2.19 − 2.86i)13-s − 3.28i·14-s + 4.75·16-s − 2.78·17-s + (−4.59 − 1.18i)18-s + (−1.21 + 1.21i)19-s + ⋯ |
L(s) = 1 | + (0.791 + 0.791i)2-s + (−0.262 − 0.964i)3-s + 0.251i·4-s + (0.555 − 0.971i)6-s + (−0.554 − 0.554i)7-s + (0.591 − 0.591i)8-s + (−0.861 + 0.507i)9-s + (0.0883 − 0.0883i)11-s + (0.242 − 0.0661i)12-s + (−0.608 − 0.793i)13-s − 0.876i·14-s + 1.18·16-s − 0.674·17-s + (−1.08 − 0.280i)18-s + (−0.277 + 0.277i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.349 + 0.936i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.349 + 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.810189 - 1.16704i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.810189 - 1.16704i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.455 + 1.67i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (2.19 + 2.86i)T \) |
good | 2 | \( 1 + (-1.11 - 1.11i)T + 2iT^{2} \) |
| 7 | \( 1 + (1.46 + 1.46i)T + 7iT^{2} \) |
| 11 | \( 1 + (-0.292 + 0.292i)T - 11iT^{2} \) |
| 17 | \( 1 + 2.78T + 17T^{2} \) |
| 19 | \( 1 + (1.21 - 1.21i)T - 19iT^{2} \) |
| 23 | \( 1 + 5.66T + 23T^{2} \) |
| 29 | \( 1 + 7.34iT - 29T^{2} \) |
| 31 | \( 1 + (1.98 - 1.98i)T - 31iT^{2} \) |
| 37 | \( 1 + (-3.02 - 3.02i)T + 37iT^{2} \) |
| 41 | \( 1 + (3.08 + 3.08i)T + 41iT^{2} \) |
| 43 | \( 1 + 0.831iT - 43T^{2} \) |
| 47 | \( 1 + (-8.76 + 8.76i)T - 47iT^{2} \) |
| 53 | \( 1 - 0.258iT - 53T^{2} \) |
| 59 | \( 1 + (-2.38 + 2.38i)T - 59iT^{2} \) |
| 61 | \( 1 + 3.66T + 61T^{2} \) |
| 67 | \( 1 + (9.29 - 9.29i)T - 67iT^{2} \) |
| 71 | \( 1 + (7.88 + 7.88i)T + 71iT^{2} \) |
| 73 | \( 1 + (-11.5 - 11.5i)T + 73iT^{2} \) |
| 79 | \( 1 - 16.3T + 79T^{2} \) |
| 83 | \( 1 + (10.1 + 10.1i)T + 83iT^{2} \) |
| 89 | \( 1 + (-4.97 + 4.97i)T - 89iT^{2} \) |
| 97 | \( 1 + (-8.41 + 8.41i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.975546924851008428421525868960, −8.587273794316192232942986125478, −7.65286085760958197242418966139, −7.09532741553691312385320076827, −6.24094452370816521708314063102, −5.71178631904358540491996059525, −4.65284881280514618810110537760, −3.59608798313344021915560432639, −2.14299701120312016933504902644, −0.49263015635067191235445167037,
2.14972739711889505606979996941, 3.07307411838562214040878854285, 4.08720286674916397047141731348, 4.68923541758849999003974981702, 5.66166679345140983141622344683, 6.57499071569779963764294473488, 7.83894447191773025951000245335, 9.010372935244089728406700924219, 9.462180717261467275858496330497, 10.54970211632330193648316428739