Properties

Label 975.2.bn.d.407.6
Level $975$
Weight $2$
Character 975.407
Analytic conductor $7.785$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(218,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.218"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bn (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,2,0,0,-12,12,0,0,0,0,12,24,0,0,16,0,0,0,0,0,-20,0,0,0,0, 32,36,0,0,0,0,-30,0,0,-4,84,0,0,0,0,48,-8,0,0,0,0,28,0,0,-16,-28,0,0,0, 0,0,-84,0,0,-32,0,-90,0,0,0,-36,0,0,0,0,-90,0,0,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(76)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 407.6
Character \(\chi\) \(=\) 975.407
Dual form 975.2.bn.d.218.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.65038 + 0.442218i) q^{2} +(0.744530 + 1.56387i) q^{3} +(0.796141 - 0.459652i) q^{4} +(-1.92033 - 2.25172i) q^{6} +(-0.109428 - 0.0293212i) q^{7} +(1.30565 - 1.30565i) q^{8} +(-1.89135 + 2.32869i) q^{9} +(2.05447 - 3.55845i) q^{11} +(1.31159 + 0.902832i) q^{12} +(-3.24500 - 1.57162i) q^{13} +0.193564 q^{14} +(-2.49674 + 4.32449i) q^{16} +(5.04353 + 1.35141i) q^{17} +(2.09165 - 4.67961i) q^{18} +(3.97662 + 6.88771i) q^{19} +(-0.0356182 - 0.192962i) q^{21} +(-1.81705 + 6.78132i) q^{22} +(-6.69524 + 1.79398i) q^{23} +(3.01397 + 1.06977i) q^{24} +(6.05047 + 1.15878i) q^{26} +(-5.04992 - 1.22403i) q^{27} +(-0.100598 + 0.0269551i) q^{28} +(-2.00973 + 3.48095i) q^{29} +6.89468i q^{31} +(1.25240 - 4.67403i) q^{32} +(7.09456 + 0.563544i) q^{33} -8.92135 q^{34} +(-0.435393 + 2.72333i) q^{36} +(1.09950 + 4.10339i) q^{37} +(-9.60880 - 9.60880i) q^{38} +(0.0418074 - 6.24486i) q^{39} +(-1.73822 + 3.01068i) q^{41} +(0.144115 + 0.302709i) q^{42} +(4.88872 + 1.30993i) q^{43} -3.77737i q^{44} +(10.2563 - 5.92150i) q^{46} +(0.185543 + 0.185543i) q^{47} +(-8.62182 - 0.684859i) q^{48} +(-6.05106 - 3.49358i) q^{49} +(1.64164 + 8.89356i) q^{51} +(-3.30587 + 0.240337i) q^{52} +(1.94409 + 1.94409i) q^{53} +(8.87558 - 0.213046i) q^{54} +(-0.181159 + 0.104592i) q^{56} +(-7.81074 + 11.3470i) q^{57} +(1.77747 - 6.63362i) q^{58} +(-0.619675 + 0.357770i) q^{59} +(2.04160 + 3.53616i) q^{61} +(-3.04895 - 11.3788i) q^{62} +(0.275247 - 0.199368i) q^{63} -1.71922i q^{64} +(-11.9579 + 2.20728i) q^{66} +(0.764792 + 2.85424i) q^{67} +(4.63654 - 1.24236i) q^{68} +(-7.79036 - 9.13477i) q^{69} +(-4.25380 - 7.36780i) q^{71} +(0.571017 + 5.50991i) q^{72} +(3.00868 + 3.00868i) q^{73} +(-3.62918 - 6.28592i) q^{74} +(6.33191 + 3.65573i) q^{76} +(-0.329156 + 0.329156i) q^{77} +(2.69259 + 10.3249i) q^{78} +4.84485i q^{79} +(-1.84560 - 8.80873i) q^{81} +(1.53734 - 5.73743i) q^{82} +(-2.04442 + 2.04442i) q^{83} +(-0.117052 - 0.137253i) q^{84} -8.64751 q^{86} +(-6.94004 - 0.551270i) q^{87} +(-1.96368 - 7.32854i) q^{88} +(2.79966 + 1.61638i) q^{89} +(0.309013 + 0.267127i) q^{91} +(-4.50574 + 4.50574i) q^{92} +(-10.7823 + 5.13330i) q^{93} +(-0.388267 - 0.224166i) q^{94} +(8.24201 - 1.52137i) q^{96} +(-0.144327 - 0.0386722i) q^{97} +(11.5315 + 3.08985i) q^{98} +(4.40081 + 11.5145i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 2 q^{3} - 12 q^{6} + 12 q^{7} + 12 q^{12} + 24 q^{13} + 16 q^{16} - 20 q^{22} + 32 q^{27} + 36 q^{28} - 30 q^{33} - 4 q^{36} + 84 q^{37} + 48 q^{42} - 8 q^{43} + 28 q^{48} - 16 q^{51} - 28 q^{52}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.65038 + 0.442218i −1.16699 + 0.312695i −0.789756 0.613421i \(-0.789793\pi\)
−0.377238 + 0.926116i \(0.623126\pi\)
\(3\) 0.744530 + 1.56387i 0.429855 + 0.902898i
\(4\) 0.796141 0.459652i 0.398071 0.229826i
\(5\) 0 0
\(6\) −1.92033 2.25172i −0.783970 0.919263i
\(7\) −0.109428 0.0293212i −0.0413600 0.0110824i 0.238080 0.971246i \(-0.423482\pi\)
−0.279440 + 0.960163i \(0.590149\pi\)
\(8\) 1.30565 1.30565i 0.461618 0.461618i
\(9\) −1.89135 + 2.32869i −0.630450 + 0.776230i
\(10\) 0 0
\(11\) 2.05447 3.55845i 0.619447 1.07291i −0.370139 0.928976i \(-0.620690\pi\)
0.989587 0.143938i \(-0.0459766\pi\)
\(12\) 1.31159 + 0.902832i 0.378622 + 0.260625i
\(13\) −3.24500 1.57162i −0.900000 0.435890i
\(14\) 0.193564 0.0517323
\(15\) 0 0
\(16\) −2.49674 + 4.32449i −0.624186 + 1.08112i
\(17\) 5.04353 + 1.35141i 1.22324 + 0.327765i 0.811942 0.583738i \(-0.198411\pi\)
0.411293 + 0.911503i \(0.365077\pi\)
\(18\) 2.09165 4.67961i 0.493007 1.10299i
\(19\) 3.97662 + 6.88771i 0.912300 + 1.58015i 0.810807 + 0.585313i \(0.199029\pi\)
0.101493 + 0.994836i \(0.467638\pi\)
\(20\) 0 0
\(21\) −0.0356182 0.192962i −0.00777254 0.0421077i
\(22\) −1.81705 + 6.78132i −0.387396 + 1.44578i
\(23\) −6.69524 + 1.79398i −1.39605 + 0.374071i −0.876926 0.480625i \(-0.840410\pi\)
−0.519127 + 0.854697i \(0.673743\pi\)
\(24\) 3.01397 + 1.06977i 0.615223 + 0.218365i
\(25\) 0 0
\(26\) 6.05047 + 1.15878i 1.18659 + 0.227255i
\(27\) −5.04992 1.22403i −0.971858 0.235565i
\(28\) −0.100598 + 0.0269551i −0.0190112 + 0.00509404i
\(29\) −2.00973 + 3.48095i −0.373197 + 0.646396i −0.990055 0.140678i \(-0.955072\pi\)
0.616858 + 0.787074i \(0.288405\pi\)
\(30\) 0 0
\(31\) 6.89468i 1.23832i 0.785265 + 0.619160i \(0.212527\pi\)
−0.785265 + 0.619160i \(0.787473\pi\)
\(32\) 1.25240 4.67403i 0.221396 0.826260i
\(33\) 7.09456 + 0.563544i 1.23500 + 0.0981004i
\(34\) −8.92135 −1.53000
\(35\) 0 0
\(36\) −0.435393 + 2.72333i −0.0725655 + 0.453888i
\(37\) 1.09950 + 4.10339i 0.180757 + 0.674593i 0.995499 + 0.0947700i \(0.0302116\pi\)
−0.814743 + 0.579823i \(0.803122\pi\)
\(38\) −9.60880 9.60880i −1.55875 1.55875i
\(39\) 0.0418074 6.24486i 0.00669454 0.999978i
\(40\) 0 0
\(41\) −1.73822 + 3.01068i −0.271464 + 0.470189i −0.969237 0.246130i \(-0.920841\pi\)
0.697773 + 0.716319i \(0.254174\pi\)
\(42\) 0.144115 + 0.302709i 0.0222374 + 0.0467090i
\(43\) 4.88872 + 1.30993i 0.745523 + 0.199762i 0.611531 0.791220i \(-0.290554\pi\)
0.133991 + 0.990982i \(0.457221\pi\)
\(44\) 3.77737i 0.569461i
\(45\) 0 0
\(46\) 10.2563 5.92150i 1.51222 0.873078i
\(47\) 0.185543 + 0.185543i 0.0270642 + 0.0270642i 0.720509 0.693445i \(-0.243908\pi\)
−0.693445 + 0.720509i \(0.743908\pi\)
\(48\) −8.62182 0.684859i −1.24445 0.0988509i
\(49\) −6.05106 3.49358i −0.864438 0.499083i
\(50\) 0 0
\(51\) 1.64164 + 8.89356i 0.229875 + 1.24535i
\(52\) −3.30587 + 0.240337i −0.458442 + 0.0333287i
\(53\) 1.94409 + 1.94409i 0.267042 + 0.267042i 0.827907 0.560865i \(-0.189531\pi\)
−0.560865 + 0.827907i \(0.689531\pi\)
\(54\) 8.87558 0.213046i 1.20781 0.0289919i
\(55\) 0 0
\(56\) −0.181159 + 0.104592i −0.0242084 + 0.0139767i
\(57\) −7.81074 + 11.3470i −1.03456 + 1.50295i
\(58\) 1.77747 6.63362i 0.233394 0.871037i
\(59\) −0.619675 + 0.357770i −0.0806749 + 0.0465777i −0.539795 0.841797i \(-0.681498\pi\)
0.459120 + 0.888374i \(0.348165\pi\)
\(60\) 0 0
\(61\) 2.04160 + 3.53616i 0.261400 + 0.452758i 0.966614 0.256236i \(-0.0824825\pi\)
−0.705214 + 0.708994i \(0.749149\pi\)
\(62\) −3.04895 11.3788i −0.387217 1.44511i
\(63\) 0.275247 0.199368i 0.0346779 0.0251180i
\(64\) 1.71922i 0.214903i
\(65\) 0 0
\(66\) −11.9579 + 2.20728i −1.47192 + 0.271697i
\(67\) 0.764792 + 2.85424i 0.0934343 + 0.348701i 0.996777 0.0802172i \(-0.0255614\pi\)
−0.903343 + 0.428919i \(0.858895\pi\)
\(68\) 4.63654 1.24236i 0.562263 0.150658i
\(69\) −7.79036 9.13477i −0.937849 1.09970i
\(70\) 0 0
\(71\) −4.25380 7.36780i −0.504833 0.874397i −0.999984 0.00558990i \(-0.998221\pi\)
0.495151 0.868807i \(-0.335113\pi\)
\(72\) 0.571017 + 5.50991i 0.0672949 + 0.649349i
\(73\) 3.00868 + 3.00868i 0.352139 + 0.352139i 0.860905 0.508766i \(-0.169898\pi\)
−0.508766 + 0.860905i \(0.669898\pi\)
\(74\) −3.62918 6.28592i −0.421884 0.730724i
\(75\) 0 0
\(76\) 6.33191 + 3.65573i 0.726319 + 0.419341i
\(77\) −0.329156 + 0.329156i −0.0375108 + 0.0375108i
\(78\) 2.69259 + 10.3249i 0.304876 + 1.16906i
\(79\) 4.84485i 0.545088i 0.962143 + 0.272544i \(0.0878650\pi\)
−0.962143 + 0.272544i \(0.912135\pi\)
\(80\) 0 0
\(81\) −1.84560 8.80873i −0.205066 0.978748i
\(82\) 1.53734 5.73743i 0.169771 0.633593i
\(83\) −2.04442 + 2.04442i −0.224405 + 0.224405i −0.810350 0.585946i \(-0.800723\pi\)
0.585946 + 0.810350i \(0.300723\pi\)
\(84\) −0.117052 0.137253i −0.0127715 0.0149755i
\(85\) 0 0
\(86\) −8.64751 −0.932485
\(87\) −6.94004 0.551270i −0.744050 0.0591023i
\(88\) −1.96368 7.32854i −0.209329 0.781225i
\(89\) 2.79966 + 1.61638i 0.296763 + 0.171336i 0.640988 0.767551i \(-0.278525\pi\)
−0.344225 + 0.938887i \(0.611858\pi\)
\(90\) 0 0
\(91\) 0.309013 + 0.267127i 0.0323933 + 0.0280025i
\(92\) −4.50574 + 4.50574i −0.469756 + 0.469756i
\(93\) −10.7823 + 5.13330i −1.11808 + 0.532298i
\(94\) −0.388267 0.224166i −0.0400466 0.0231209i
\(95\) 0 0
\(96\) 8.24201 1.52137i 0.841196 0.155274i
\(97\) −0.144327 0.0386722i −0.0146542 0.00392657i 0.251485 0.967861i \(-0.419081\pi\)
−0.266139 + 0.963935i \(0.585748\pi\)
\(98\) 11.5315 + 3.08985i 1.16485 + 0.312122i
\(99\) 4.40081 + 11.5145i 0.442298 + 1.15725i
\(100\) 0 0
\(101\) −10.5103 6.06812i −1.04581 0.603800i −0.124339 0.992240i \(-0.539681\pi\)
−0.921474 + 0.388440i \(0.873014\pi\)
\(102\) −6.64221 13.9518i −0.657677 1.38143i
\(103\) −0.528320 + 0.528320i −0.0520569 + 0.0520569i −0.732656 0.680599i \(-0.761720\pi\)
0.680599 + 0.732656i \(0.261720\pi\)
\(104\) −6.28884 + 2.18485i −0.616671 + 0.214242i
\(105\) 0 0
\(106\) −4.06820 2.34878i −0.395139 0.228133i
\(107\) 0.427445 + 1.59525i 0.0413227 + 0.154218i 0.983504 0.180884i \(-0.0578958\pi\)
−0.942182 + 0.335102i \(0.891229\pi\)
\(108\) −4.58308 + 1.34671i −0.441007 + 0.129587i
\(109\) −0.638870 −0.0611926 −0.0305963 0.999532i \(-0.509741\pi\)
−0.0305963 + 0.999532i \(0.509741\pi\)
\(110\) 0 0
\(111\) −5.59853 + 4.77457i −0.531389 + 0.453182i
\(112\) 0.400014 0.400014i 0.0377977 0.0377977i
\(113\) 2.04834 7.64451i 0.192692 0.719135i −0.800161 0.599786i \(-0.795253\pi\)
0.992852 0.119349i \(-0.0380808\pi\)
\(114\) 7.87282 22.1809i 0.737357 2.07743i
\(115\) 0 0
\(116\) 3.69510i 0.343082i
\(117\) 9.79724 4.58411i 0.905755 0.423801i
\(118\) 0.864487 0.864487i 0.0795825 0.0795825i
\(119\) −0.512280 0.295765i −0.0469606 0.0271127i
\(120\) 0 0
\(121\) −2.94173 5.09522i −0.267430 0.463202i
\(122\) −4.93316 4.93316i −0.446628 0.446628i
\(123\) −6.00245 0.476794i −0.541223 0.0429911i
\(124\) 3.16915 + 5.48913i 0.284598 + 0.492939i
\(125\) 0 0
\(126\) −0.366098 + 0.450752i −0.0326146 + 0.0401561i
\(127\) −12.3036 + 3.29674i −1.09177 + 0.292539i −0.759409 0.650614i \(-0.774512\pi\)
−0.332361 + 0.943152i \(0.607845\pi\)
\(128\) 3.26508 + 12.1854i 0.288595 + 1.07705i
\(129\) 1.59125 + 8.62058i 0.140102 + 0.759000i
\(130\) 0 0
\(131\) 12.9569i 1.13205i 0.824390 + 0.566023i \(0.191519\pi\)
−0.824390 + 0.566023i \(0.808481\pi\)
\(132\) 5.90731 2.81237i 0.514165 0.244785i
\(133\) −0.233199 0.870310i −0.0202209 0.0754655i
\(134\) −2.52439 4.37238i −0.218074 0.377716i
\(135\) 0 0
\(136\) 8.34958 4.82063i 0.715970 0.413366i
\(137\) −3.22490 + 12.0355i −0.275522 + 1.02826i 0.679969 + 0.733241i \(0.261993\pi\)
−0.955491 + 0.295021i \(0.904673\pi\)
\(138\) 16.8966 + 11.6308i 1.43833 + 0.990079i
\(139\) 3.31851 1.91594i 0.281472 0.162508i −0.352618 0.935767i \(-0.614708\pi\)
0.634090 + 0.773260i \(0.281375\pi\)
\(140\) 0 0
\(141\) −0.152022 + 0.428307i −0.0128026 + 0.0360699i
\(142\) 10.2785 + 10.2785i 0.862557 + 0.862557i
\(143\) −12.2593 + 8.31831i −1.02517 + 0.695612i
\(144\) −5.34818 13.9933i −0.445682 1.16610i
\(145\) 0 0
\(146\) −6.29594 3.63496i −0.521056 0.300832i
\(147\) 0.958292 12.0641i 0.0790386 0.995032i
\(148\) 2.76149 + 2.76149i 0.226993 + 0.226993i
\(149\) −10.3032 + 5.94857i −0.844073 + 0.487326i −0.858647 0.512568i \(-0.828694\pi\)
0.0145735 + 0.999894i \(0.495361\pi\)
\(150\) 0 0
\(151\) 11.1014i 0.903416i 0.892166 + 0.451708i \(0.149185\pi\)
−0.892166 + 0.451708i \(0.850815\pi\)
\(152\) 14.1851 + 3.80088i 1.15056 + 0.308292i
\(153\) −12.6861 + 9.18883i −1.02561 + 0.742873i
\(154\) 0.397673 0.688790i 0.0320454 0.0555043i
\(155\) 0 0
\(156\) −2.83718 4.99100i −0.227156 0.399600i
\(157\) −5.53986 5.53986i −0.442129 0.442129i 0.450598 0.892727i \(-0.351211\pi\)
−0.892727 + 0.450598i \(0.851211\pi\)
\(158\) −2.14248 7.99583i −0.170446 0.636114i
\(159\) −1.59286 + 4.48774i −0.126322 + 0.355901i
\(160\) 0 0
\(161\) 0.785250 0.0618864
\(162\) 6.94131 + 13.7216i 0.545361 + 1.07807i
\(163\) −3.17233 + 11.8393i −0.248476 + 0.927326i 0.723128 + 0.690714i \(0.242704\pi\)
−0.971604 + 0.236612i \(0.923963\pi\)
\(164\) 3.19590i 0.249558i
\(165\) 0 0
\(166\) 2.46999 4.27815i 0.191708 0.332049i
\(167\) 8.61742 2.30903i 0.666836 0.178678i 0.0905069 0.995896i \(-0.471151\pi\)
0.576329 + 0.817218i \(0.304485\pi\)
\(168\) −0.298446 0.205436i −0.0230256 0.0158497i
\(169\) 8.06000 + 10.1998i 0.620000 + 0.784602i
\(170\) 0 0
\(171\) −23.5605 3.76674i −1.80172 0.288050i
\(172\) 4.49422 1.20422i 0.342681 0.0918211i
\(173\) 2.27704 8.49801i 0.173120 0.646092i −0.823744 0.566961i \(-0.808119\pi\)
0.996864 0.0791307i \(-0.0252144\pi\)
\(174\) 11.6975 2.15920i 0.886783 0.163689i
\(175\) 0 0
\(176\) 10.2590 + 17.7691i 0.773301 + 1.33940i
\(177\) −1.02087 0.702718i −0.0767334 0.0528196i
\(178\) −5.33529 1.42959i −0.399897 0.107152i
\(179\) −9.95273 + 17.2386i −0.743902 + 1.28848i 0.206804 + 0.978382i \(0.433694\pi\)
−0.950706 + 0.310094i \(0.899640\pi\)
\(180\) 0 0
\(181\) 7.45086 0.553818 0.276909 0.960896i \(-0.410690\pi\)
0.276909 + 0.960896i \(0.410690\pi\)
\(182\) −0.628116 0.304210i −0.0465590 0.0225496i
\(183\) −4.01004 + 5.82556i −0.296430 + 0.430638i
\(184\) −6.39934 + 11.0840i −0.471766 + 0.817122i
\(185\) 0 0
\(186\) 15.5249 13.2400i 1.13834 0.970805i
\(187\) 15.1707 15.1707i 1.10939 1.10939i
\(188\) 0.233004 + 0.0624332i 0.0169935 + 0.00455341i
\(189\) 0.516714 + 0.282014i 0.0375854 + 0.0205135i
\(190\) 0 0
\(191\) 19.8776 11.4763i 1.43829 0.830399i 0.440562 0.897722i \(-0.354779\pi\)
0.997731 + 0.0673227i \(0.0214457\pi\)
\(192\) 2.68863 1.28001i 0.194035 0.0923770i
\(193\) 21.1680 5.67196i 1.52371 0.408276i 0.602748 0.797932i \(-0.294072\pi\)
0.920961 + 0.389655i \(0.127406\pi\)
\(194\) 0.255295 0.0183291
\(195\) 0 0
\(196\) −6.42333 −0.458810
\(197\) −8.39781 + 2.25019i −0.598319 + 0.160319i −0.545253 0.838272i \(-0.683566\pi\)
−0.0530668 + 0.998591i \(0.516900\pi\)
\(198\) −12.3549 17.0572i −0.878026 1.21220i
\(199\) 17.5413 10.1275i 1.24347 0.717919i 0.273673 0.961823i \(-0.411761\pi\)
0.969799 + 0.243904i \(0.0784282\pi\)
\(200\) 0 0
\(201\) −3.89424 + 3.32110i −0.274679 + 0.234253i
\(202\) 20.0294 + 5.36686i 1.40926 + 0.377611i
\(203\) 0.321987 0.321987i 0.0225990 0.0225990i
\(204\) 5.39492 + 6.32595i 0.377720 + 0.442905i
\(205\) 0 0
\(206\) 0.638295 1.10556i 0.0444721 0.0770280i
\(207\) 8.48540 18.9842i 0.589776 1.31949i
\(208\) 14.8984 10.1090i 1.03302 0.700934i
\(209\) 32.6795 2.26049
\(210\) 0 0
\(211\) 3.64767 6.31794i 0.251116 0.434945i −0.712718 0.701451i \(-0.752536\pi\)
0.963833 + 0.266506i \(0.0858692\pi\)
\(212\) 2.44138 + 0.654166i 0.167675 + 0.0449283i
\(213\) 8.35516 12.1379i 0.572486 0.831677i
\(214\) −1.41089 2.44374i −0.0964466 0.167050i
\(215\) 0 0
\(216\) −8.19162 + 4.99529i −0.557369 + 0.339886i
\(217\) 0.202160 0.754473i 0.0137235 0.0512169i
\(218\) 1.05438 0.282519i 0.0714114 0.0191346i
\(219\) −2.46511 + 6.94521i −0.166577 + 0.469314i
\(220\) 0 0
\(221\) −14.2423 12.3118i −0.958043 0.828184i
\(222\) 7.12830 10.3556i 0.478420 0.695023i
\(223\) 11.7287 3.14269i 0.785411 0.210450i 0.156242 0.987719i \(-0.450062\pi\)
0.629169 + 0.777268i \(0.283395\pi\)
\(224\) −0.274097 + 0.474749i −0.0183139 + 0.0317205i
\(225\) 0 0
\(226\) 13.5221i 0.899479i
\(227\) 3.58919 13.3950i 0.238223 0.889061i −0.738446 0.674312i \(-0.764440\pi\)
0.976669 0.214748i \(-0.0688931\pi\)
\(228\) −1.00277 + 12.6240i −0.0664100 + 0.836048i
\(229\) −8.51901 −0.562952 −0.281476 0.959568i \(-0.590824\pi\)
−0.281476 + 0.959568i \(0.590824\pi\)
\(230\) 0 0
\(231\) −0.759822 0.269689i −0.0499926 0.0177442i
\(232\) 1.92091 + 7.16892i 0.126114 + 0.470663i
\(233\) −8.61258 8.61258i −0.564229 0.564229i 0.366277 0.930506i \(-0.380632\pi\)
−0.930506 + 0.366277i \(0.880632\pi\)
\(234\) −14.1420 + 11.8980i −0.924490 + 0.777798i
\(235\) 0 0
\(236\) −0.328899 + 0.569670i −0.0214095 + 0.0370824i
\(237\) −7.57669 + 3.60714i −0.492159 + 0.234309i
\(238\) 0.976248 + 0.261585i 0.0632807 + 0.0169560i
\(239\) 11.5531i 0.747310i −0.927568 0.373655i \(-0.878104\pi\)
0.927568 0.373655i \(-0.121896\pi\)
\(240\) 0 0
\(241\) 12.0934 6.98212i 0.779004 0.449758i −0.0570731 0.998370i \(-0.518177\pi\)
0.836077 + 0.548612i \(0.184843\pi\)
\(242\) 7.10816 + 7.10816i 0.456930 + 0.456930i
\(243\) 12.4016 9.44464i 0.795561 0.605874i
\(244\) 3.25080 + 1.87685i 0.208111 + 0.120153i
\(245\) 0 0
\(246\) 10.1172 1.86750i 0.645047 0.119067i
\(247\) −2.07924 28.6004i −0.132299 1.81980i
\(248\) 9.00206 + 9.00206i 0.571631 + 0.571631i
\(249\) −4.71934 1.67507i −0.299076 0.106153i
\(250\) 0 0
\(251\) 14.9246 8.61672i 0.942032 0.543882i 0.0514354 0.998676i \(-0.483620\pi\)
0.890597 + 0.454794i \(0.150287\pi\)
\(252\) 0.127496 0.285243i 0.00803147 0.0179686i
\(253\) −7.37138 + 27.5104i −0.463435 + 1.72956i
\(254\) 18.8477 10.8818i 1.18261 0.682782i
\(255\) 0 0
\(256\) −9.05800 15.6889i −0.566125 0.980557i
\(257\) −0.108348 0.404361i −0.00675857 0.0252233i 0.962464 0.271409i \(-0.0874895\pi\)
−0.969223 + 0.246185i \(0.920823\pi\)
\(258\) −6.43833 13.5235i −0.400833 0.841939i
\(259\) 0.481265i 0.0299044i
\(260\) 0 0
\(261\) −4.30496 11.2637i −0.266470 0.697207i
\(262\) −5.72975 21.3837i −0.353985 1.32109i
\(263\) 12.6393 3.38670i 0.779374 0.208833i 0.152865 0.988247i \(-0.451150\pi\)
0.626509 + 0.779414i \(0.284483\pi\)
\(264\) 9.99883 8.52725i 0.615386 0.524816i
\(265\) 0 0
\(266\) 0.769733 + 1.33322i 0.0471953 + 0.0817447i
\(267\) −0.443375 + 5.58173i −0.0271341 + 0.341597i
\(268\) 1.92084 + 1.92084i 0.117334 + 0.117334i
\(269\) −0.403612 0.699076i −0.0246086 0.0426234i 0.853459 0.521160i \(-0.174501\pi\)
−0.878067 + 0.478537i \(0.841167\pi\)
\(270\) 0 0
\(271\) −9.22378 5.32535i −0.560305 0.323492i 0.192963 0.981206i \(-0.438190\pi\)
−0.753268 + 0.657714i \(0.771524\pi\)
\(272\) −18.4366 + 18.4366i −1.11788 + 1.11788i
\(273\) −0.187682 + 0.682138i −0.0113590 + 0.0412849i
\(274\) 21.2892i 1.28613i
\(275\) 0 0
\(276\) −10.4010 3.69171i −0.626069 0.222215i
\(277\) −7.38713 + 27.5691i −0.443849 + 1.65647i 0.275107 + 0.961414i \(0.411287\pi\)
−0.718957 + 0.695055i \(0.755380\pi\)
\(278\) −4.62953 + 4.62953i −0.277661 + 0.277661i
\(279\) −16.0556 13.0402i −0.961222 0.780699i
\(280\) 0 0
\(281\) 13.4870 0.804568 0.402284 0.915515i \(-0.368216\pi\)
0.402284 + 0.915515i \(0.368216\pi\)
\(282\) 0.0614889 0.774095i 0.00366161 0.0460967i
\(283\) −0.294869 1.10046i −0.0175281 0.0654158i 0.956608 0.291379i \(-0.0941139\pi\)
−0.974136 + 0.225963i \(0.927447\pi\)
\(284\) −6.77325 3.91054i −0.401918 0.232048i
\(285\) 0 0
\(286\) 16.5540 19.1496i 0.978858 1.13234i
\(287\) 0.278487 0.278487i 0.0164386 0.0164386i
\(288\) 8.51564 + 11.7567i 0.501789 + 0.692769i
\(289\) 8.88844 + 5.13174i 0.522850 + 0.301867i
\(290\) 0 0
\(291\) −0.0469775 0.254500i −0.00275387 0.0149191i
\(292\) 3.77827 + 1.01239i 0.221107 + 0.0592454i
\(293\) 7.29093 + 1.95360i 0.425941 + 0.114130i 0.465420 0.885090i \(-0.345903\pi\)
−0.0394794 + 0.999220i \(0.512570\pi\)
\(294\) 3.75342 + 20.3341i 0.218904 + 1.18591i
\(295\) 0 0
\(296\) 6.79317 + 3.92204i 0.394845 + 0.227964i
\(297\) −14.7306 + 15.4552i −0.854757 + 0.896800i
\(298\) 14.3737 14.3737i 0.832644 0.832644i
\(299\) 24.5455 + 4.70092i 1.41950 + 0.271861i
\(300\) 0 0
\(301\) −0.496555 0.286686i −0.0286210 0.0165243i
\(302\) −4.90922 18.3214i −0.282494 1.05428i
\(303\) 1.66449 20.9546i 0.0956224 1.20381i
\(304\) −39.7144 −2.27778
\(305\) 0 0
\(306\) 16.8734 20.7751i 0.964587 1.18763i
\(307\) 5.28300 5.28300i 0.301517 0.301517i −0.540090 0.841607i \(-0.681610\pi\)
0.841607 + 0.540090i \(0.181610\pi\)
\(308\) −0.110757 + 0.413352i −0.00631098 + 0.0235529i
\(309\) −1.21957 0.432871i −0.0693790 0.0246252i
\(310\) 0 0
\(311\) 2.37607i 0.134735i 0.997728 + 0.0673674i \(0.0214599\pi\)
−0.997728 + 0.0673674i \(0.978540\pi\)
\(312\) −8.09904 8.20821i −0.458518 0.464698i
\(313\) −20.5099 + 20.5099i −1.15929 + 1.15929i −0.174659 + 0.984629i \(0.555882\pi\)
−0.984629 + 0.174659i \(0.944118\pi\)
\(314\) 11.5927 + 6.69304i 0.654213 + 0.377710i
\(315\) 0 0
\(316\) 2.22694 + 3.85718i 0.125275 + 0.216983i
\(317\) 23.9045 + 23.9045i 1.34261 + 1.34261i 0.893450 + 0.449162i \(0.148277\pi\)
0.449162 + 0.893450i \(0.351723\pi\)
\(318\) 0.644271 8.11085i 0.0361289 0.454834i
\(319\) 8.25787 + 14.3030i 0.462352 + 0.800817i
\(320\) 0 0
\(321\) −2.17651 + 1.85618i −0.121481 + 0.103602i
\(322\) −1.29596 + 0.347251i −0.0722210 + 0.0193516i
\(323\) 10.7481 + 40.1124i 0.598040 + 2.23191i
\(324\) −5.51831 6.16466i −0.306573 0.342481i
\(325\) 0 0
\(326\) 20.9422i 1.15988i
\(327\) −0.475658 0.999106i −0.0263039 0.0552507i
\(328\) 1.66140 + 6.20041i 0.0917352 + 0.342361i
\(329\) −0.0148633 0.0257440i −0.000819441 0.00141931i
\(330\) 0 0
\(331\) 12.0767 6.97251i 0.663798 0.383244i −0.129925 0.991524i \(-0.541474\pi\)
0.793722 + 0.608280i \(0.208140\pi\)
\(332\) −0.687925 + 2.56737i −0.0377548 + 0.140903i
\(333\) −11.6351 5.20054i −0.637597 0.284988i
\(334\) −13.2009 + 7.62155i −0.722322 + 0.417033i
\(335\) 0 0
\(336\) 0.923390 + 0.327745i 0.0503750 + 0.0178800i
\(337\) 2.58183 + 2.58183i 0.140641 + 0.140641i 0.773922 0.633281i \(-0.218292\pi\)
−0.633281 + 0.773922i \(0.718292\pi\)
\(338\) −17.8126 13.2693i −0.968877 0.721754i
\(339\) 13.4800 2.48824i 0.732135 0.135143i
\(340\) 0 0
\(341\) 24.5344 + 14.1649i 1.32861 + 0.767074i
\(342\) 40.5495 4.20233i 2.19267 0.227236i
\(343\) 1.12047 + 1.12047i 0.0604997 + 0.0604997i
\(344\) 8.09329 4.67266i 0.436361 0.251933i
\(345\) 0 0
\(346\) 15.0319i 0.808119i
\(347\) −15.4146 4.13034i −0.827500 0.221728i −0.179877 0.983689i \(-0.557570\pi\)
−0.647623 + 0.761961i \(0.724237\pi\)
\(348\) −5.77864 + 2.75112i −0.309768 + 0.147475i
\(349\) −2.98342 + 5.16743i −0.159699 + 0.276606i −0.934760 0.355280i \(-0.884386\pi\)
0.775061 + 0.631886i \(0.217719\pi\)
\(350\) 0 0
\(351\) 14.4633 + 11.9086i 0.771992 + 0.635632i
\(352\) −14.0593 14.0593i −0.749363 0.749363i
\(353\) 3.22389 + 12.0317i 0.171590 + 0.640383i 0.997107 + 0.0760061i \(0.0242168\pi\)
−0.825517 + 0.564377i \(0.809116\pi\)
\(354\) 1.99558 + 0.708304i 0.106064 + 0.0376459i
\(355\) 0 0
\(356\) 2.97190 0.157510
\(357\) 0.0811285 1.02134i 0.00429378 0.0540552i
\(358\) 8.80254 32.8515i 0.465229 1.73626i
\(359\) 29.8863i 1.57734i −0.614816 0.788671i \(-0.710770\pi\)
0.614816 0.788671i \(-0.289230\pi\)
\(360\) 0 0
\(361\) −22.1271 + 38.3252i −1.16458 + 2.01712i
\(362\) −12.2967 + 3.29490i −0.646302 + 0.173176i
\(363\) 5.77804 8.39402i 0.303268 0.440572i
\(364\) 0.368803 + 0.0706327i 0.0193305 + 0.00370216i
\(365\) 0 0
\(366\) 4.04191 11.3877i 0.211274 0.595244i
\(367\) −12.9762 + 3.47695i −0.677351 + 0.181496i −0.581064 0.813858i \(-0.697363\pi\)
−0.0962869 + 0.995354i \(0.530697\pi\)
\(368\) 8.95823 33.4326i 0.466980 1.74279i
\(369\) −3.72337 9.74201i −0.193831 0.507149i
\(370\) 0 0
\(371\) −0.155736 0.269742i −0.00808539 0.0140043i
\(372\) −6.22474 + 9.04296i −0.322738 + 0.468855i
\(373\) −19.2834 5.16696i −0.998455 0.267535i −0.277657 0.960680i \(-0.589558\pi\)
−0.720798 + 0.693145i \(0.756224\pi\)
\(374\) −18.3287 + 31.7462i −0.947753 + 1.64156i
\(375\) 0 0
\(376\) 0.484510 0.0249867
\(377\) 11.9923 8.13714i 0.617635 0.419084i
\(378\) −0.977486 0.236929i −0.0502764 0.0121863i
\(379\) 16.7541 29.0190i 0.860601 1.49061i −0.0107483 0.999942i \(-0.503421\pi\)
0.871350 0.490663i \(-0.163245\pi\)
\(380\) 0 0
\(381\) −14.3161 16.7867i −0.733435 0.860007i
\(382\) −27.7305 + 27.7305i −1.41882 + 1.41882i
\(383\) 2.60975 + 0.699279i 0.133352 + 0.0357315i 0.324878 0.945756i \(-0.394677\pi\)
−0.191526 + 0.981488i \(0.561344\pi\)
\(384\) −16.6254 + 14.1786i −0.848412 + 0.723547i
\(385\) 0 0
\(386\) −32.4270 + 18.7218i −1.65049 + 0.952912i
\(387\) −12.2967 + 8.90678i −0.625076 + 0.452757i
\(388\) −0.132680 + 0.0355516i −0.00673582 + 0.00180486i
\(389\) −38.6182 −1.95802 −0.979011 0.203807i \(-0.934668\pi\)
−0.979011 + 0.203807i \(0.934668\pi\)
\(390\) 0 0
\(391\) −36.1920 −1.83031
\(392\) −12.4620 + 3.33918i −0.629426 + 0.168654i
\(393\) −20.2628 + 9.64677i −1.02212 + 0.486615i
\(394\) 12.8645 7.42732i 0.648104 0.374183i
\(395\) 0 0
\(396\) 8.79634 + 7.14433i 0.442033 + 0.359016i
\(397\) 10.9688 + 2.93908i 0.550509 + 0.147508i 0.523342 0.852122i \(-0.324685\pi\)
0.0271666 + 0.999631i \(0.491352\pi\)
\(398\) −24.4713 + 24.4713i −1.22663 + 1.22663i
\(399\) 1.18742 1.01266i 0.0594456 0.0506966i
\(400\) 0 0
\(401\) −15.5856 + 26.9950i −0.778307 + 1.34807i 0.154611 + 0.987975i \(0.450588\pi\)
−0.932917 + 0.360091i \(0.882746\pi\)
\(402\) 4.95832 7.20318i 0.247299 0.359262i
\(403\) 10.8358 22.3732i 0.539771 1.11449i
\(404\) −11.1569 −0.555076
\(405\) 0 0
\(406\) −0.389012 + 0.673788i −0.0193063 + 0.0334395i
\(407\) 16.8606 + 4.51779i 0.835749 + 0.223938i
\(408\) 13.7553 + 9.46851i 0.680990 + 0.468761i
\(409\) 5.22725 + 9.05386i 0.258471 + 0.447685i 0.965832 0.259167i \(-0.0834481\pi\)
−0.707362 + 0.706852i \(0.750115\pi\)
\(410\) 0 0
\(411\) −21.2229 + 3.91748i −1.04685 + 0.193235i
\(412\) −0.177774 + 0.663461i −0.00875828 + 0.0326864i
\(413\) 0.0783003 0.0209805i 0.00385290 0.00103238i
\(414\) −5.60898 + 35.0835i −0.275666 + 1.72426i
\(415\) 0 0
\(416\) −11.4099 + 13.1989i −0.559414 + 0.647130i
\(417\) 5.46700 + 3.76322i 0.267720 + 0.184286i
\(418\) −53.9335 + 14.4514i −2.63797 + 0.706843i
\(419\) 10.9200 18.9139i 0.533476 0.924007i −0.465760 0.884911i \(-0.654219\pi\)
0.999235 0.0390956i \(-0.0124477\pi\)
\(420\) 0 0
\(421\) 11.3030i 0.550876i −0.961319 0.275438i \(-0.911177\pi\)
0.961319 0.275438i \(-0.0888229\pi\)
\(422\) −3.22612 + 12.0401i −0.157045 + 0.586101i
\(423\) −0.782999 + 0.0811457i −0.0380707 + 0.00394544i
\(424\) 5.07663 0.246543
\(425\) 0 0
\(426\) −8.42157 + 23.7270i −0.408027 + 1.14957i
\(427\) −0.119724 0.446818i −0.00579387 0.0216230i
\(428\) 1.07357 + 1.07357i 0.0518927 + 0.0518927i
\(429\) −22.1361 12.9787i −1.06874 0.626616i
\(430\) 0 0
\(431\) −1.35987 + 2.35537i −0.0655028 + 0.113454i −0.896917 0.442199i \(-0.854198\pi\)
0.831414 + 0.555653i \(0.187532\pi\)
\(432\) 17.9017 18.7822i 0.861295 0.903661i
\(433\) −13.6874 3.66753i −0.657775 0.176250i −0.0855335 0.996335i \(-0.527259\pi\)
−0.572242 + 0.820085i \(0.693926\pi\)
\(434\) 1.33456i 0.0640611i
\(435\) 0 0
\(436\) −0.508630 + 0.293658i −0.0243590 + 0.0140637i
\(437\) −38.9809 38.9809i −1.86471 1.86471i
\(438\) 0.997073 12.5523i 0.0476420 0.599774i
\(439\) −8.10140 4.67735i −0.386659 0.223237i 0.294053 0.955789i \(-0.404996\pi\)
−0.680711 + 0.732552i \(0.738329\pi\)
\(440\) 0 0
\(441\) 19.5801 7.48347i 0.932388 0.356356i
\(442\) 28.9497 + 14.0210i 1.37700 + 0.666910i
\(443\) 5.74199 + 5.74199i 0.272810 + 0.272810i 0.830230 0.557420i \(-0.188209\pi\)
−0.557420 + 0.830230i \(0.688209\pi\)
\(444\) −2.26258 + 6.37461i −0.107377 + 0.302525i
\(445\) 0 0
\(446\) −17.9670 + 10.3733i −0.850763 + 0.491188i
\(447\) −16.9738 11.6840i −0.802835 0.552633i
\(448\) −0.0504097 + 0.188132i −0.00238163 + 0.00888838i
\(449\) 23.4891 13.5614i 1.10852 0.640004i 0.170074 0.985431i \(-0.445599\pi\)
0.938446 + 0.345427i \(0.112266\pi\)
\(450\) 0 0
\(451\) 7.14224 + 12.3707i 0.336315 + 0.582515i
\(452\) −1.88305 7.02763i −0.0885711 0.330552i
\(453\) −17.3610 + 8.26530i −0.815693 + 0.388338i
\(454\) 23.6941i 1.11202i
\(455\) 0 0
\(456\) 4.61715 + 25.0134i 0.216218 + 1.17136i
\(457\) −3.46105 12.9168i −0.161901 0.604224i −0.998415 0.0562781i \(-0.982077\pi\)
0.836514 0.547946i \(-0.184590\pi\)
\(458\) 14.0596 3.76726i 0.656962 0.176032i
\(459\) −23.8153 12.9980i −1.11160 0.606693i
\(460\) 0 0
\(461\) 17.1508 + 29.7061i 0.798792 + 1.38355i 0.920403 + 0.390971i \(0.127861\pi\)
−0.121611 + 0.992578i \(0.538806\pi\)
\(462\) 1.37325 + 0.109082i 0.0638896 + 0.00507496i
\(463\) 19.4344 + 19.4344i 0.903191 + 0.903191i 0.995711 0.0925195i \(-0.0294920\pi\)
−0.0925195 + 0.995711i \(0.529492\pi\)
\(464\) −10.0356 17.3821i −0.465889 0.806943i
\(465\) 0 0
\(466\) 18.0226 + 10.4054i 0.834883 + 0.482020i
\(467\) 19.6345 19.6345i 0.908575 0.908575i −0.0875827 0.996157i \(-0.527914\pi\)
0.996157 + 0.0875827i \(0.0279142\pi\)
\(468\) 5.69289 8.15292i 0.263154 0.376869i
\(469\) 0.334760i 0.0154578i
\(470\) 0 0
\(471\) 4.53900 12.7882i 0.209146 0.589249i
\(472\) −0.341958 + 1.27621i −0.0157399 + 0.0587421i
\(473\) 14.7051 14.7051i 0.676140 0.676140i
\(474\) 10.9093 9.30368i 0.501079 0.427332i
\(475\) 0 0
\(476\) −0.543796 −0.0249248
\(477\) −8.20415 + 0.850233i −0.375642 + 0.0389295i
\(478\) 5.10900 + 19.0670i 0.233680 + 0.872107i
\(479\) −1.49161 0.861181i −0.0681534 0.0393484i 0.465536 0.885029i \(-0.345862\pi\)
−0.533689 + 0.845681i \(0.679195\pi\)
\(480\) 0 0
\(481\) 2.88111 15.0435i 0.131367 0.685924i
\(482\) −16.8711 + 16.8711i −0.768456 + 0.768456i
\(483\) 0.584643 + 1.22803i 0.0266022 + 0.0558771i
\(484\) −4.68406 2.70434i −0.212912 0.122925i
\(485\) 0 0
\(486\) −16.2907 + 21.0714i −0.738961 + 0.955819i
\(487\) 20.1087 + 5.38812i 0.911213 + 0.244159i 0.683826 0.729645i \(-0.260315\pi\)
0.227388 + 0.973804i \(0.426982\pi\)
\(488\) 7.28262 + 1.95137i 0.329669 + 0.0883344i
\(489\) −20.8770 + 3.85362i −0.944089 + 0.174267i
\(490\) 0 0
\(491\) −19.5711 11.2994i −0.883233 0.509935i −0.0115102 0.999934i \(-0.503664\pi\)
−0.871723 + 0.489999i \(0.836997\pi\)
\(492\) −4.99796 + 2.37945i −0.225325 + 0.107274i
\(493\) −14.8403 + 14.8403i −0.668374 + 0.668374i
\(494\) 16.0791 + 46.2819i 0.723434 + 2.08232i
\(495\) 0 0
\(496\) −29.8159 17.2142i −1.33878 0.772942i
\(497\) 0.249453 + 0.930972i 0.0111895 + 0.0417598i
\(498\) 8.52943 + 0.677520i 0.382213 + 0.0303604i
\(499\) 35.8828 1.60634 0.803168 0.595753i \(-0.203146\pi\)
0.803168 + 0.595753i \(0.203146\pi\)
\(500\) 0 0
\(501\) 10.0269 + 11.7573i 0.447971 + 0.525279i
\(502\) −20.8208 + 20.8208i −0.929276 + 0.929276i
\(503\) −8.55700 + 31.9352i −0.381538 + 1.42392i 0.462015 + 0.886872i \(0.347127\pi\)
−0.843553 + 0.537047i \(0.819540\pi\)
\(504\) 0.0990719 0.619683i 0.00441302 0.0276029i
\(505\) 0 0
\(506\) 48.6623i 2.16330i
\(507\) −9.95022 + 20.1988i −0.441905 + 0.897062i
\(508\) −8.28006 + 8.28006i −0.367368 + 0.367368i
\(509\) −5.25012 3.03116i −0.232707 0.134354i 0.379113 0.925350i \(-0.376229\pi\)
−0.611820 + 0.790997i \(0.709562\pi\)
\(510\) 0 0
\(511\) −0.241016 0.417452i −0.0106619 0.0184670i
\(512\) 4.04633 + 4.04633i 0.178824 + 0.178824i
\(513\) −11.6509 39.6500i −0.514398 1.75059i
\(514\) 0.357631 + 0.619435i 0.0157744 + 0.0273221i
\(515\) 0 0
\(516\) 5.22933 + 6.13178i 0.230208 + 0.269936i
\(517\) 1.04144 0.279053i 0.0458025 0.0122727i
\(518\) 0.212824 + 0.794270i 0.00935095 + 0.0348982i
\(519\) 14.9851 2.76605i 0.657772 0.121416i
\(520\) 0 0
\(521\) 23.5394i 1.03128i −0.856805 0.515640i \(-0.827554\pi\)
0.856805 0.515640i \(-0.172446\pi\)
\(522\) 12.0858 + 16.6857i 0.528982 + 0.730312i
\(523\) −8.20158 30.6087i −0.358630 1.33843i −0.875854 0.482575i \(-0.839701\pi\)
0.517225 0.855850i \(-0.326965\pi\)
\(524\) 5.95565 + 10.3155i 0.260174 + 0.450634i
\(525\) 0 0
\(526\) −19.3620 + 11.1787i −0.844224 + 0.487413i
\(527\) −9.31753 + 34.7735i −0.405878 + 1.51476i
\(528\) −20.1503 + 29.2733i −0.876931 + 1.27396i
\(529\) 21.6892 12.5223i 0.943010 0.544447i
\(530\) 0 0
\(531\) 0.338887 2.11970i 0.0147065 0.0919871i
\(532\) −0.585699 0.585699i −0.0253933 0.0253933i
\(533\) 10.3722 7.03782i 0.449268 0.304842i
\(534\) −1.73660 9.40804i −0.0751502 0.407126i
\(535\) 0 0
\(536\) 4.72521 + 2.72810i 0.204098 + 0.117836i
\(537\) −34.3690 2.73004i −1.48313 0.117810i
\(538\) 0.975256 + 0.975256i 0.0420463 + 0.0420463i
\(539\) −24.8635 + 14.3550i −1.07095 + 0.618312i
\(540\) 0 0
\(541\) 26.7974i 1.15211i 0.817411 + 0.576055i \(0.195409\pi\)
−0.817411 + 0.576055i \(0.804591\pi\)
\(542\) 17.5777 + 4.70993i 0.755027 + 0.202309i
\(543\) 5.54739 + 11.6521i 0.238061 + 0.500041i
\(544\) 12.6331 21.8811i 0.541638 0.938145i
\(545\) 0 0
\(546\) 0.00809242 1.20878i 0.000346324 0.0517311i
\(547\) −6.51421 6.51421i −0.278528 0.278528i 0.553993 0.832521i \(-0.313103\pi\)
−0.832521 + 0.553993i \(0.813103\pi\)
\(548\) 2.96467 + 11.0643i 0.126644 + 0.472643i
\(549\) −12.0960 1.93385i −0.516244 0.0825347i
\(550\) 0 0
\(551\) −31.9677 −1.36187
\(552\) −22.0984 1.75534i −0.940569 0.0747124i
\(553\) 0.142057 0.530163i 0.00604087 0.0225448i
\(554\) 48.7662i 2.07188i
\(555\) 0 0
\(556\) 1.76133 3.05072i 0.0746971 0.129379i
\(557\) 22.7031 6.08328i 0.961962 0.257757i 0.256531 0.966536i \(-0.417420\pi\)
0.705431 + 0.708779i \(0.250754\pi\)
\(558\) 32.2644 + 14.4213i 1.36586 + 0.610501i
\(559\) −13.8052 11.9339i −0.583896 0.504752i
\(560\) 0 0
\(561\) 35.0200 + 12.4299i 1.47855 + 0.524791i
\(562\) −22.2587 + 5.96419i −0.938926 + 0.251584i
\(563\) 9.60782 35.8569i 0.404921 1.51119i −0.399279 0.916829i \(-0.630740\pi\)
0.804201 0.594358i \(-0.202594\pi\)
\(564\) 0.0758413 + 0.410870i 0.00319350 + 0.0173007i
\(565\) 0 0
\(566\) 0.973289 + 1.68579i 0.0409104 + 0.0708589i
\(567\) −0.0563221 + 1.01804i −0.00236531 + 0.0427537i
\(568\) −15.1738 4.06580i −0.636678 0.170597i
\(569\) −6.61515 + 11.4578i −0.277322 + 0.480335i −0.970718 0.240221i \(-0.922780\pi\)
0.693397 + 0.720556i \(0.256113\pi\)
\(570\) 0 0
\(571\) 16.3611 0.684690 0.342345 0.939574i \(-0.388779\pi\)
0.342345 + 0.939574i \(0.388779\pi\)
\(572\) −5.93661 + 12.2576i −0.248222 + 0.512515i
\(573\) 32.7469 + 22.5414i 1.36802 + 0.941681i
\(574\) −0.336457 + 0.582760i −0.0140434 + 0.0243240i
\(575\) 0 0
\(576\) 4.00354 + 3.25165i 0.166814 + 0.135485i
\(577\) −1.55067 + 1.55067i −0.0645553 + 0.0645553i −0.738647 0.674092i \(-0.764535\pi\)
0.674092 + 0.738647i \(0.264535\pi\)
\(578\) −16.9386 4.53869i −0.704554 0.188785i
\(579\) 24.6304 + 28.8810i 1.02361 + 1.20025i
\(580\) 0 0
\(581\) 0.283663 0.163773i 0.0117683 0.00679444i
\(582\) 0.190075 + 0.399247i 0.00787886 + 0.0165493i
\(583\) 10.9121 2.92388i 0.451931 0.121095i
\(584\) 7.85658 0.325107
\(585\) 0 0
\(586\) −12.8967 −0.532758
\(587\) −19.5193 + 5.23017i −0.805646 + 0.215872i −0.638061 0.769986i \(-0.720263\pi\)
−0.167585 + 0.985858i \(0.553597\pi\)
\(588\) −4.78237 10.0452i −0.197221 0.414258i
\(589\) −47.4885 + 27.4175i −1.95673 + 1.12972i
\(590\) 0 0
\(591\) −9.77142 11.4577i −0.401942 0.471307i
\(592\) −20.4902 5.49034i −0.842143 0.225651i
\(593\) −3.08282 + 3.08282i −0.126596 + 0.126596i −0.767566 0.640970i \(-0.778532\pi\)
0.640970 + 0.767566i \(0.278532\pi\)
\(594\) 17.4765 32.0210i 0.717071 1.31384i
\(595\) 0 0
\(596\) −5.46855 + 9.47180i −0.224000 + 0.387980i
\(597\) 28.8981 + 19.8921i 1.18272 + 0.814128i
\(598\) −42.5882 + 3.09615i −1.74156 + 0.126611i
\(599\) −17.9813 −0.734698 −0.367349 0.930083i \(-0.619734\pi\)
−0.367349 + 0.930083i \(0.619734\pi\)
\(600\) 0 0
\(601\) −4.18909 + 7.25572i −0.170877 + 0.295967i −0.938727 0.344663i \(-0.887993\pi\)
0.767850 + 0.640630i \(0.221327\pi\)
\(602\) 0.946282 + 0.253555i 0.0385676 + 0.0103341i
\(603\) −8.09314 3.61741i −0.329578 0.147312i
\(604\) 5.10277 + 8.83825i 0.207629 + 0.359623i
\(605\) 0 0
\(606\) 6.51944 + 35.3190i 0.264834 + 1.43474i
\(607\) 4.58950 17.1283i 0.186282 0.695214i −0.808070 0.589086i \(-0.799488\pi\)
0.994352 0.106128i \(-0.0338454\pi\)
\(608\) 37.1737 9.96067i 1.50759 0.403958i
\(609\) 0.743273 + 0.263815i 0.0301189 + 0.0106903i
\(610\) 0 0
\(611\) −0.310483 0.893690i −0.0125608 0.0361548i
\(612\) −5.87625 + 13.1468i −0.237533 + 0.531428i
\(613\) 36.8917 9.88511i 1.49004 0.399256i 0.580291 0.814409i \(-0.302939\pi\)
0.909752 + 0.415153i \(0.136272\pi\)
\(614\) −6.38272 + 11.0552i −0.257585 + 0.446151i
\(615\) 0 0
\(616\) 0.859527i 0.0346313i
\(617\) 7.27686 27.1576i 0.292955 1.09332i −0.649872 0.760043i \(-0.725178\pi\)
0.942828 0.333281i \(-0.108156\pi\)
\(618\) 2.20418 + 0.175085i 0.0886650 + 0.00704295i
\(619\) −34.9871 −1.40625 −0.703125 0.711066i \(-0.748213\pi\)
−0.703125 + 0.711066i \(0.748213\pi\)
\(620\) 0 0
\(621\) 36.0063 0.864283i 1.44488 0.0346825i
\(622\) −1.05074 3.92142i −0.0421309 0.157235i
\(623\) −0.258967 0.258967i −0.0103753 0.0103753i
\(624\) 26.9014 + 15.7726i 1.07692 + 0.631410i
\(625\) 0 0
\(626\) 24.7792 42.9189i 0.990378 1.71538i
\(627\) 24.3309 + 51.1063i 0.971681 + 2.04099i
\(628\) −6.95692 1.86410i −0.277611 0.0743857i
\(629\) 22.1814i 0.884431i
\(630\) 0 0
\(631\) −10.8292 + 6.25222i −0.431102 + 0.248897i −0.699816 0.714323i \(-0.746735\pi\)
0.268714 + 0.963220i \(0.413401\pi\)
\(632\) 6.32569 + 6.32569i 0.251623 + 0.251623i
\(633\) 12.5962 + 1.00056i 0.500654 + 0.0397686i
\(634\) −50.0225 28.8805i −1.98665 1.14699i
\(635\) 0 0
\(636\) 0.794654 + 4.30503i 0.0315101 + 0.170706i
\(637\) 14.1451 + 20.8467i 0.560449 + 0.825974i
\(638\) −19.9537 19.9537i −0.789973 0.789973i
\(639\) 25.2027 + 4.02929i 0.997005 + 0.159396i
\(640\) 0 0
\(641\) −3.54806 + 2.04848i −0.140140 + 0.0809099i −0.568431 0.822731i \(-0.692449\pi\)
0.428291 + 0.903641i \(0.359116\pi\)
\(642\) 2.77122 4.02588i 0.109371 0.158889i
\(643\) 10.8144 40.3600i 0.426479 1.59164i −0.334192 0.942505i \(-0.608464\pi\)
0.760672 0.649137i \(-0.224870\pi\)
\(644\) 0.625170 0.360942i 0.0246351 0.0142231i
\(645\) 0 0
\(646\) −35.4768 61.4477i −1.39582 2.41763i
\(647\) 1.68818 + 6.30036i 0.0663691 + 0.247693i 0.991138 0.132836i \(-0.0424085\pi\)
−0.924769 + 0.380529i \(0.875742\pi\)
\(648\) −13.9109 9.09144i −0.546470 0.357146i
\(649\) 2.94012i 0.115410i
\(650\) 0 0
\(651\) 1.33041 0.245576i 0.0521428 0.00962489i
\(652\) 2.91634 + 10.8839i 0.114213 + 0.426247i
\(653\) −44.7451 + 11.9894i −1.75101 + 0.469182i −0.984842 0.173454i \(-0.944507\pi\)
−0.766171 + 0.642637i \(0.777840\pi\)
\(654\) 1.22684 + 1.43856i 0.0479731 + 0.0562521i
\(655\) 0 0
\(656\) −8.67976 15.0338i −0.338888 0.586971i
\(657\) −12.6967 + 1.31582i −0.495347 + 0.0513350i
\(658\) 0.0359145 + 0.0359145i 0.00140009 + 0.00140009i
\(659\) 12.0799 + 20.9230i 0.470566 + 0.815045i 0.999433 0.0336601i \(-0.0107164\pi\)
−0.528867 + 0.848705i \(0.677383\pi\)
\(660\) 0 0
\(661\) 35.3712 + 20.4215i 1.37578 + 0.794306i 0.991648 0.128973i \(-0.0411680\pi\)
0.384130 + 0.923279i \(0.374501\pi\)
\(662\) −16.8478 + 16.8478i −0.654809 + 0.654809i
\(663\) 8.65022 31.4396i 0.335947 1.22101i
\(664\) 5.33862i 0.207178i
\(665\) 0 0
\(666\) 21.5020 + 3.43764i 0.833186 + 0.133206i
\(667\) 7.21084 26.9112i 0.279205 1.04201i
\(668\) 5.79933 5.79933i 0.224383 0.224383i
\(669\) 13.6471 + 16.0023i 0.527628 + 0.618683i
\(670\) 0 0
\(671\) 16.7777 0.647694
\(672\) −0.946517 0.0751849i −0.0365127 0.00290032i
\(673\) 3.20311 + 11.9542i 0.123471 + 0.460799i 0.999781 0.0209488i \(-0.00666871\pi\)
−0.876310 + 0.481748i \(0.840002\pi\)
\(674\) −5.40272 3.11926i −0.208105 0.120150i
\(675\) 0 0
\(676\) 11.1053 + 4.41570i 0.427126 + 0.169834i
\(677\) 17.7462 17.7462i 0.682043 0.682043i −0.278418 0.960460i \(-0.589810\pi\)
0.960460 + 0.278418i \(0.0898099\pi\)
\(678\) −21.1468 + 10.0676i −0.812138 + 0.386645i
\(679\) 0.0146595 + 0.00846367i 0.000562580 + 0.000324806i
\(680\) 0 0
\(681\) 23.6203 4.36001i 0.905132 0.167076i
\(682\) −46.7550 12.5280i −1.79034 0.479721i
\(683\) −21.3203 5.71276i −0.815798 0.218593i −0.173290 0.984871i \(-0.555440\pi\)
−0.642509 + 0.766278i \(0.722106\pi\)
\(684\) −20.4889 + 7.83079i −0.783413 + 0.299418i
\(685\) 0 0
\(686\) −2.34469 1.35371i −0.0895208 0.0516848i
\(687\) −6.34267 13.3226i −0.241988 0.508289i
\(688\) −17.8706 + 17.8706i −0.681312 + 0.681312i
\(689\) −3.25319 9.36396i −0.123937 0.356738i
\(690\) 0 0
\(691\) −7.86173 4.53897i −0.299074 0.172671i 0.342953 0.939353i \(-0.388573\pi\)
−0.642027 + 0.766682i \(0.721906\pi\)
\(692\) −2.09329 7.81226i −0.0795749 0.296978i
\(693\) −0.143953 1.38905i −0.00546834 0.0527657i
\(694\) 27.2665 1.03502
\(695\) 0 0
\(696\) −9.78106 + 8.34152i −0.370750 + 0.316185i
\(697\) −12.8354 + 12.8354i −0.486176 + 0.486176i
\(698\) 2.63864 9.84754i 0.0998740 0.372735i
\(699\) 7.05659 19.8812i 0.266905 0.751977i
\(700\) 0 0
\(701\) 31.3445i 1.18386i −0.805988 0.591932i \(-0.798365\pi\)
0.805988 0.591932i \(-0.201635\pi\)
\(702\) −29.1360 13.2577i −1.09967 0.500380i
\(703\) −23.8907 + 23.8907i −0.901053 + 0.901053i
\(704\) −6.11777 3.53210i −0.230572 0.133121i
\(705\) 0 0
\(706\) −10.6413 18.4312i −0.400489 0.693667i
\(707\) 0.972198 + 0.972198i 0.0365633 + 0.0365633i
\(708\) −1.13576 0.0902174i −0.0426846 0.00339058i
\(709\) −16.2682 28.1774i −0.610967 1.05823i −0.991078 0.133285i \(-0.957448\pi\)
0.380111 0.924941i \(-0.375886\pi\)
\(710\) 0 0
\(711\) −11.2821 9.16330i −0.423114 0.343650i
\(712\) 5.76582 1.54495i 0.216083 0.0578993i
\(713\) −12.3689 46.1615i −0.463220 1.72876i
\(714\) 0.317763 + 1.72148i 0.0118920 + 0.0644247i
\(715\) 0 0
\(716\) 18.2992i 0.683873i
\(717\) 18.0676 8.60166i 0.674745 0.321235i
\(718\) 13.2163 + 49.3238i 0.493227 + 1.84075i
\(719\) 14.5548 + 25.2096i 0.542802 + 0.940160i 0.998742 + 0.0501495i \(0.0159698\pi\)
−0.455940 + 0.890010i \(0.650697\pi\)
\(720\) 0 0
\(721\) 0.0733041 0.0423222i 0.00272999 0.00157616i
\(722\) 19.5699 73.0360i 0.728318 2.71812i
\(723\) 19.9230 + 13.7140i 0.740944 + 0.510030i
\(724\) 5.93194 3.42480i 0.220459 0.127282i
\(725\) 0 0
\(726\) −5.82396 + 16.4084i −0.216148 + 0.608975i
\(727\) −12.8617 12.8617i −0.477014 0.477014i 0.427161 0.904175i \(-0.359514\pi\)
−0.904175 + 0.427161i \(0.859514\pi\)
\(728\) 0.752239 0.0546877i 0.0278798 0.00202686i
\(729\) 24.0035 + 12.3626i 0.889018 + 0.457873i
\(730\) 0 0
\(731\) 22.8861 + 13.2133i 0.846475 + 0.488712i
\(732\) −0.514822 + 6.48119i −0.0190284 + 0.239552i
\(733\) −9.86693 9.86693i −0.364443 0.364443i 0.501003 0.865446i \(-0.332965\pi\)
−0.865446 + 0.501003i \(0.832965\pi\)
\(734\) 19.8780 11.4766i 0.733711 0.423608i
\(735\) 0 0
\(736\) 33.5405i 1.23632i
\(737\) 11.7279 + 3.14249i 0.432004 + 0.115755i
\(738\) 10.4531 + 14.4315i 0.384782 + 0.531230i
\(739\) 12.6022 21.8276i 0.463578 0.802941i −0.535558 0.844498i \(-0.679899\pi\)
0.999136 + 0.0415576i \(0.0132320\pi\)
\(740\) 0 0
\(741\) 43.1790 24.5455i 1.58622 0.901701i
\(742\) 0.376307 + 0.376307i 0.0138147 + 0.0138147i
\(743\) −9.73165 36.3190i −0.357020 1.33242i −0.877924 0.478801i \(-0.841072\pi\)
0.520904 0.853615i \(-0.325595\pi\)
\(744\) −7.37570 + 20.7803i −0.270406 + 0.761843i
\(745\) 0 0
\(746\) 34.1098 1.24885
\(747\) −0.894111 8.62754i −0.0327138 0.315665i
\(748\) 5.10478 19.0513i 0.186649 0.696584i
\(749\) 0.187098i 0.00683642i
\(750\) 0 0
\(751\) 14.1002 24.4223i 0.514524 0.891182i −0.485334 0.874329i \(-0.661302\pi\)
0.999858 0.0168530i \(-0.00536474\pi\)
\(752\) −1.26563 + 0.339125i −0.0461529 + 0.0123666i
\(753\) 24.5872 + 16.9246i 0.896007 + 0.616768i
\(754\) −16.1934 + 18.7326i −0.589730 + 0.682200i
\(755\) 0 0
\(756\) 0.541006 0.0129861i 0.0196762 0.000472300i
\(757\) 29.1397 7.80797i 1.05910 0.283785i 0.313093 0.949722i \(-0.398635\pi\)
0.746008 + 0.665937i \(0.231968\pi\)
\(758\) −14.8179 + 55.3013i −0.538211 + 2.00863i
\(759\) −48.5108 + 8.95446i −1.76083 + 0.325026i
\(760\) 0 0
\(761\) 14.3226 + 24.8075i 0.519195 + 0.899272i 0.999751 + 0.0223082i \(0.00710150\pi\)
−0.480556 + 0.876964i \(0.659565\pi\)
\(762\) 31.0503 + 21.3735i 1.12483 + 0.774282i
\(763\) 0.0699104 + 0.0187324i 0.00253093 + 0.000678160i
\(764\) 10.5503 18.2736i 0.381695 0.661115i
\(765\) 0 0
\(766\) −4.61630 −0.166794
\(767\) 2.57312 0.187066i 0.0929101 0.00675455i
\(768\) 17.7914 25.8464i 0.641992 0.932650i
\(769\) 26.5529 45.9910i 0.957522 1.65848i 0.229035 0.973418i \(-0.426443\pi\)
0.728488 0.685059i \(-0.240224\pi\)
\(770\) 0 0
\(771\) 0.551697 0.470501i 0.0198689 0.0169447i
\(772\) 14.2456 14.2456i 0.512711 0.512711i
\(773\) 34.1355 + 9.14659i 1.22777 + 0.328980i 0.813711 0.581270i \(-0.197444\pi\)
0.414059 + 0.910250i \(0.364111\pi\)
\(774\) 16.3555 20.1374i 0.587885 0.723823i
\(775\) 0 0
\(776\) −0.238933 + 0.137948i −0.00857720 + 0.00495205i
\(777\) 0.752634 0.358317i 0.0270006 0.0128545i
\(778\) 63.7347 17.0777i 2.28500 0.612264i
\(779\) −27.6489 −0.990626
\(780\) 0 0
\(781\) −34.9573 −1.25087
\(782\) 59.7305 16.0047i 2.13596 0.572329i
\(783\) 14.4098 15.1186i 0.514963 0.540293i
\(784\) 30.2159 17.4452i 1.07914 0.623042i
\(785\) 0 0
\(786\) 29.1753 24.8814i 1.04065 0.887489i
\(787\) −18.5304 4.96521i −0.660539 0.176991i −0.0870495 0.996204i \(-0.527744\pi\)
−0.573489 + 0.819213i \(0.694410\pi\)
\(788\) −5.65154 + 5.65154i −0.201328 + 0.201328i
\(789\) 14.7067 + 17.2447i 0.523572 + 0.613928i
\(790\) 0 0
\(791\) −0.448293 + 0.776465i −0.0159394 + 0.0276079i
\(792\) 20.7799 + 9.28803i 0.738382 + 0.330036i
\(793\) −1.06748 14.6834i −0.0379075 0.521424i
\(794\) −19.4024 −0.688566
\(795\) 0 0
\(796\) 9.31025 16.1258i 0.329993 0.571565i
\(797\) −15.1753 4.06620i −0.537535 0.144032i −0.0201695 0.999797i \(-0.506421\pi\)
−0.517366 + 0.855764i \(0.673087\pi\)
\(798\) −1.51188 + 2.19638i −0.0535200 + 0.0777509i
\(799\) 0.685047 + 1.18654i 0.0242352 + 0.0419766i
\(800\) 0 0
\(801\) −9.05919 + 3.46239i −0.320091 + 0.122338i
\(802\) 13.7844 51.4442i 0.486745 1.81656i
\(803\) 16.8875 4.52499i 0.595946 0.159683i
\(804\) −1.57381 + 4.43406i −0.0555041 + 0.156377i
\(805\) 0 0
\(806\) −7.98939 + 41.7160i −0.281414 + 1.46938i
\(807\) 0.792760 1.15168i 0.0279065 0.0405410i
\(808\) −21.6457 + 5.79994i −0.761492 + 0.204041i
\(809\) 9.50547 16.4640i 0.334195 0.578842i −0.649135 0.760673i \(-0.724869\pi\)
0.983330 + 0.181831i \(0.0582024\pi\)
\(810\) 0 0
\(811\) 18.8816i 0.663023i −0.943451 0.331512i \(-0.892441\pi\)
0.943451 0.331512i \(-0.107559\pi\)
\(812\) 0.108345 0.404349i 0.00380216 0.0141899i
\(813\) 1.46075 18.3896i 0.0512307 0.644953i
\(814\) −29.8242 −1.04534
\(815\) 0 0
\(816\) −42.5589 15.1057i −1.48986 0.528806i
\(817\) 10.4182 + 38.8812i 0.364486 + 1.36028i
\(818\) −12.6307 12.6307i −0.441623 0.441623i
\(819\) −1.20651 + 0.214364i −0.0421588 + 0.00749047i
\(820\) 0 0
\(821\) −0.931007 + 1.61255i −0.0324924 + 0.0562784i −0.881814 0.471597i \(-0.843678\pi\)
0.849322 + 0.527875i \(0.177011\pi\)
\(822\) 33.2935 15.8505i 1.16124 0.552849i
\(823\) 21.4397 + 5.74475i 0.747341 + 0.200249i 0.612338 0.790596i \(-0.290229\pi\)
0.135003 + 0.990845i \(0.456896\pi\)
\(824\) 1.37961i 0.0480608i
\(825\) 0 0
\(826\) −0.119947 + 0.0692515i −0.00417349 + 0.00240957i
\(827\) −5.90430 5.90430i −0.205313 0.205313i 0.596959 0.802272i \(-0.296375\pi\)
−0.802272 + 0.596959i \(0.796375\pi\)
\(828\) −1.97055 19.0144i −0.0684813 0.660797i
\(829\) 27.7895 + 16.0443i 0.965168 + 0.557240i 0.897760 0.440485i \(-0.145194\pi\)
0.0674084 + 0.997725i \(0.478527\pi\)
\(830\) 0 0
\(831\) −48.6143 + 8.97358i −1.68641 + 0.311290i
\(832\) −2.70197 + 5.57887i −0.0936739 + 0.193412i
\(833\) −25.7974 25.7974i −0.893829 0.893829i
\(834\) −10.6868 3.79313i −0.370053 0.131345i
\(835\) 0 0
\(836\) 26.0175 15.0212i 0.899833 0.519519i
\(837\) 8.43932 34.8176i 0.291706 1.20347i
\(838\) −9.65801 + 36.0442i −0.333630 + 1.24513i
\(839\) −6.21211 + 3.58656i −0.214466 + 0.123822i −0.603385 0.797450i \(-0.706182\pi\)
0.388919 + 0.921272i \(0.372848\pi\)
\(840\) 0 0
\(841\) 6.42199 + 11.1232i 0.221448 + 0.383559i
\(842\) 4.99840 + 18.6543i 0.172256 + 0.642869i
\(843\) 10.0415 + 21.0919i 0.345847 + 0.726443i
\(844\) 6.70663i 0.230852i
\(845\) 0 0
\(846\) 1.25636 0.480177i 0.0431946 0.0165088i
\(847\) 0.172510 + 0.643817i 0.00592752 + 0.0221218i
\(848\) −13.2611 + 3.55330i −0.455388 + 0.122021i
\(849\) 1.50144 1.28046i 0.0515293 0.0439454i
\(850\) 0 0
\(851\) −14.7228 25.5007i −0.504692 0.874152i
\(852\) 1.07266 13.5040i 0.0367488 0.462638i
\(853\) −26.8806 26.8806i −0.920373 0.920373i 0.0766825 0.997056i \(-0.475567\pi\)
−0.997056 + 0.0766825i \(0.975567\pi\)
\(854\) 0.395181 + 0.684474i 0.0135228 + 0.0234222i
\(855\) 0 0
\(856\) 2.64094 + 1.52474i 0.0902653 + 0.0521147i
\(857\) −31.5042 + 31.5042i −1.07616 + 1.07616i −0.0793118 + 0.996850i \(0.525272\pi\)
−0.996850 + 0.0793118i \(0.974728\pi\)
\(858\) 42.2724 + 11.6307i 1.44316 + 0.397066i
\(859\) 29.9066i 1.02040i 0.860055 + 0.510201i \(0.170429\pi\)
−0.860055 + 0.510201i \(0.829571\pi\)
\(860\) 0 0
\(861\) 0.642858 + 0.228174i 0.0219085 + 0.00777615i
\(862\) 1.20272 4.48861i 0.0409648 0.152883i
\(863\) −9.69182 + 9.69182i −0.329913 + 0.329913i −0.852553 0.522640i \(-0.824947\pi\)
0.522640 + 0.852553i \(0.324947\pi\)
\(864\) −12.0457 + 22.0705i −0.409804 + 0.750854i
\(865\) 0 0
\(866\) 24.2113 0.822732
\(867\) −1.40764 + 17.7211i −0.0478060 + 0.601839i
\(868\) −0.185847 0.693590i −0.00630806 0.0235420i
\(869\) 17.2402 + 9.95361i 0.584832 + 0.337653i
\(870\) 0 0
\(871\) 2.00405 10.4640i 0.0679045 0.354558i
\(872\) −0.834142 + 0.834142i −0.0282476 + 0.0282476i
\(873\) 0.363028 0.262950i 0.0122866 0.00889949i
\(874\) 81.5712 + 47.0952i 2.75919 + 1.59302i
\(875\) 0 0
\(876\) 1.22981 + 6.66246i 0.0415513 + 0.225104i
\(877\) 34.0942 + 9.13551i 1.15128 + 0.308484i 0.783478 0.621420i \(-0.213444\pi\)
0.367801 + 0.929904i \(0.380111\pi\)
\(878\) 15.4388 + 4.13681i 0.521033 + 0.139610i
\(879\) 2.37315 + 12.8565i 0.0800445 + 0.433640i
\(880\) 0 0
\(881\) 0.0237715 + 0.0137245i 0.000800881 + 0.000462389i 0.500400 0.865794i \(-0.333186\pi\)
−0.499600 + 0.866257i \(0.666519\pi\)
\(882\) −29.0053 + 21.0092i −0.976660 + 0.707418i
\(883\) 12.5285 12.5285i 0.421617 0.421617i −0.464143 0.885760i \(-0.653638\pi\)
0.885760 + 0.464143i \(0.153638\pi\)
\(884\) −16.9981 3.25545i −0.571707 0.109492i
\(885\) 0 0
\(886\) −12.0157 6.93725i −0.403674 0.233061i
\(887\) 0.784839 + 2.92906i 0.0263523 + 0.0983482i 0.977849 0.209309i \(-0.0671216\pi\)
−0.951497 + 0.307658i \(0.900455\pi\)
\(888\) −1.07582 + 13.5437i −0.0361021 + 0.454496i
\(889\) 1.44303 0.0483976
\(890\) 0 0
\(891\) −35.1372 11.5298i −1.17714 0.386264i
\(892\) 7.89315 7.89315i 0.264282 0.264282i
\(893\) −0.540132 + 2.01580i −0.0180748 + 0.0674562i
\(894\) 33.1801 + 11.7768i 1.10971 + 0.393876i
\(895\) 0 0
\(896\) 1.42917i 0.0477451i
\(897\) 10.9233 + 41.8858i 0.364717 + 1.39853i
\(898\) −32.7688 + 32.7688i −1.09351 + 1.09351i
\(899\) −24.0000 13.8564i −0.800446 0.462138i
\(900\) 0 0
\(901\) 7.17782 + 12.4324i 0.239128 + 0.414182i
\(902\) −17.2580 17.2580i −0.574627 0.574627i
\(903\) 0.0786383 0.989992i 0.00261692 0.0329449i
\(904\) −7.30666 12.6555i −0.243016 0.420916i
\(905\) 0 0
\(906\) 24.9972 21.3182i 0.830477 0.708251i
\(907\) 16.8138 4.50525i 0.558294 0.149594i 0.0313715 0.999508i \(-0.490012\pi\)
0.526922 + 0.849913i \(0.323346\pi\)
\(908\) −3.29956 12.3141i −0.109500 0.408659i
\(909\) 34.0094 12.9983i 1.12802 0.431126i
\(910\) 0 0
\(911\) 4.78351i 0.158485i 0.996855 + 0.0792423i \(0.0252501\pi\)
−0.996855 + 0.0792423i \(0.974750\pi\)
\(912\) −29.5686 62.1080i −0.979114 2.05660i
\(913\) 3.07477 + 11.4752i 0.101760 + 0.379774i
\(914\) 11.4241 + 19.7871i 0.377876 + 0.654500i
\(915\) 0 0
\(916\) −6.78234 + 3.91578i −0.224095 + 0.129381i
\(917\) 0.379911 1.41785i 0.0125458 0.0468214i
\(918\) 45.0521 + 10.9200i 1.48694 + 0.360415i
\(919\) 20.5581 11.8693i 0.678151 0.391530i −0.121007 0.992652i \(-0.538612\pi\)
0.799158 + 0.601121i \(0.205279\pi\)
\(920\) 0 0
\(921\) 12.1953 + 4.32855i 0.401848 + 0.142631i
\(922\) −41.4418 41.4418i −1.36481 1.36481i
\(923\) 2.22417 + 30.5938i 0.0732094 + 1.00701i
\(924\) −0.728888 + 0.134543i −0.0239787 + 0.00442616i
\(925\) 0 0
\(926\) −40.6683 23.4798i −1.33644 0.771595i
\(927\) −0.231056 2.22953i −0.00758888 0.0732274i
\(928\) 13.7531 + 13.7531i 0.451467 + 0.451467i
\(929\) 27.3742 15.8045i 0.898117 0.518528i 0.0215282 0.999768i \(-0.493147\pi\)
0.876589 + 0.481240i \(0.159814\pi\)
\(930\) 0 0
\(931\) 55.5706i 1.82125i
\(932\) −10.8156 2.89804i −0.354277 0.0949283i
\(933\) −3.71586 + 1.76906i −0.121652 + 0.0579164i
\(934\) −23.7216 + 41.0870i −0.776194 + 1.34441i
\(935\) 0 0
\(936\) 6.80655 18.7771i 0.222479 0.613747i
\(937\) 12.6526 + 12.6526i 0.413344 + 0.413344i 0.882902 0.469558i \(-0.155587\pi\)
−0.469558 + 0.882902i \(0.655587\pi\)
\(938\) 0.148037 + 0.552480i 0.00483357 + 0.0180391i
\(939\) −47.3449 16.8045i −1.54504 0.548393i
\(940\) 0 0
\(941\) −49.4334 −1.61148 −0.805741 0.592268i \(-0.798233\pi\)
−0.805741 + 0.592268i \(0.798233\pi\)
\(942\) −1.83591 + 23.1126i −0.0598171 + 0.753048i
\(943\) 6.23666 23.2755i 0.203094 0.757956i
\(944\) 3.57304i 0.116293i
\(945\) 0 0
\(946\) −17.7661 + 30.7718i −0.577625 + 1.00048i
\(947\) 23.6300 6.33163i 0.767871 0.205750i 0.146440 0.989220i \(-0.453218\pi\)
0.621431 + 0.783469i \(0.286552\pi\)
\(948\) −4.37408 + 6.35443i −0.142064 + 0.206382i
\(949\) −5.03464 14.4916i −0.163431 0.470419i
\(950\) 0 0
\(951\) −19.5858 + 55.1811i −0.635114 + 1.78937i
\(952\) −1.05503 + 0.282693i −0.0341936 + 0.00916215i
\(953\) −11.1821 + 41.7321i −0.362223 + 1.35184i 0.508923 + 0.860812i \(0.330044\pi\)
−0.871146 + 0.491024i \(0.836623\pi\)
\(954\) 13.1640 5.03122i 0.426199 0.162892i
\(955\) 0 0
\(956\) −5.31043 9.19793i −0.171751 0.297482i
\(957\) −16.2198 + 23.5632i −0.524312 + 0.761691i
\(958\) 2.84255 + 0.761659i 0.0918386 + 0.0246081i
\(959\) 0.705791 1.22247i 0.0227912 0.0394755i
\(960\) 0 0
\(961\) −16.5366 −0.533437
\(962\) 1.89758 + 26.1015i 0.0611803 + 0.841546i
\(963\) −4.52328 2.02178i −0.145761 0.0651510i
\(964\) 6.41870 11.1175i 0.206732 0.358071i
\(965\) 0 0
\(966\) −1.50794 1.76817i −0.0485170 0.0568898i
\(967\) 4.55251 4.55251i 0.146399 0.146399i −0.630108 0.776507i \(-0.716990\pi\)
0.776507 + 0.630108i \(0.216990\pi\)
\(968\) −10.4935 2.81172i −0.337273 0.0903721i
\(969\) −54.7281 + 46.6735i −1.75812 + 1.49937i
\(970\) 0 0
\(971\) 51.2257 29.5752i 1.64391 0.949113i 0.664488 0.747299i \(-0.268650\pi\)
0.979424 0.201814i \(-0.0646838\pi\)
\(972\) 5.53215 13.2197i 0.177444 0.424021i
\(973\) −0.419316 + 0.112355i −0.0134427 + 0.00360195i
\(974\) −35.5697 −1.13973
\(975\) 0 0
\(976\) −20.3894 −0.652649
\(977\) −55.9598 + 14.9944i −1.79031 + 0.479713i −0.992399 0.123059i \(-0.960730\pi\)
−0.797914 + 0.602772i \(0.794063\pi\)
\(978\) 32.7508 15.5921i 1.04725 0.498580i
\(979\) 11.5036 6.64164i 0.367658 0.212268i
\(980\) 0 0
\(981\) 1.20833 1.48773i 0.0385789 0.0474995i
\(982\) 37.2966 + 9.99359i 1.19018 + 0.318908i
\(983\) 17.2893 17.2893i 0.551443 0.551443i −0.375414 0.926857i \(-0.622500\pi\)
0.926857 + 0.375414i \(0.122500\pi\)
\(984\) −8.45965 + 7.21460i −0.269684 + 0.229993i
\(985\) 0 0
\(986\) 17.9295 31.0548i 0.570991 0.988985i
\(987\) 0.0291940 0.0424114i 0.000929254 0.00134997i
\(988\) −14.8016 21.8142i −0.470901 0.694002i
\(989\) −35.0811 −1.11551
\(990\) 0 0
\(991\) 6.95908 12.0535i 0.221063 0.382892i −0.734068 0.679076i \(-0.762381\pi\)
0.955131 + 0.296184i \(0.0957142\pi\)
\(992\) 32.2259 + 8.63491i 1.02317 + 0.274159i
\(993\) 19.8956 + 13.6952i 0.631367 + 0.434602i
\(994\) −0.823384 1.42614i −0.0261162 0.0452345i
\(995\) 0 0
\(996\) −4.52721 + 0.835664i −0.143450 + 0.0264790i
\(997\) 12.5004 46.6520i 0.395891 1.47748i −0.424367 0.905490i \(-0.639503\pi\)
0.820258 0.571994i \(-0.193830\pi\)
\(998\) −59.2202 + 15.8680i −1.87458 + 0.502293i
\(999\) −0.529703 22.0676i −0.0167591 0.698189i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bn.d.407.6 96
3.2 odd 2 inner 975.2.bn.d.407.19 96
5.2 odd 4 195.2.bf.a.173.6 yes 96
5.3 odd 4 inner 975.2.bn.d.368.19 96
5.4 even 2 195.2.bf.a.17.19 yes 96
13.10 even 6 inner 975.2.bn.d.257.6 96
15.2 even 4 195.2.bf.a.173.19 yes 96
15.8 even 4 inner 975.2.bn.d.368.6 96
15.14 odd 2 195.2.bf.a.17.6 96
39.23 odd 6 inner 975.2.bn.d.257.19 96
65.23 odd 12 inner 975.2.bn.d.218.19 96
65.49 even 6 195.2.bf.a.62.19 yes 96
65.62 odd 12 195.2.bf.a.23.6 yes 96
195.23 even 12 inner 975.2.bn.d.218.6 96
195.62 even 12 195.2.bf.a.23.19 yes 96
195.179 odd 6 195.2.bf.a.62.6 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bf.a.17.6 96 15.14 odd 2
195.2.bf.a.17.19 yes 96 5.4 even 2
195.2.bf.a.23.6 yes 96 65.62 odd 12
195.2.bf.a.23.19 yes 96 195.62 even 12
195.2.bf.a.62.6 yes 96 195.179 odd 6
195.2.bf.a.62.19 yes 96 65.49 even 6
195.2.bf.a.173.6 yes 96 5.2 odd 4
195.2.bf.a.173.19 yes 96 15.2 even 4
975.2.bn.d.218.6 96 195.23 even 12 inner
975.2.bn.d.218.19 96 65.23 odd 12 inner
975.2.bn.d.257.6 96 13.10 even 6 inner
975.2.bn.d.257.19 96 39.23 odd 6 inner
975.2.bn.d.368.6 96 15.8 even 4 inner
975.2.bn.d.368.19 96 5.3 odd 4 inner
975.2.bn.d.407.6 96 1.1 even 1 trivial
975.2.bn.d.407.19 96 3.2 odd 2 inner