Properties

Label 975.2.bn.d.407.19
Level $975$
Weight $2$
Character 975.407
Analytic conductor $7.785$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(218,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.218"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bn (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,2,0,0,-12,12,0,0,0,0,12,24,0,0,16,0,0,0,0,0,-20,0,0,0,0, 32,36,0,0,0,0,-30,0,0,-4,84,0,0,0,0,48,-8,0,0,0,0,28,0,0,-16,-28,0,0,0, 0,0,-84,0,0,-32,0,-90,0,0,0,-36,0,0,0,0,-90,0,0,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(76)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 407.19
Character \(\chi\) \(=\) 975.407
Dual form 975.2.bn.d.218.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.65038 - 0.442218i) q^{2} +(0.137150 + 1.72661i) q^{3} +(0.796141 - 0.459652i) q^{4} +(0.989888 + 2.78891i) q^{6} +(-0.109428 - 0.0293212i) q^{7} +(-1.30565 + 1.30565i) q^{8} +(-2.96238 + 0.473611i) q^{9} +(-2.05447 + 3.55845i) q^{11} +(0.902832 + 1.31159i) q^{12} +(-3.24500 - 1.57162i) q^{13} -0.193564 q^{14} +(-2.49674 + 4.32449i) q^{16} +(-5.04353 - 1.35141i) q^{17} +(-4.67961 + 2.09165i) q^{18} +(3.97662 + 6.88771i) q^{19} +(0.0356182 - 0.192962i) q^{21} +(-1.81705 + 6.78132i) q^{22} +(6.69524 - 1.79398i) q^{23} +(-2.43343 - 2.07529i) q^{24} +(-6.05047 - 1.15878i) q^{26} +(-1.22403 - 5.04992i) q^{27} +(-0.100598 + 0.0269551i) q^{28} +(2.00973 - 3.48095i) q^{29} +6.89468i q^{31} +(-1.25240 + 4.67403i) q^{32} +(-6.42584 - 3.05924i) q^{33} -8.92135 q^{34} +(-2.14078 + 1.73873i) q^{36} +(1.09950 + 4.10339i) q^{37} +(9.60880 + 9.60880i) q^{38} +(2.26853 - 5.81840i) q^{39} +(1.73822 - 3.01068i) q^{41} +(-0.0265474 - 0.334211i) q^{42} +(4.88872 + 1.30993i) q^{43} +3.77737i q^{44} +(10.2563 - 5.92150i) q^{46} +(-0.185543 - 0.185543i) q^{47} +(-7.80914 - 3.71780i) q^{48} +(-6.05106 - 3.49358i) q^{49} +(1.64164 - 8.89356i) q^{51} +(-3.30587 + 0.240337i) q^{52} +(-1.94409 - 1.94409i) q^{53} +(-4.25328 - 7.79300i) q^{54} +(0.181159 - 0.104592i) q^{56} +(-11.3470 + 7.81074i) q^{57} +(1.77747 - 6.63362i) q^{58} +(0.619675 - 0.357770i) q^{59} +(2.04160 + 3.53616i) q^{61} +(3.04895 + 11.3788i) q^{62} +(0.338055 + 0.0350341i) q^{63} -1.71922i q^{64} +(-11.9579 - 2.20728i) q^{66} +(0.764792 + 2.85424i) q^{67} +(-4.63654 + 1.24236i) q^{68} +(4.01577 + 11.3140i) q^{69} +(4.25380 + 7.36780i) q^{71} +(3.24947 - 4.48621i) q^{72} +(3.00868 + 3.00868i) q^{73} +(3.62918 + 6.28592i) q^{74} +(6.33191 + 3.65573i) q^{76} +(0.329156 - 0.329156i) q^{77} +(1.17093 - 10.6057i) q^{78} +4.84485i q^{79} +(8.55139 - 2.80603i) q^{81} +(1.53734 - 5.73743i) q^{82} +(2.04442 - 2.04442i) q^{83} +(-0.0603381 - 0.169997i) q^{84} +8.64751 q^{86} +(6.28589 + 2.99261i) q^{87} +(-1.96368 - 7.32854i) q^{88} +(-2.79966 - 1.61638i) q^{89} +(0.309013 + 0.267127i) q^{91} +(4.50574 - 4.50574i) q^{92} +(-11.9044 + 0.945607i) q^{93} +(-0.388267 - 0.224166i) q^{94} +(-8.24201 - 1.52137i) q^{96} +(-0.144327 - 0.0386722i) q^{97} +(-11.5315 - 3.08985i) q^{98} +(4.40081 - 11.5145i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 2 q^{3} - 12 q^{6} + 12 q^{7} + 12 q^{12} + 24 q^{13} + 16 q^{16} - 20 q^{22} + 32 q^{27} + 36 q^{28} - 30 q^{33} - 4 q^{36} + 84 q^{37} + 48 q^{42} - 8 q^{43} + 28 q^{48} - 16 q^{51} - 28 q^{52}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.65038 0.442218i 1.16699 0.312695i 0.377238 0.926116i \(-0.376874\pi\)
0.789756 + 0.613421i \(0.210207\pi\)
\(3\) 0.137150 + 1.72661i 0.0791838 + 0.996860i
\(4\) 0.796141 0.459652i 0.398071 0.229826i
\(5\) 0 0
\(6\) 0.989888 + 2.78891i 0.404120 + 1.13857i
\(7\) −0.109428 0.0293212i −0.0413600 0.0110824i 0.238080 0.971246i \(-0.423482\pi\)
−0.279440 + 0.960163i \(0.590149\pi\)
\(8\) −1.30565 + 1.30565i −0.461618 + 0.461618i
\(9\) −2.96238 + 0.473611i −0.987460 + 0.157870i
\(10\) 0 0
\(11\) −2.05447 + 3.55845i −0.619447 + 1.07291i 0.370139 + 0.928976i \(0.379310\pi\)
−0.989587 + 0.143938i \(0.954023\pi\)
\(12\) 0.902832 + 1.31159i 0.260625 + 0.378622i
\(13\) −3.24500 1.57162i −0.900000 0.435890i
\(14\) −0.193564 −0.0517323
\(15\) 0 0
\(16\) −2.49674 + 4.32449i −0.624186 + 1.08112i
\(17\) −5.04353 1.35141i −1.22324 0.327765i −0.411293 0.911503i \(-0.634923\pi\)
−0.811942 + 0.583738i \(0.801589\pi\)
\(18\) −4.67961 + 2.09165i −1.10299 + 0.493007i
\(19\) 3.97662 + 6.88771i 0.912300 + 1.58015i 0.810807 + 0.585313i \(0.199029\pi\)
0.101493 + 0.994836i \(0.467638\pi\)
\(20\) 0 0
\(21\) 0.0356182 0.192962i 0.00777254 0.0421077i
\(22\) −1.81705 + 6.78132i −0.387396 + 1.44578i
\(23\) 6.69524 1.79398i 1.39605 0.374071i 0.519127 0.854697i \(-0.326257\pi\)
0.876926 + 0.480625i \(0.159590\pi\)
\(24\) −2.43343 2.07529i −0.496722 0.423616i
\(25\) 0 0
\(26\) −6.05047 1.15878i −1.18659 0.227255i
\(27\) −1.22403 5.04992i −0.235565 0.971858i
\(28\) −0.100598 + 0.0269551i −0.0190112 + 0.00509404i
\(29\) 2.00973 3.48095i 0.373197 0.646396i −0.616858 0.787074i \(-0.711595\pi\)
0.990055 + 0.140678i \(0.0449282\pi\)
\(30\) 0 0
\(31\) 6.89468i 1.23832i 0.785265 + 0.619160i \(0.212527\pi\)
−0.785265 + 0.619160i \(0.787473\pi\)
\(32\) −1.25240 + 4.67403i −0.221396 + 0.826260i
\(33\) −6.42584 3.05924i −1.11860 0.532545i
\(34\) −8.92135 −1.53000
\(35\) 0 0
\(36\) −2.14078 + 1.73873i −0.356796 + 0.289788i
\(37\) 1.09950 + 4.10339i 0.180757 + 0.674593i 0.995499 + 0.0947700i \(0.0302116\pi\)
−0.814743 + 0.579823i \(0.803122\pi\)
\(38\) 9.60880 + 9.60880i 1.55875 + 1.55875i
\(39\) 2.26853 5.81840i 0.363256 0.931690i
\(40\) 0 0
\(41\) 1.73822 3.01068i 0.271464 0.470189i −0.697773 0.716319i \(-0.745826\pi\)
0.969237 + 0.246130i \(0.0791589\pi\)
\(42\) −0.0265474 0.334211i −0.00409636 0.0515698i
\(43\) 4.88872 + 1.30993i 0.745523 + 0.199762i 0.611531 0.791220i \(-0.290554\pi\)
0.133991 + 0.990982i \(0.457221\pi\)
\(44\) 3.77737i 0.569461i
\(45\) 0 0
\(46\) 10.2563 5.92150i 1.51222 0.873078i
\(47\) −0.185543 0.185543i −0.0270642 0.0270642i 0.693445 0.720509i \(-0.256092\pi\)
−0.720509 + 0.693445i \(0.756092\pi\)
\(48\) −7.80914 3.71780i −1.12715 0.536619i
\(49\) −6.05106 3.49358i −0.864438 0.499083i
\(50\) 0 0
\(51\) 1.64164 8.89356i 0.229875 1.24535i
\(52\) −3.30587 + 0.240337i −0.458442 + 0.0333287i
\(53\) −1.94409 1.94409i −0.267042 0.267042i 0.560865 0.827907i \(-0.310469\pi\)
−0.827907 + 0.560865i \(0.810469\pi\)
\(54\) −4.25328 7.79300i −0.578799 1.06049i
\(55\) 0 0
\(56\) 0.181159 0.104592i 0.0242084 0.0139767i
\(57\) −11.3470 + 7.81074i −1.50295 + 1.03456i
\(58\) 1.77747 6.63362i 0.233394 0.871037i
\(59\) 0.619675 0.357770i 0.0806749 0.0465777i −0.459120 0.888374i \(-0.651835\pi\)
0.539795 + 0.841797i \(0.318502\pi\)
\(60\) 0 0
\(61\) 2.04160 + 3.53616i 0.261400 + 0.452758i 0.966614 0.256236i \(-0.0824825\pi\)
−0.705214 + 0.708994i \(0.749149\pi\)
\(62\) 3.04895 + 11.3788i 0.387217 + 1.44511i
\(63\) 0.338055 + 0.0350341i 0.0425909 + 0.00441389i
\(64\) 1.71922i 0.214903i
\(65\) 0 0
\(66\) −11.9579 2.20728i −1.47192 0.271697i
\(67\) 0.764792 + 2.85424i 0.0934343 + 0.348701i 0.996777 0.0802172i \(-0.0255614\pi\)
−0.903343 + 0.428919i \(0.858895\pi\)
\(68\) −4.63654 + 1.24236i −0.562263 + 0.150658i
\(69\) 4.01577 + 11.3140i 0.483442 + 1.36205i
\(70\) 0 0
\(71\) 4.25380 + 7.36780i 0.504833 + 0.874397i 0.999984 + 0.00558990i \(0.00177933\pi\)
−0.495151 + 0.868807i \(0.664887\pi\)
\(72\) 3.24947 4.48621i 0.382954 0.528705i
\(73\) 3.00868 + 3.00868i 0.352139 + 0.352139i 0.860905 0.508766i \(-0.169898\pi\)
−0.508766 + 0.860905i \(0.669898\pi\)
\(74\) 3.62918 + 6.28592i 0.421884 + 0.730724i
\(75\) 0 0
\(76\) 6.33191 + 3.65573i 0.726319 + 0.419341i
\(77\) 0.329156 0.329156i 0.0375108 0.0375108i
\(78\) 1.17093 10.6057i 0.132582 1.20086i
\(79\) 4.84485i 0.545088i 0.962143 + 0.272544i \(0.0878650\pi\)
−0.962143 + 0.272544i \(0.912135\pi\)
\(80\) 0 0
\(81\) 8.55139 2.80603i 0.950154 0.311781i
\(82\) 1.53734 5.73743i 0.169771 0.633593i
\(83\) 2.04442 2.04442i 0.224405 0.224405i −0.585946 0.810350i \(-0.699277\pi\)
0.810350 + 0.585946i \(0.199277\pi\)
\(84\) −0.0603381 0.169997i −0.00658343 0.0185482i
\(85\) 0 0
\(86\) 8.64751 0.932485
\(87\) 6.28589 + 2.99261i 0.673918 + 0.320841i
\(88\) −1.96368 7.32854i −0.209329 0.781225i
\(89\) −2.79966 1.61638i −0.296763 0.171336i 0.344225 0.938887i \(-0.388142\pi\)
−0.640988 + 0.767551i \(0.721475\pi\)
\(90\) 0 0
\(91\) 0.309013 + 0.267127i 0.0323933 + 0.0280025i
\(92\) 4.50574 4.50574i 0.469756 0.469756i
\(93\) −11.9044 + 0.945607i −1.23443 + 0.0980549i
\(94\) −0.388267 0.224166i −0.0400466 0.0231209i
\(95\) 0 0
\(96\) −8.24201 1.52137i −0.841196 0.155274i
\(97\) −0.144327 0.0386722i −0.0146542 0.00392657i 0.251485 0.967861i \(-0.419081\pi\)
−0.266139 + 0.963935i \(0.585748\pi\)
\(98\) −11.5315 3.08985i −1.16485 0.312122i
\(99\) 4.40081 11.5145i 0.442298 1.15725i
\(100\) 0 0
\(101\) 10.5103 + 6.06812i 1.04581 + 0.603800i 0.921474 0.388440i \(-0.126986\pi\)
0.124339 + 0.992240i \(0.460319\pi\)
\(102\) −1.22357 15.4037i −0.121151 1.52519i
\(103\) −0.528320 + 0.528320i −0.0520569 + 0.0520569i −0.732656 0.680599i \(-0.761720\pi\)
0.680599 + 0.732656i \(0.261720\pi\)
\(104\) 6.28884 2.18485i 0.616671 0.214242i
\(105\) 0 0
\(106\) −4.06820 2.34878i −0.395139 0.228133i
\(107\) −0.427445 1.59525i −0.0413227 0.154218i 0.942182 0.335102i \(-0.108771\pi\)
−0.983504 + 0.180884i \(0.942104\pi\)
\(108\) −3.29571 3.45782i −0.317130 0.332729i
\(109\) −0.638870 −0.0611926 −0.0305963 0.999532i \(-0.509741\pi\)
−0.0305963 + 0.999532i \(0.509741\pi\)
\(110\) 0 0
\(111\) −6.93416 + 2.46119i −0.658162 + 0.233606i
\(112\) 0.400014 0.400014i 0.0377977 0.0377977i
\(113\) −2.04834 + 7.64451i −0.192692 + 0.719135i 0.800161 + 0.599786i \(0.204747\pi\)
−0.992852 + 0.119349i \(0.961919\pi\)
\(114\) −15.2728 + 17.9085i −1.43043 + 1.67729i
\(115\) 0 0
\(116\) 3.69510i 0.343082i
\(117\) 10.3572 + 3.11888i 0.957528 + 0.288340i
\(118\) 0.864487 0.864487i 0.0795825 0.0795825i
\(119\) 0.512280 + 0.295765i 0.0469606 + 0.0271127i
\(120\) 0 0
\(121\) −2.94173 5.09522i −0.267430 0.463202i
\(122\) 4.93316 + 4.93316i 0.446628 + 0.446628i
\(123\) 5.43667 + 2.58831i 0.490208 + 0.233380i
\(124\) 3.16915 + 5.48913i 0.284598 + 0.492939i
\(125\) 0 0
\(126\) 0.573411 0.0916742i 0.0510835 0.00816699i
\(127\) −12.3036 + 3.29674i −1.09177 + 0.292539i −0.759409 0.650614i \(-0.774512\pi\)
−0.332361 + 0.943152i \(0.607845\pi\)
\(128\) −3.26508 12.1854i −0.288595 1.07705i
\(129\) −1.59125 + 8.62058i −0.140102 + 0.759000i
\(130\) 0 0
\(131\) 12.9569i 1.13205i −0.824390 0.566023i \(-0.808481\pi\)
0.824390 0.566023i \(-0.191519\pi\)
\(132\) −6.52206 + 0.518068i −0.567673 + 0.0450921i
\(133\) −0.233199 0.870310i −0.0202209 0.0754655i
\(134\) 2.52439 + 4.37238i 0.218074 + 0.377716i
\(135\) 0 0
\(136\) 8.34958 4.82063i 0.715970 0.413366i
\(137\) 3.22490 12.0355i 0.275522 1.02826i −0.679969 0.733241i \(-0.738007\pi\)
0.955491 0.295021i \(-0.0953267\pi\)
\(138\) 11.6308 + 16.8966i 0.990079 + 1.43833i
\(139\) 3.31851 1.91594i 0.281472 0.162508i −0.352618 0.935767i \(-0.614708\pi\)
0.634090 + 0.773260i \(0.281375\pi\)
\(140\) 0 0
\(141\) 0.294914 0.345808i 0.0248362 0.0291223i
\(142\) 10.2785 + 10.2785i 0.862557 + 0.862557i
\(143\) 12.2593 8.31831i 1.02517 0.695612i
\(144\) 5.34818 13.9933i 0.445682 1.16610i
\(145\) 0 0
\(146\) 6.29594 + 3.63496i 0.521056 + 0.300832i
\(147\) 5.20216 10.9270i 0.429067 0.901243i
\(148\) 2.76149 + 2.76149i 0.226993 + 0.226993i
\(149\) 10.3032 5.94857i 0.844073 0.487326i −0.0145735 0.999894i \(-0.504639\pi\)
0.858647 + 0.512568i \(0.171306\pi\)
\(150\) 0 0
\(151\) 11.1014i 0.903416i 0.892166 + 0.451708i \(0.149185\pi\)
−0.892166 + 0.451708i \(0.850815\pi\)
\(152\) −14.1851 3.80088i −1.15056 0.308292i
\(153\) 15.5809 + 1.61472i 1.25964 + 0.130542i
\(154\) 0.397673 0.688790i 0.0320454 0.0555043i
\(155\) 0 0
\(156\) −0.868370 5.67500i −0.0695253 0.454364i
\(157\) −5.53986 5.53986i −0.442129 0.442129i 0.450598 0.892727i \(-0.351211\pi\)
−0.892727 + 0.450598i \(0.851211\pi\)
\(158\) 2.14248 + 7.99583i 0.170446 + 0.636114i
\(159\) 3.09006 3.62333i 0.245058 0.287349i
\(160\) 0 0
\(161\) −0.785250 −0.0618864
\(162\) 12.8721 8.41259i 1.01133 0.660955i
\(163\) −3.17233 + 11.8393i −0.248476 + 0.927326i 0.723128 + 0.690714i \(0.242704\pi\)
−0.971604 + 0.236612i \(0.923963\pi\)
\(164\) 3.19590i 0.249558i
\(165\) 0 0
\(166\) 2.46999 4.27815i 0.191708 0.332049i
\(167\) −8.61742 + 2.30903i −0.666836 + 0.178678i −0.576329 0.817218i \(-0.695515\pi\)
−0.0905069 + 0.995896i \(0.528849\pi\)
\(168\) 0.205436 + 0.298446i 0.0158497 + 0.0230256i
\(169\) 8.06000 + 10.1998i 0.620000 + 0.784602i
\(170\) 0 0
\(171\) −15.0424 18.5206i −1.15032 1.41631i
\(172\) 4.49422 1.20422i 0.342681 0.0918211i
\(173\) −2.27704 + 8.49801i −0.173120 + 0.646092i 0.823744 + 0.566961i \(0.191881\pi\)
−0.996864 + 0.0791307i \(0.974786\pi\)
\(174\) 11.6975 + 2.15920i 0.886783 + 0.163689i
\(175\) 0 0
\(176\) −10.2590 17.7691i −0.773301 1.33940i
\(177\) 0.702718 + 1.02087i 0.0528196 + 0.0767334i
\(178\) −5.33529 1.42959i −0.399897 0.107152i
\(179\) 9.95273 17.2386i 0.743902 1.28848i −0.206804 0.978382i \(-0.566306\pi\)
0.950706 0.310094i \(-0.100360\pi\)
\(180\) 0 0
\(181\) 7.45086 0.553818 0.276909 0.960896i \(-0.410690\pi\)
0.276909 + 0.960896i \(0.410690\pi\)
\(182\) 0.628116 + 0.304210i 0.0465590 + 0.0225496i
\(183\) −5.82556 + 4.01004i −0.430638 + 0.296430i
\(184\) −6.39934 + 11.0840i −0.471766 + 0.817122i
\(185\) 0 0
\(186\) −19.2287 + 6.82496i −1.40991 + 0.500430i
\(187\) 15.1707 15.1707i 1.10939 1.10939i
\(188\) −0.233004 0.0624332i −0.0169935 0.00455341i
\(189\) −0.0141260 + 0.588495i −0.00102752 + 0.0428067i
\(190\) 0 0
\(191\) −19.8776 + 11.4763i −1.43829 + 0.830399i −0.997731 0.0673227i \(-0.978554\pi\)
−0.440562 + 0.897722i \(0.645221\pi\)
\(192\) 2.96843 0.235792i 0.214228 0.0170168i
\(193\) 21.1680 5.67196i 1.52371 0.408276i 0.602748 0.797932i \(-0.294072\pi\)
0.920961 + 0.389655i \(0.127406\pi\)
\(194\) −0.255295 −0.0183291
\(195\) 0 0
\(196\) −6.42333 −0.458810
\(197\) 8.39781 2.25019i 0.598319 0.160319i 0.0530668 0.998591i \(-0.483100\pi\)
0.545253 + 0.838272i \(0.316434\pi\)
\(198\) 2.17108 20.9494i 0.154292 1.48881i
\(199\) 17.5413 10.1275i 1.24347 0.717919i 0.273673 0.961823i \(-0.411761\pi\)
0.969799 + 0.243904i \(0.0784282\pi\)
\(200\) 0 0
\(201\) −4.82328 + 1.71196i −0.340208 + 0.120752i
\(202\) 20.0294 + 5.36686i 1.40926 + 0.377611i
\(203\) −0.321987 + 0.321987i −0.0225990 + 0.0225990i
\(204\) −2.78097 7.83511i −0.194707 0.548568i
\(205\) 0 0
\(206\) −0.638295 + 1.10556i −0.0444721 + 0.0770280i
\(207\) −18.9842 + 8.48540i −1.31949 + 0.589776i
\(208\) 14.8984 10.1090i 1.03302 0.700934i
\(209\) −32.6795 −2.26049
\(210\) 0 0
\(211\) 3.64767 6.31794i 0.251116 0.434945i −0.712718 0.701451i \(-0.752536\pi\)
0.963833 + 0.266506i \(0.0858692\pi\)
\(212\) −2.44138 0.654166i −0.167675 0.0449283i
\(213\) −12.1379 + 8.35516i −0.831677 + 0.572486i
\(214\) −1.41089 2.44374i −0.0964466 0.167050i
\(215\) 0 0
\(216\) 8.19162 + 4.99529i 0.557369 + 0.339886i
\(217\) 0.202160 0.754473i 0.0137235 0.0512169i
\(218\) −1.05438 + 0.282519i −0.0714114 + 0.0191346i
\(219\) −4.78218 + 5.60746i −0.323149 + 0.378917i
\(220\) 0 0
\(221\) 14.2423 + 12.3118i 0.958043 + 0.828184i
\(222\) −10.3556 + 7.12830i −0.695023 + 0.478420i
\(223\) 11.7287 3.14269i 0.785411 0.210450i 0.156242 0.987719i \(-0.450062\pi\)
0.629169 + 0.777268i \(0.283395\pi\)
\(224\) 0.274097 0.474749i 0.0183139 0.0317205i
\(225\) 0 0
\(226\) 13.5221i 0.899479i
\(227\) −3.58919 + 13.3950i −0.238223 + 0.889061i 0.738446 + 0.674312i \(0.235560\pi\)
−0.976669 + 0.214748i \(0.931107\pi\)
\(228\) −5.44360 + 11.4341i −0.360511 + 0.757244i
\(229\) −8.51901 −0.562952 −0.281476 0.959568i \(-0.590824\pi\)
−0.281476 + 0.959568i \(0.590824\pi\)
\(230\) 0 0
\(231\) 0.613468 + 0.523181i 0.0403633 + 0.0344228i
\(232\) 1.92091 + 7.16892i 0.126114 + 0.470663i
\(233\) 8.61258 + 8.61258i 0.564229 + 0.564229i 0.930506 0.366277i \(-0.119368\pi\)
−0.366277 + 0.930506i \(0.619368\pi\)
\(234\) 18.4726 + 0.567169i 1.20759 + 0.0370770i
\(235\) 0 0
\(236\) 0.328899 0.569670i 0.0214095 0.0370824i
\(237\) −8.36517 + 0.664473i −0.543376 + 0.0431621i
\(238\) 0.976248 + 0.261585i 0.0632807 + 0.0169560i
\(239\) 11.5531i 0.747310i 0.927568 + 0.373655i \(0.121896\pi\)
−0.927568 + 0.373655i \(0.878104\pi\)
\(240\) 0 0
\(241\) 12.0934 6.98212i 0.779004 0.449758i −0.0570731 0.998370i \(-0.518177\pi\)
0.836077 + 0.548612i \(0.184843\pi\)
\(242\) −7.10816 7.10816i −0.456930 0.456930i
\(243\) 6.01775 + 14.3801i 0.386039 + 0.922482i
\(244\) 3.25080 + 1.87685i 0.208111 + 0.120153i
\(245\) 0 0
\(246\) 10.1172 + 1.86750i 0.645047 + 0.119067i
\(247\) −2.07924 28.6004i −0.132299 1.81980i
\(248\) −9.00206 9.00206i −0.571631 0.571631i
\(249\) 3.81032 + 3.24953i 0.241469 + 0.205931i
\(250\) 0 0
\(251\) −14.9246 + 8.61672i −0.942032 + 0.543882i −0.890597 0.454794i \(-0.849713\pi\)
−0.0514354 + 0.998676i \(0.516380\pi\)
\(252\) 0.285243 0.127496i 0.0179686 0.00803147i
\(253\) −7.37138 + 27.5104i −0.463435 + 1.72956i
\(254\) −18.8477 + 10.8818i −1.18261 + 0.682782i
\(255\) 0 0
\(256\) −9.05800 15.6889i −0.566125 0.980557i
\(257\) 0.108348 + 0.404361i 0.00675857 + 0.0252233i 0.969223 0.246185i \(-0.0791772\pi\)
−0.962464 + 0.271409i \(0.912511\pi\)
\(258\) 1.18601 + 14.9309i 0.0738377 + 0.929557i
\(259\) 0.481265i 0.0299044i
\(260\) 0 0
\(261\) −4.30496 + 11.2637i −0.266470 + 0.697207i
\(262\) −5.72975 21.3837i −0.353985 1.32109i
\(263\) −12.6393 + 3.38670i −0.779374 + 0.208833i −0.626509 0.779414i \(-0.715517\pi\)
−0.152865 + 0.988247i \(0.548850\pi\)
\(264\) 12.3842 4.39562i 0.762197 0.270532i
\(265\) 0 0
\(266\) −0.769733 1.33322i −0.0471953 0.0817447i
\(267\) 2.40689 5.05561i 0.147299 0.309398i
\(268\) 1.92084 + 1.92084i 0.117334 + 0.117334i
\(269\) 0.403612 + 0.699076i 0.0246086 + 0.0426234i 0.878067 0.478537i \(-0.158833\pi\)
−0.853459 + 0.521160i \(0.825499\pi\)
\(270\) 0 0
\(271\) −9.22378 5.32535i −0.560305 0.323492i 0.192963 0.981206i \(-0.438190\pi\)
−0.753268 + 0.657714i \(0.771524\pi\)
\(272\) 18.4366 18.4366i 1.11788 1.11788i
\(273\) −0.418844 + 0.570181i −0.0253496 + 0.0345089i
\(274\) 21.2892i 1.28613i
\(275\) 0 0
\(276\) 8.39764 + 7.16171i 0.505478 + 0.431084i
\(277\) −7.38713 + 27.5691i −0.443849 + 1.65647i 0.275107 + 0.961414i \(0.411287\pi\)
−0.718957 + 0.695055i \(0.755380\pi\)
\(278\) 4.62953 4.62953i 0.277661 0.277661i
\(279\) −3.26539 20.4246i −0.195494 1.22279i
\(280\) 0 0
\(281\) −13.4870 −0.804568 −0.402284 0.915515i \(-0.631784\pi\)
−0.402284 + 0.915515i \(0.631784\pi\)
\(282\) 0.333797 0.701130i 0.0198773 0.0417517i
\(283\) −0.294869 1.10046i −0.0175281 0.0654158i 0.956608 0.291379i \(-0.0941139\pi\)
−0.974136 + 0.225963i \(0.927447\pi\)
\(284\) 6.77325 + 3.91054i 0.401918 + 0.232048i
\(285\) 0 0
\(286\) 16.5540 19.1496i 0.978858 1.13234i
\(287\) −0.278487 + 0.278487i −0.0164386 + 0.0164386i
\(288\) 1.49642 14.4394i 0.0881774 0.850850i
\(289\) 8.88844 + 5.13174i 0.522850 + 0.301867i
\(290\) 0 0
\(291\) 0.0469775 0.254500i 0.00275387 0.0149191i
\(292\) 3.77827 + 1.01239i 0.221107 + 0.0592454i
\(293\) −7.29093 1.95360i −0.425941 0.114130i 0.0394794 0.999220i \(-0.487430\pi\)
−0.465420 + 0.885090i \(0.654097\pi\)
\(294\) 3.75342 20.3341i 0.218904 1.18591i
\(295\) 0 0
\(296\) −6.79317 3.92204i −0.394845 0.227964i
\(297\) 20.4847 + 6.01927i 1.18864 + 0.349274i
\(298\) 14.3737 14.3737i 0.832644 0.832644i
\(299\) −24.5455 4.70092i −1.41950 0.271861i
\(300\) 0 0
\(301\) −0.496555 0.286686i −0.0286210 0.0165243i
\(302\) 4.90922 + 18.3214i 0.282494 + 1.05428i
\(303\) −9.03580 + 18.9794i −0.519093 + 1.09034i
\(304\) −39.7144 −2.27778
\(305\) 0 0
\(306\) 26.4284 4.22525i 1.51081 0.241541i
\(307\) 5.28300 5.28300i 0.301517 0.301517i −0.540090 0.841607i \(-0.681610\pi\)
0.841607 + 0.540090i \(0.181610\pi\)
\(308\) 0.110757 0.413352i 0.00631098 0.0235529i
\(309\) −0.984663 0.839744i −0.0560155 0.0477714i
\(310\) 0 0
\(311\) 2.37607i 0.134735i −0.997728 0.0673674i \(-0.978540\pi\)
0.997728 0.0673674i \(-0.0214599\pi\)
\(312\) 4.63490 + 10.5587i 0.262400 + 0.597770i
\(313\) −20.5099 + 20.5099i −1.15929 + 1.15929i −0.174659 + 0.984629i \(0.555882\pi\)
−0.984629 + 0.174659i \(0.944118\pi\)
\(314\) −11.5927 6.69304i −0.654213 0.377710i
\(315\) 0 0
\(316\) 2.22694 + 3.85718i 0.125275 + 0.216983i
\(317\) −23.9045 23.9045i −1.34261 1.34261i −0.893450 0.449162i \(-0.851723\pi\)
−0.449162 0.893450i \(-0.648277\pi\)
\(318\) 3.49747 7.34634i 0.196128 0.411962i
\(319\) 8.25787 + 14.3030i 0.462352 + 0.800817i
\(320\) 0 0
\(321\) 2.69575 0.956821i 0.150462 0.0534045i
\(322\) −1.29596 + 0.347251i −0.0722210 + 0.0193516i
\(323\) −10.7481 40.1124i −0.598040 2.23191i
\(324\) 5.51831 6.16466i 0.306573 0.342481i
\(325\) 0 0
\(326\) 20.9422i 1.15988i
\(327\) −0.0876212 1.10308i −0.00484546 0.0610005i
\(328\) 1.66140 + 6.20041i 0.0917352 + 0.342361i
\(329\) 0.0148633 + 0.0257440i 0.000819441 + 0.00141931i
\(330\) 0 0
\(331\) 12.0767 6.97251i 0.663798 0.383244i −0.129925 0.991524i \(-0.541474\pi\)
0.793722 + 0.608280i \(0.208140\pi\)
\(332\) 0.687925 2.56737i 0.0377548 0.140903i
\(333\) −5.20054 11.6351i −0.284988 0.637597i
\(334\) −13.2009 + 7.62155i −0.722322 + 0.417033i
\(335\) 0 0
\(336\) 0.745531 + 0.635807i 0.0406720 + 0.0346861i
\(337\) 2.58183 + 2.58183i 0.140641 + 0.140641i 0.773922 0.633281i \(-0.218292\pi\)
−0.633281 + 0.773922i \(0.718292\pi\)
\(338\) 17.8126 + 13.2693i 0.968877 + 0.721754i
\(339\) −13.4800 2.48824i −0.732135 0.135143i
\(340\) 0 0
\(341\) −24.5344 14.1649i −1.32861 0.767074i
\(342\) −33.0157 23.9141i −1.78529 1.29313i
\(343\) 1.12047 + 1.12047i 0.0604997 + 0.0604997i
\(344\) −8.09329 + 4.67266i −0.436361 + 0.251933i
\(345\) 0 0
\(346\) 15.0319i 0.808119i
\(347\) 15.4146 + 4.13034i 0.827500 + 0.221728i 0.647623 0.761961i \(-0.275763\pi\)
0.179877 + 0.983689i \(0.442430\pi\)
\(348\) 6.38001 0.506785i 0.342004 0.0271665i
\(349\) −2.98342 + 5.16743i −0.159699 + 0.276606i −0.934760 0.355280i \(-0.884386\pi\)
0.775061 + 0.631886i \(0.217719\pi\)
\(350\) 0 0
\(351\) −3.96459 + 18.3107i −0.211614 + 0.977353i
\(352\) −14.0593 14.0593i −0.749363 0.749363i
\(353\) −3.22389 12.0317i −0.171590 0.640383i −0.997107 0.0760061i \(-0.975783\pi\)
0.825517 0.564377i \(-0.190884\pi\)
\(354\) 1.61120 + 1.37407i 0.0856342 + 0.0730309i
\(355\) 0 0
\(356\) −2.97190 −0.157510
\(357\) −0.440412 + 0.925073i −0.0233091 + 0.0489600i
\(358\) 8.80254 32.8515i 0.465229 1.73626i
\(359\) 29.8863i 1.57734i 0.614816 + 0.788671i \(0.289230\pi\)
−0.614816 + 0.788671i \(0.710770\pi\)
\(360\) 0 0
\(361\) −22.1271 + 38.3252i −1.16458 + 2.01712i
\(362\) 12.2967 3.29490i 0.646302 0.173176i
\(363\) 8.39402 5.77804i 0.440572 0.303268i
\(364\) 0.368803 + 0.0706327i 0.0193305 + 0.00370216i
\(365\) 0 0
\(366\) −7.84107 + 9.19424i −0.409860 + 0.480591i
\(367\) −12.9762 + 3.47695i −0.677351 + 0.181496i −0.581064 0.813858i \(-0.697363\pi\)
−0.0962869 + 0.995354i \(0.530697\pi\)
\(368\) −8.95823 + 33.4326i −0.466980 + 1.74279i
\(369\) −3.72337 + 9.74201i −0.193831 + 0.507149i
\(370\) 0 0
\(371\) 0.155736 + 0.269742i 0.00808539 + 0.0140043i
\(372\) −9.04296 + 6.22474i −0.468855 + 0.322738i
\(373\) −19.2834 5.16696i −0.998455 0.267535i −0.277657 0.960680i \(-0.589558\pi\)
−0.720798 + 0.693145i \(0.756224\pi\)
\(374\) 18.3287 31.7462i 0.947753 1.64156i
\(375\) 0 0
\(376\) 0.484510 0.0249867
\(377\) −11.9923 + 8.13714i −0.617635 + 0.419084i
\(378\) 0.236929 + 0.977486i 0.0121863 + 0.0502764i
\(379\) 16.7541 29.0190i 0.860601 1.49061i −0.0107483 0.999942i \(-0.503421\pi\)
0.871350 0.490663i \(-0.163245\pi\)
\(380\) 0 0
\(381\) −7.37965 20.7914i −0.378071 1.06518i
\(382\) −27.7305 + 27.7305i −1.41882 + 1.41882i
\(383\) −2.60975 0.699279i −0.133352 0.0357315i 0.191526 0.981488i \(-0.438656\pi\)
−0.324878 + 0.945756i \(0.605323\pi\)
\(384\) 20.5917 7.30876i 1.05082 0.372973i
\(385\) 0 0
\(386\) 32.4270 18.7218i 1.65049 0.952912i
\(387\) −15.1026 1.56515i −0.767710 0.0795612i
\(388\) −0.132680 + 0.0355516i −0.00673582 + 0.00180486i
\(389\) 38.6182 1.95802 0.979011 0.203807i \(-0.0653316\pi\)
0.979011 + 0.203807i \(0.0653316\pi\)
\(390\) 0 0
\(391\) −36.1920 −1.83031
\(392\) 12.4620 3.33918i 0.629426 0.168654i
\(393\) 22.3715 1.77704i 1.12849 0.0896397i
\(394\) 12.8645 7.42732i 0.648104 0.374183i
\(395\) 0 0
\(396\) −1.78901 11.1900i −0.0899010 0.562320i
\(397\) 10.9688 + 2.93908i 0.550509 + 0.147508i 0.523342 0.852122i \(-0.324685\pi\)
0.0271666 + 0.999631i \(0.491352\pi\)
\(398\) 24.4713 24.4713i 1.22663 1.22663i
\(399\) 1.47070 0.522007i 0.0736273 0.0261331i
\(400\) 0 0
\(401\) 15.5856 26.9950i 0.778307 1.34807i −0.154611 0.987975i \(-0.549412\pi\)
0.932917 0.360091i \(-0.117254\pi\)
\(402\) −7.20318 + 4.95832i −0.359262 + 0.247299i
\(403\) 10.8358 22.3732i 0.539771 1.11449i
\(404\) 11.1569 0.555076
\(405\) 0 0
\(406\) −0.389012 + 0.673788i −0.0193063 + 0.0334395i
\(407\) −16.8606 4.51779i −0.835749 0.223938i
\(408\) 9.46851 + 13.7553i 0.468761 + 0.680990i
\(409\) 5.22725 + 9.05386i 0.258471 + 0.447685i 0.965832 0.259167i \(-0.0834481\pi\)
−0.707362 + 0.706852i \(0.750115\pi\)
\(410\) 0 0
\(411\) 21.2229 + 3.91748i 1.04685 + 0.193235i
\(412\) −0.177774 + 0.663461i −0.00875828 + 0.0326864i
\(413\) −0.0783003 + 0.0209805i −0.00385290 + 0.00103238i
\(414\) −27.5787 + 22.3993i −1.35542 + 1.10086i
\(415\) 0 0
\(416\) 11.4099 13.1989i 0.559414 0.647130i
\(417\) 3.76322 + 5.46700i 0.184286 + 0.267720i
\(418\) −53.9335 + 14.4514i −2.63797 + 0.706843i
\(419\) −10.9200 + 18.9139i −0.533476 + 0.924007i 0.465760 + 0.884911i \(0.345781\pi\)
−0.999235 + 0.0390956i \(0.987552\pi\)
\(420\) 0 0
\(421\) 11.3030i 0.550876i −0.961319 0.275438i \(-0.911177\pi\)
0.961319 0.275438i \(-0.0888229\pi\)
\(422\) 3.22612 12.0401i 0.157045 0.586101i
\(423\) 0.637524 + 0.461774i 0.0309975 + 0.0224522i
\(424\) 5.07663 0.246543
\(425\) 0 0
\(426\) −16.3374 + 19.1568i −0.791548 + 0.928149i
\(427\) −0.119724 0.446818i −0.00579387 0.0216230i
\(428\) −1.07357 1.07357i −0.0518927 0.0518927i
\(429\) 16.0439 + 20.0262i 0.774605 + 0.966875i
\(430\) 0 0
\(431\) 1.35987 2.35537i 0.0655028 0.113454i −0.831414 0.555653i \(-0.812468\pi\)
0.896917 + 0.442199i \(0.145802\pi\)
\(432\) 24.8944 + 7.31505i 1.19773 + 0.351945i
\(433\) −13.6874 3.66753i −0.657775 0.176250i −0.0855335 0.996335i \(-0.527259\pi\)
−0.572242 + 0.820085i \(0.693926\pi\)
\(434\) 1.33456i 0.0640611i
\(435\) 0 0
\(436\) −0.508630 + 0.293658i −0.0243590 + 0.0140637i
\(437\) 38.9809 + 38.9809i 1.86471 + 1.86471i
\(438\) −5.41268 + 11.3692i −0.258628 + 0.543241i
\(439\) −8.10140 4.67735i −0.386659 0.223237i 0.294053 0.955789i \(-0.404996\pi\)
−0.680711 + 0.732552i \(0.738329\pi\)
\(440\) 0 0
\(441\) 19.5801 + 7.48347i 0.932388 + 0.356356i
\(442\) 28.9497 + 14.0210i 1.37700 + 0.666910i
\(443\) −5.74199 5.74199i −0.272810 0.272810i 0.557420 0.830230i \(-0.311791\pi\)
−0.830230 + 0.557420i \(0.811791\pi\)
\(444\) −4.38928 + 5.14676i −0.208306 + 0.244254i
\(445\) 0 0
\(446\) 17.9670 10.3733i 0.850763 0.491188i
\(447\) 11.6840 + 16.9738i 0.552633 + 0.802835i
\(448\) −0.0504097 + 0.188132i −0.00238163 + 0.00888838i
\(449\) −23.4891 + 13.5614i −1.10852 + 0.640004i −0.938446 0.345427i \(-0.887734\pi\)
−0.170074 + 0.985431i \(0.554401\pi\)
\(450\) 0 0
\(451\) 7.14224 + 12.3707i 0.336315 + 0.582515i
\(452\) 1.88305 + 7.02763i 0.0885711 + 0.330552i
\(453\) −19.1678 + 1.52256i −0.900579 + 0.0715359i
\(454\) 23.6941i 1.11202i
\(455\) 0 0
\(456\) 4.61715 25.0134i 0.216218 1.17136i
\(457\) −3.46105 12.9168i −0.161901 0.604224i −0.998415 0.0562781i \(-0.982077\pi\)
0.836514 0.547946i \(-0.184590\pi\)
\(458\) −14.0596 + 3.76726i −0.656962 + 0.176032i
\(459\) −0.651065 + 27.1236i −0.0303891 + 1.26602i
\(460\) 0 0
\(461\) −17.1508 29.7061i −0.798792 1.38355i −0.920403 0.390971i \(-0.872139\pi\)
0.121611 0.992578i \(-0.461194\pi\)
\(462\) 1.24381 + 0.592159i 0.0578675 + 0.0275498i
\(463\) 19.4344 + 19.4344i 0.903191 + 0.903191i 0.995711 0.0925195i \(-0.0294920\pi\)
−0.0925195 + 0.995711i \(0.529492\pi\)
\(464\) 10.0356 + 17.3821i 0.465889 + 0.806943i
\(465\) 0 0
\(466\) 18.0226 + 10.4054i 0.834883 + 0.482020i
\(467\) −19.6345 + 19.6345i −0.908575 + 0.908575i −0.996157 0.0875827i \(-0.972086\pi\)
0.0875827 + 0.996157i \(0.472086\pi\)
\(468\) 9.67943 2.27767i 0.447432 0.105285i
\(469\) 0.334760i 0.0154578i
\(470\) 0 0
\(471\) 8.80540 10.3250i 0.405731 0.475750i
\(472\) −0.341958 + 1.27621i −0.0157399 + 0.0587421i
\(473\) −14.7051 + 14.7051i −0.676140 + 0.676140i
\(474\) −13.5119 + 4.79586i −0.620620 + 0.220281i
\(475\) 0 0
\(476\) 0.543796 0.0249248
\(477\) 6.67989 + 4.83840i 0.305851 + 0.221535i
\(478\) 5.10900 + 19.0670i 0.233680 + 0.872107i
\(479\) 1.49161 + 0.861181i 0.0681534 + 0.0393484i 0.533689 0.845681i \(-0.320805\pi\)
−0.465536 + 0.885029i \(0.654138\pi\)
\(480\) 0 0
\(481\) 2.88111 15.0435i 0.131367 0.685924i
\(482\) 16.8711 16.8711i 0.768456 0.768456i
\(483\) −0.107697 1.35582i −0.00490040 0.0616921i
\(484\) −4.68406 2.70434i −0.212912 0.122925i
\(485\) 0 0
\(486\) 16.2907 + 21.0714i 0.738961 + 0.955819i
\(487\) 20.1087 + 5.38812i 0.911213 + 0.244159i 0.683826 0.729645i \(-0.260315\pi\)
0.227388 + 0.973804i \(0.426982\pi\)
\(488\) −7.28262 1.95137i −0.329669 0.0883344i
\(489\) −20.8770 3.85362i −0.944089 0.174267i
\(490\) 0 0
\(491\) 19.5711 + 11.2994i 0.883233 + 0.509935i 0.871723 0.489999i \(-0.163003\pi\)
0.0115102 + 0.999934i \(0.496336\pi\)
\(492\) 5.51808 0.438319i 0.248774 0.0197609i
\(493\) −14.8403 + 14.8403i −0.668374 + 0.668374i
\(494\) −16.0791 46.2819i −0.723434 2.08232i
\(495\) 0 0
\(496\) −29.8159 17.2142i −1.33878 0.772942i
\(497\) −0.249453 0.930972i −0.0111895 0.0417598i
\(498\) 7.72547 + 3.67797i 0.346186 + 0.164814i
\(499\) 35.8828 1.60634 0.803168 0.595753i \(-0.203146\pi\)
0.803168 + 0.595753i \(0.203146\pi\)
\(500\) 0 0
\(501\) −5.16868 14.5623i −0.230920 0.650594i
\(502\) −20.8208 + 20.8208i −0.929276 + 0.929276i
\(503\) 8.55700 31.9352i 0.381538 1.42392i −0.462015 0.886872i \(-0.652873\pi\)
0.843553 0.537047i \(-0.180460\pi\)
\(504\) −0.487125 + 0.395640i −0.0216983 + 0.0176232i
\(505\) 0 0
\(506\) 48.6623i 2.16330i
\(507\) −16.5057 + 15.3154i −0.733044 + 0.680181i
\(508\) −8.28006 + 8.28006i −0.367368 + 0.367368i
\(509\) 5.25012 + 3.03116i 0.232707 + 0.134354i 0.611820 0.790997i \(-0.290438\pi\)
−0.379113 + 0.925350i \(0.623771\pi\)
\(510\) 0 0
\(511\) −0.241016 0.417452i −0.0106619 0.0184670i
\(512\) −4.04633 4.04633i −0.178824 0.178824i
\(513\) 29.9149 28.5124i 1.32078 1.25886i
\(514\) 0.357631 + 0.619435i 0.0157744 + 0.0273221i
\(515\) 0 0
\(516\) 2.69561 + 7.59462i 0.118668 + 0.334334i
\(517\) 1.04144 0.279053i 0.0458025 0.0122727i
\(518\) −0.212824 0.794270i −0.00935095 0.0348982i
\(519\) −14.9851 2.76605i −0.657772 0.121416i
\(520\) 0 0
\(521\) 23.5394i 1.03128i 0.856805 + 0.515640i \(0.172446\pi\)
−0.856805 + 0.515640i \(0.827554\pi\)
\(522\) −2.12379 + 20.4931i −0.0929560 + 0.896960i
\(523\) −8.20158 30.6087i −0.358630 1.33843i −0.875854 0.482575i \(-0.839701\pi\)
0.517225 0.855850i \(-0.326965\pi\)
\(524\) −5.95565 10.3155i −0.260174 0.450634i
\(525\) 0 0
\(526\) −19.3620 + 11.1787i −0.844224 + 0.487413i
\(527\) 9.31753 34.7735i 0.405878 1.51476i
\(528\) 29.2733 20.1503i 1.27396 0.876931i
\(529\) 21.6892 12.5223i 0.943010 0.544447i
\(530\) 0 0
\(531\) −1.66627 + 1.35334i −0.0723100 + 0.0587297i
\(532\) −0.585699 0.585699i −0.0253933 0.0253933i
\(533\) −10.3722 + 7.03782i −0.449268 + 0.304842i
\(534\) 1.73660 9.40804i 0.0751502 0.407126i
\(535\) 0 0
\(536\) −4.72521 2.72810i −0.204098 0.117836i
\(537\) 31.1295 + 14.8202i 1.34334 + 0.639540i
\(538\) 0.975256 + 0.975256i 0.0420463 + 0.0420463i
\(539\) 24.8635 14.3550i 1.07095 0.618312i
\(540\) 0 0
\(541\) 26.7974i 1.15211i 0.817411 + 0.576055i \(0.195409\pi\)
−0.817411 + 0.576055i \(0.804591\pi\)
\(542\) −17.5777 4.70993i −0.755027 0.202309i
\(543\) 1.02189 + 12.8647i 0.0438534 + 0.552079i
\(544\) 12.6331 21.8811i 0.541638 0.938145i
\(545\) 0 0
\(546\) −0.439107 + 1.12624i −0.0187920 + 0.0481984i
\(547\) −6.51421 6.51421i −0.278528 0.278528i 0.553993 0.832521i \(-0.313103\pi\)
−0.832521 + 0.553993i \(0.813103\pi\)
\(548\) −2.96467 11.0643i −0.126644 0.472643i
\(549\) −7.72276 9.50851i −0.329599 0.405813i
\(550\) 0 0
\(551\) 31.9677 1.36187
\(552\) −20.0154 9.52901i −0.851912 0.405581i
\(553\) 0.142057 0.530163i 0.00604087 0.0225448i
\(554\) 48.7662i 2.07188i
\(555\) 0 0
\(556\) 1.76133 3.05072i 0.0746971 0.129379i
\(557\) −22.7031 + 6.08328i −0.961962 + 0.257757i −0.705431 0.708779i \(-0.749246\pi\)
−0.256531 + 0.966536i \(0.582580\pi\)
\(558\) −14.4213 32.2644i −0.610501 1.36586i
\(559\) −13.8052 11.9339i −0.583896 0.504752i
\(560\) 0 0
\(561\) 28.2746 + 24.1133i 1.19376 + 1.01806i
\(562\) −22.2587 + 5.96419i −0.938926 + 0.251584i
\(563\) −9.60782 + 35.8569i −0.404921 + 1.51119i 0.399279 + 0.916829i \(0.369260\pi\)
−0.804201 + 0.594358i \(0.797406\pi\)
\(564\) 0.0758413 0.410870i 0.00319350 0.0173007i
\(565\) 0 0
\(566\) −0.973289 1.68579i −0.0409104 0.0708589i
\(567\) −1.01804 + 0.0563221i −0.0427537 + 0.00236531i
\(568\) −15.1738 4.06580i −0.636678 0.170597i
\(569\) 6.61515 11.4578i 0.277322 0.480335i −0.693397 0.720556i \(-0.743887\pi\)
0.970718 + 0.240221i \(0.0772199\pi\)
\(570\) 0 0
\(571\) 16.3611 0.684690 0.342345 0.939574i \(-0.388779\pi\)
0.342345 + 0.939574i \(0.388779\pi\)
\(572\) 5.93661 12.2576i 0.248222 0.512515i
\(573\) −22.5414 32.7469i −0.941681 1.36802i
\(574\) −0.336457 + 0.582760i −0.0140434 + 0.0243240i
\(575\) 0 0
\(576\) 0.814243 + 5.09299i 0.0339268 + 0.212208i
\(577\) −1.55067 + 1.55067i −0.0645553 + 0.0645553i −0.738647 0.674092i \(-0.764535\pi\)
0.674092 + 0.738647i \(0.264535\pi\)
\(578\) 16.9386 + 4.53869i 0.704554 + 0.188785i
\(579\) 12.6965 + 35.7711i 0.527648 + 1.48660i
\(580\) 0 0
\(581\) −0.283663 + 0.163773i −0.0117683 + 0.00679444i
\(582\) −0.0350138 0.440796i −0.00145137 0.0182716i
\(583\) 10.9121 2.92388i 0.451931 0.121095i
\(584\) −7.85658 −0.325107
\(585\) 0 0
\(586\) −12.8967 −0.532758
\(587\) 19.5193 5.23017i 0.805646 0.215872i 0.167585 0.985858i \(-0.446403\pi\)
0.638061 + 0.769986i \(0.279737\pi\)
\(588\) −0.880963 11.0906i −0.0363303 0.457369i
\(589\) −47.4885 + 27.4175i −1.95673 + 1.12972i
\(590\) 0 0
\(591\) 5.03696 + 14.1912i 0.207193 + 0.583746i
\(592\) −20.4902 5.49034i −0.842143 0.225651i
\(593\) 3.08282 3.08282i 0.126596 0.126596i −0.640970 0.767566i \(-0.721468\pi\)
0.767566 + 0.640970i \(0.221468\pi\)
\(594\) 36.4693 + 0.875395i 1.49635 + 0.0359179i
\(595\) 0 0
\(596\) 5.46855 9.47180i 0.224000 0.387980i
\(597\) 19.8921 + 28.8981i 0.814128 + 1.18272i
\(598\) −42.5882 + 3.09615i −1.74156 + 0.126611i
\(599\) 17.9813 0.734698 0.367349 0.930083i \(-0.380266\pi\)
0.367349 + 0.930083i \(0.380266\pi\)
\(600\) 0 0
\(601\) −4.18909 + 7.25572i −0.170877 + 0.295967i −0.938727 0.344663i \(-0.887993\pi\)
0.767850 + 0.640630i \(0.221327\pi\)
\(602\) −0.946282 0.253555i −0.0385676 0.0103341i
\(603\) −3.61741 8.09314i −0.147312 0.329578i
\(604\) 5.10277 + 8.83825i 0.207629 + 0.359623i
\(605\) 0 0
\(606\) −6.51944 + 35.3190i −0.264834 + 1.43474i
\(607\) 4.58950 17.1283i 0.186282 0.695214i −0.808070 0.589086i \(-0.799488\pi\)
0.994352 0.106128i \(-0.0338454\pi\)
\(608\) −37.1737 + 9.96067i −1.50759 + 0.403958i
\(609\) −0.600107 0.511786i −0.0243176 0.0207386i
\(610\) 0 0
\(611\) 0.310483 + 0.893690i 0.0125608 + 0.0361548i
\(612\) 13.1468 5.87625i 0.531428 0.237533i
\(613\) 36.8917 9.88511i 1.49004 0.399256i 0.580291 0.814409i \(-0.302939\pi\)
0.909752 + 0.415153i \(0.136272\pi\)
\(614\) 6.38272 11.0552i 0.257585 0.446151i
\(615\) 0 0
\(616\) 0.859527i 0.0346313i
\(617\) −7.27686 + 27.1576i −0.292955 + 1.09332i 0.649872 + 0.760043i \(0.274822\pi\)
−0.942828 + 0.333281i \(0.891844\pi\)
\(618\) −1.99642 0.950461i −0.0803076 0.0382331i
\(619\) −34.9871 −1.40625 −0.703125 0.711066i \(-0.748213\pi\)
−0.703125 + 0.711066i \(0.748213\pi\)
\(620\) 0 0
\(621\) −17.2547 31.6145i −0.692406 1.26865i
\(622\) −1.05074 3.92142i −0.0421309 0.157235i
\(623\) 0.258967 + 0.258967i 0.0103753 + 0.0103753i
\(624\) 19.4977 + 24.3373i 0.780531 + 0.974271i
\(625\) 0 0
\(626\) −24.7792 + 42.9189i −0.990378 + 1.71538i
\(627\) −4.48200 56.4248i −0.178994 2.25339i
\(628\) −6.95692 1.86410i −0.277611 0.0743857i
\(629\) 22.1814i 0.884431i
\(630\) 0 0
\(631\) −10.8292 + 6.25222i −0.431102 + 0.248897i −0.699816 0.714323i \(-0.746735\pi\)
0.268714 + 0.963220i \(0.413401\pi\)
\(632\) −6.32569 6.32569i −0.251623 0.251623i
\(633\) 11.4089 + 5.43160i 0.453464 + 0.215887i
\(634\) −50.0225 28.8805i −1.98665 1.14699i
\(635\) 0 0
\(636\) 0.794654 4.30503i 0.0315101 0.170706i
\(637\) 14.1451 + 20.8467i 0.560449 + 0.825974i
\(638\) 19.9537 + 19.9537i 0.789973 + 0.789973i
\(639\) −16.0908 19.8116i −0.636544 0.783733i
\(640\) 0 0
\(641\) 3.54806 2.04848i 0.140140 0.0809099i −0.428291 0.903641i \(-0.640884\pi\)
0.568431 + 0.822731i \(0.307551\pi\)
\(642\) 4.02588 2.77122i 0.158889 0.109371i
\(643\) 10.8144 40.3600i 0.426479 1.59164i −0.334192 0.942505i \(-0.608464\pi\)
0.760672 0.649137i \(-0.224870\pi\)
\(644\) −0.625170 + 0.360942i −0.0246351 + 0.0142231i
\(645\) 0 0
\(646\) −35.4768 61.4477i −1.39582 2.41763i
\(647\) −1.68818 6.30036i −0.0663691 0.247693i 0.924769 0.380529i \(-0.124258\pi\)
−0.991138 + 0.132836i \(0.957591\pi\)
\(648\) −7.50144 + 14.8289i −0.294685 + 0.582532i
\(649\) 2.94012i 0.115410i
\(650\) 0 0
\(651\) 1.33041 + 0.245576i 0.0521428 + 0.00962489i
\(652\) 2.91634 + 10.8839i 0.114213 + 0.426247i
\(653\) 44.7451 11.9894i 1.75101 0.469182i 0.766171 0.642637i \(-0.222160\pi\)
0.984842 + 0.173454i \(0.0554929\pi\)
\(654\) −0.632409 1.78175i −0.0247292 0.0696720i
\(655\) 0 0
\(656\) 8.67976 + 15.0338i 0.338888 + 0.586971i
\(657\) −10.3378 7.48790i −0.403315 0.292131i
\(658\) 0.0359145 + 0.0359145i 0.00140009 + 0.00140009i
\(659\) −12.0799 20.9230i −0.470566 0.815045i 0.528867 0.848705i \(-0.322617\pi\)
−0.999433 + 0.0336601i \(0.989284\pi\)
\(660\) 0 0
\(661\) 35.3712 + 20.4215i 1.37578 + 0.794306i 0.991648 0.128973i \(-0.0411680\pi\)
0.384130 + 0.923279i \(0.374501\pi\)
\(662\) 16.8478 16.8478i 0.654809 0.654809i
\(663\) −19.3044 + 26.2796i −0.749722 + 1.02061i
\(664\) 5.33862i 0.207178i
\(665\) 0 0
\(666\) −13.7281 16.9025i −0.531953 0.654958i
\(667\) 7.21084 26.9112i 0.279205 1.04201i
\(668\) −5.79933 + 5.79933i −0.224383 + 0.224383i
\(669\) 7.03481 + 19.8199i 0.271981 + 0.766281i
\(670\) 0 0
\(671\) −16.7777 −0.647694
\(672\) 0.857300 + 0.408147i 0.0330711 + 0.0157446i
\(673\) 3.20311 + 11.9542i 0.123471 + 0.460799i 0.999781 0.0209488i \(-0.00666871\pi\)
−0.876310 + 0.481748i \(0.840002\pi\)
\(674\) 5.40272 + 3.11926i 0.208105 + 0.120150i
\(675\) 0 0
\(676\) 11.1053 + 4.41570i 0.427126 + 0.169834i
\(677\) −17.7462 + 17.7462i −0.682043 + 0.682043i −0.960460 0.278418i \(-0.910190\pi\)
0.278418 + 0.960460i \(0.410190\pi\)
\(678\) −23.3475 + 1.85457i −0.896655 + 0.0712242i
\(679\) 0.0146595 + 0.00846367i 0.000562580 + 0.000324806i
\(680\) 0 0
\(681\) −23.6203 4.36001i −0.905132 0.167076i
\(682\) −46.7550 12.5280i −1.79034 0.479721i
\(683\) 21.3203 + 5.71276i 0.815798 + 0.218593i 0.642509 0.766278i \(-0.277894\pi\)
0.173290 + 0.984871i \(0.444560\pi\)
\(684\) −20.4889 7.83079i −0.783413 0.299418i
\(685\) 0 0
\(686\) 2.34469 + 1.35371i 0.0895208 + 0.0516848i
\(687\) −1.16839 14.7090i −0.0445767 0.561185i
\(688\) −17.8706 + 17.8706i −0.681312 + 0.681312i
\(689\) 3.25319 + 9.36396i 0.123937 + 0.356738i
\(690\) 0 0
\(691\) −7.86173 4.53897i −0.299074 0.172671i 0.342953 0.939353i \(-0.388573\pi\)
−0.642027 + 0.766682i \(0.721906\pi\)
\(692\) 2.09329 + 7.81226i 0.0795749 + 0.296978i
\(693\) −0.819193 + 1.13098i −0.0311186 + 0.0429622i
\(694\) 27.2665 1.03502
\(695\) 0 0
\(696\) −12.1145 + 4.29988i −0.459199 + 0.162987i
\(697\) −12.8354 + 12.8354i −0.486176 + 0.486176i
\(698\) −2.63864 + 9.84754i −0.0998740 + 0.372735i
\(699\) −13.6894 + 16.0518i −0.517779 + 0.607135i
\(700\) 0 0
\(701\) 31.3445i 1.18386i 0.805988 + 0.591932i \(0.201635\pi\)
−0.805988 + 0.591932i \(0.798365\pi\)
\(702\) 1.55424 + 31.9728i 0.0586611 + 1.20674i
\(703\) −23.8907 + 23.8907i −0.901053 + 0.901053i
\(704\) 6.11777 + 3.53210i 0.230572 + 0.133121i
\(705\) 0 0
\(706\) −10.6413 18.4312i −0.400489 0.693667i
\(707\) −0.972198 0.972198i −0.0365633 0.0365633i
\(708\) 1.02871 + 0.489751i 0.0386612 + 0.0184060i
\(709\) −16.2682 28.1774i −0.610967 1.05823i −0.991078 0.133285i \(-0.957448\pi\)
0.380111 0.924941i \(-0.375886\pi\)
\(710\) 0 0
\(711\) −2.29457 14.3523i −0.0860532 0.538252i
\(712\) 5.76582 1.54495i 0.216083 0.0578993i
\(713\) 12.3689 + 46.1615i 0.463220 + 1.72876i
\(714\) −0.317763 + 1.72148i −0.0118920 + 0.0644247i
\(715\) 0 0
\(716\) 18.2992i 0.683873i
\(717\) −19.9478 + 1.58452i −0.744964 + 0.0591749i
\(718\) 13.2163 + 49.3238i 0.493227 + 1.84075i
\(719\) −14.5548 25.2096i −0.542802 0.940160i −0.998742 0.0501495i \(-0.984030\pi\)
0.455940 0.890010i \(-0.349303\pi\)
\(720\) 0 0
\(721\) 0.0733041 0.0423222i 0.00272999 0.00157616i
\(722\) −19.5699 + 73.0360i −0.728318 + 2.71812i
\(723\) 13.7140 + 19.9230i 0.510030 + 0.740944i
\(724\) 5.93194 3.42480i 0.220459 0.127282i
\(725\) 0 0
\(726\) 11.2982 13.2479i 0.419314 0.491677i
\(727\) −12.8617 12.8617i −0.477014 0.477014i 0.427161 0.904175i \(-0.359514\pi\)
−0.904175 + 0.427161i \(0.859514\pi\)
\(728\) −0.752239 + 0.0546877i −0.0278798 + 0.00202686i
\(729\) −24.0035 + 12.3626i −0.889018 + 0.457873i
\(730\) 0 0
\(731\) −22.8861 13.2133i −0.846475 0.488712i
\(732\) −2.79475 + 5.87029i −0.103297 + 0.216972i
\(733\) −9.86693 9.86693i −0.364443 0.364443i 0.501003 0.865446i \(-0.332965\pi\)
−0.865446 + 0.501003i \(0.832965\pi\)
\(734\) −19.8780 + 11.4766i −0.733711 + 0.423608i
\(735\) 0 0
\(736\) 33.5405i 1.23632i
\(737\) −11.7279 3.14249i −0.432004 0.115755i
\(738\) −1.83687 + 17.7245i −0.0676162 + 0.652450i
\(739\) 12.6022 21.8276i 0.463578 0.802941i −0.535558 0.844498i \(-0.679899\pi\)
0.999136 + 0.0415576i \(0.0132320\pi\)
\(740\) 0 0
\(741\) 49.0966 7.51259i 1.80361 0.275982i
\(742\) 0.376307 + 0.376307i 0.0138147 + 0.0138147i
\(743\) 9.73165 + 36.3190i 0.357020 + 1.33242i 0.877924 + 0.478801i \(0.158928\pi\)
−0.520904 + 0.853615i \(0.674405\pi\)
\(744\) 14.3084 16.7777i 0.524573 0.615100i
\(745\) 0 0
\(746\) −34.1098 −1.24885
\(747\) −5.08809 + 7.02462i −0.186164 + 0.257017i
\(748\) 5.10478 19.0513i 0.186649 0.696584i
\(749\) 0.187098i 0.00683642i
\(750\) 0 0
\(751\) 14.1002 24.4223i 0.514524 0.891182i −0.485334 0.874329i \(-0.661302\pi\)
0.999858 0.0168530i \(-0.00536474\pi\)
\(752\) 1.26563 0.339125i 0.0461529 0.0123666i
\(753\) −16.9246 24.5872i −0.616768 0.896007i
\(754\) −16.1934 + 18.7326i −0.589730 + 0.682200i
\(755\) 0 0
\(756\) 0.259257 + 0.475018i 0.00942907 + 0.0172762i
\(757\) 29.1397 7.80797i 1.05910 0.283785i 0.313093 0.949722i \(-0.398635\pi\)
0.746008 + 0.665937i \(0.231968\pi\)
\(758\) 14.8179 55.3013i 0.538211 2.00863i
\(759\) −48.5108 8.95446i −1.76083 0.325026i
\(760\) 0 0
\(761\) −14.3226 24.8075i −0.519195 0.899272i −0.999751 0.0223082i \(-0.992898\pi\)
0.480556 0.876964i \(-0.340435\pi\)
\(762\) −21.3735 31.0503i −0.774282 1.12483i
\(763\) 0.0699104 + 0.0187324i 0.00253093 + 0.000678160i
\(764\) −10.5503 + 18.2736i −0.381695 + 0.661115i
\(765\) 0 0
\(766\) −4.61630 −0.166794
\(767\) −2.57312 + 0.187066i −0.0929101 + 0.00675455i
\(768\) 25.8464 17.7914i 0.932650 0.641992i
\(769\) 26.5529 45.9910i 0.957522 1.65848i 0.229035 0.973418i \(-0.426443\pi\)
0.728488 0.685059i \(-0.240224\pi\)
\(770\) 0 0
\(771\) −0.683314 + 0.242533i −0.0246090 + 0.00873463i
\(772\) 14.2456 14.2456i 0.512711 0.512711i
\(773\) −34.1355 9.14659i −1.22777 0.328980i −0.414059 0.910250i \(-0.635889\pi\)
−0.813711 + 0.581270i \(0.802556\pi\)
\(774\) −25.6172 + 4.09555i −0.920791 + 0.147212i
\(775\) 0 0
\(776\) 0.238933 0.137948i 0.00857720 0.00495205i
\(777\) 0.830959 0.0660057i 0.0298105 0.00236794i
\(778\) 63.7347 17.0777i 2.28500 0.612264i
\(779\) 27.6489 0.990626
\(780\) 0 0
\(781\) −34.9573 −1.25087
\(782\) −59.7305 + 16.0047i −2.13596 + 0.572329i
\(783\) −20.0385 5.88817i −0.716118 0.210426i
\(784\) 30.2159 17.4452i 1.07914 0.623042i
\(785\) 0 0
\(786\) 36.1355 12.8258i 1.28891 0.457482i
\(787\) −18.5304 4.96521i −0.660539 0.176991i −0.0870495 0.996204i \(-0.527744\pi\)
−0.573489 + 0.819213i \(0.694410\pi\)
\(788\) 5.65154 5.65154i 0.201328 0.201328i
\(789\) −7.58100 21.3587i −0.269891 0.760391i
\(790\) 0 0
\(791\) 0.448293 0.776465i 0.0159394 0.0276079i
\(792\) 9.28803 + 20.7799i 0.330036 + 0.738382i
\(793\) −1.06748 14.6834i −0.0379075 0.521424i
\(794\) 19.4024 0.688566
\(795\) 0 0
\(796\) 9.31025 16.1258i 0.329993 0.571565i
\(797\) 15.1753 + 4.06620i 0.537535 + 0.144032i 0.517366 0.855764i \(-0.326913\pi\)
0.0201695 + 0.999797i \(0.493579\pi\)
\(798\) 2.19638 1.51188i 0.0777509 0.0535200i
\(799\) 0.685047 + 1.18654i 0.0242352 + 0.0419766i
\(800\) 0 0
\(801\) 9.05919 + 3.46239i 0.320091 + 0.122338i
\(802\) 13.7844 51.4442i 0.486745 1.81656i
\(803\) −16.8875 + 4.52499i −0.595946 + 0.159683i
\(804\) −3.05311 + 3.57999i −0.107675 + 0.126257i
\(805\) 0 0
\(806\) 7.98939 41.7160i 0.281414 1.46938i
\(807\) −1.15168 + 0.792760i −0.0405410 + 0.0279065i
\(808\) −21.6457 + 5.79994i −0.761492 + 0.204041i
\(809\) −9.50547 + 16.4640i −0.334195 + 0.578842i −0.983330 0.181831i \(-0.941798\pi\)
0.649135 + 0.760673i \(0.275131\pi\)
\(810\) 0 0
\(811\) 18.8816i 0.663023i −0.943451 0.331512i \(-0.892441\pi\)
0.943451 0.331512i \(-0.107559\pi\)
\(812\) −0.108345 + 0.404349i −0.00380216 + 0.0141899i
\(813\) 7.92978 16.6563i 0.278109 0.584161i
\(814\) −29.8242 −1.04534
\(815\) 0 0
\(816\) 34.3614 + 29.3042i 1.20289 + 1.02585i
\(817\) 10.4182 + 38.8812i 0.364486 + 1.36028i
\(818\) 12.6307 + 12.6307i 0.441623 + 0.441623i
\(819\) −1.04193 0.644981i −0.0364079 0.0225374i
\(820\) 0 0
\(821\) 0.931007 1.61255i 0.0324924 0.0562784i −0.849322 0.527875i \(-0.822989\pi\)
0.881814 + 0.471597i \(0.156322\pi\)
\(822\) 36.7583 2.91983i 1.28209 0.101841i
\(823\) 21.4397 + 5.74475i 0.747341 + 0.200249i 0.612338 0.790596i \(-0.290229\pi\)
0.135003 + 0.990845i \(0.456896\pi\)
\(824\) 1.37961i 0.0480608i
\(825\) 0 0
\(826\) −0.119947 + 0.0692515i −0.00417349 + 0.00240957i
\(827\) 5.90430 + 5.90430i 0.205313 + 0.205313i 0.802272 0.596959i \(-0.203625\pi\)
−0.596959 + 0.802272i \(0.703625\pi\)
\(828\) −11.2138 + 15.4817i −0.389705 + 0.538026i
\(829\) 27.7895 + 16.0443i 0.965168 + 0.557240i 0.897760 0.440485i \(-0.145194\pi\)
0.0674084 + 0.997725i \(0.478527\pi\)
\(830\) 0 0
\(831\) −48.6143 8.97358i −1.68641 0.311290i
\(832\) −2.70197 + 5.57887i −0.0936739 + 0.193412i
\(833\) 25.7974 + 25.7974i 0.893829 + 0.893829i
\(834\) 8.62834 + 7.35846i 0.298775 + 0.254802i
\(835\) 0 0
\(836\) −26.0175 + 15.0212i −0.899833 + 0.519519i
\(837\) 34.8176 8.43932i 1.20347 0.291706i
\(838\) −9.65801 + 36.0442i −0.333630 + 1.24513i
\(839\) 6.21211 3.58656i 0.214466 0.123822i −0.388919 0.921272i \(-0.627152\pi\)
0.603385 + 0.797450i \(0.293818\pi\)
\(840\) 0 0
\(841\) 6.42199 + 11.1232i 0.221448 + 0.383559i
\(842\) −4.99840 18.6543i −0.172256 0.642869i
\(843\) −1.84975 23.2868i −0.0637088 0.802042i
\(844\) 6.70663i 0.230852i
\(845\) 0 0
\(846\) 1.25636 + 0.480177i 0.0431946 + 0.0165088i
\(847\) 0.172510 + 0.643817i 0.00592752 + 0.0221218i
\(848\) 13.2611 3.55330i 0.455388 0.122021i
\(849\) 1.85963 0.660053i 0.0638225 0.0226530i
\(850\) 0 0
\(851\) 14.7228 + 25.5007i 0.504692 + 0.874152i
\(852\) −5.82303 + 12.2311i −0.199494 + 0.419031i
\(853\) −26.8806 26.8806i −0.920373 0.920373i 0.0766825 0.997056i \(-0.475567\pi\)
−0.997056 + 0.0766825i \(0.975567\pi\)
\(854\) −0.395181 0.684474i −0.0135228 0.0234222i
\(855\) 0 0
\(856\) 2.64094 + 1.52474i 0.0902653 + 0.0521147i
\(857\) 31.5042 31.5042i 1.07616 1.07616i 0.0793118 0.996850i \(-0.474728\pi\)
0.996850 0.0793118i \(-0.0252723\pi\)
\(858\) 35.3344 + 25.9559i 1.20630 + 0.886121i
\(859\) 29.9066i 1.02040i 0.860055 + 0.510201i \(0.170429\pi\)
−0.860055 + 0.510201i \(0.829571\pi\)
\(860\) 0 0
\(861\) −0.519033 0.442644i −0.0176886 0.0150853i
\(862\) 1.20272 4.48861i 0.0409648 0.152883i
\(863\) 9.69182 9.69182i 0.329913 0.329913i −0.522640 0.852553i \(-0.675053\pi\)
0.852553 + 0.522640i \(0.175053\pi\)
\(864\) 25.1365 + 0.603367i 0.855161 + 0.0205270i
\(865\) 0 0
\(866\) −24.2113 −0.822732
\(867\) −7.64148 + 16.0507i −0.259518 + 0.545111i
\(868\) −0.185847 0.693590i −0.00630806 0.0235420i
\(869\) −17.2402 9.95361i −0.584832 0.337653i
\(870\) 0 0
\(871\) 2.00405 10.4640i 0.0679045 0.354558i
\(872\) 0.834142 0.834142i 0.0282476 0.0282476i
\(873\) 0.445866 + 0.0462071i 0.0150903 + 0.00156387i
\(874\) 81.5712 + 47.0952i 2.75919 + 1.59302i
\(875\) 0 0
\(876\) −1.22981 + 6.66246i −0.0415513 + 0.225104i
\(877\) 34.0942 + 9.13551i 1.15128 + 0.308484i 0.783478 0.621420i \(-0.213444\pi\)
0.367801 + 0.929904i \(0.380111\pi\)
\(878\) −15.4388 4.13681i −0.521033 0.139610i
\(879\) 2.37315 12.8565i 0.0800445 0.433640i
\(880\) 0 0
\(881\) −0.0237715 0.0137245i −0.000800881 0.000462389i 0.499600 0.866257i \(-0.333481\pi\)
−0.500400 + 0.865794i \(0.666814\pi\)
\(882\) 35.6240 + 3.69187i 1.19952 + 0.124312i
\(883\) 12.5285 12.5285i 0.421617 0.421617i −0.464143 0.885760i \(-0.653638\pi\)
0.885760 + 0.464143i \(0.153638\pi\)
\(884\) 16.9981 + 3.25545i 0.571707 + 0.109492i
\(885\) 0 0
\(886\) −12.0157 6.93725i −0.403674 0.233061i
\(887\) −0.784839 2.92906i −0.0263523 0.0983482i 0.951497 0.307658i \(-0.0995451\pi\)
−0.977849 + 0.209309i \(0.932878\pi\)
\(888\) 5.84015 12.2671i 0.195983 0.411656i
\(889\) 1.44303 0.0483976
\(890\) 0 0
\(891\) −7.58347 + 36.1946i −0.254056 + 1.21257i
\(892\) 7.89315 7.89315i 0.264282 0.264282i
\(893\) 0.540132 2.01580i 0.0180748 0.0674562i
\(894\) 26.7891 + 22.8464i 0.895961 + 0.764097i
\(895\) 0 0
\(896\) 1.42917i 0.0477451i
\(897\) 4.75024 43.0253i 0.158606 1.43657i
\(898\) −32.7688 + 32.7688i −1.09351 + 1.09351i
\(899\) 24.0000 + 13.8564i 0.800446 + 0.462138i
\(900\) 0 0
\(901\) 7.17782 + 12.4324i 0.239128 + 0.414182i
\(902\) 17.2580 + 17.2580i 0.574627 + 0.574627i
\(903\) 0.426893 0.896678i 0.0142061 0.0298396i
\(904\) −7.30666 12.6555i −0.243016 0.420916i
\(905\) 0 0
\(906\) −30.9607 + 10.9891i −1.02860 + 0.365089i
\(907\) 16.8138 4.50525i 0.558294 0.149594i 0.0313715 0.999508i \(-0.490012\pi\)
0.526922 + 0.849913i \(0.323346\pi\)
\(908\) 3.29956 + 12.3141i 0.109500 + 0.408659i
\(909\) −34.0094 12.9983i −1.12802 0.431126i
\(910\) 0 0
\(911\) 4.78351i 0.158485i −0.996855 0.0792423i \(-0.974750\pi\)
0.996855 0.0792423i \(-0.0252501\pi\)
\(912\) −5.44685 68.5714i −0.180363 2.27063i
\(913\) 3.07477 + 11.4752i 0.101760 + 0.379774i
\(914\) −11.4241 19.7871i −0.377876 0.654500i
\(915\) 0 0
\(916\) −6.78234 + 3.91578i −0.224095 + 0.129381i
\(917\) −0.379911 + 1.41785i −0.0125458 + 0.0468214i
\(918\) 10.9200 + 45.0521i 0.360415 + 1.48694i
\(919\) 20.5581 11.8693i 0.678151 0.391530i −0.121007 0.992652i \(-0.538612\pi\)
0.799158 + 0.601121i \(0.205279\pi\)
\(920\) 0 0
\(921\) 9.84626 + 8.39713i 0.324445 + 0.276695i
\(922\) −41.4418 41.4418i −1.36481 1.36481i
\(923\) −2.22417 30.5938i −0.0732094 1.00701i
\(924\) 0.728888 + 0.134543i 0.0239787 + 0.00442616i
\(925\) 0 0
\(926\) 40.6683 + 23.4798i 1.33644 + 0.771595i
\(927\) 1.31487 1.81530i 0.0431859 0.0596223i
\(928\) 13.7531 + 13.7531i 0.451467 + 0.451467i
\(929\) −27.3742 + 15.8045i −0.898117 + 0.518528i −0.876589 0.481240i \(-0.840186\pi\)
−0.0215282 + 0.999768i \(0.506853\pi\)
\(930\) 0 0
\(931\) 55.5706i 1.82125i
\(932\) 10.8156 + 2.89804i 0.354277 + 0.0949283i
\(933\) 4.10256 0.325879i 0.134312 0.0106688i
\(934\) −23.7216 + 41.0870i −0.776194 + 1.34441i
\(935\) 0 0
\(936\) −17.5952 + 9.45081i −0.575116 + 0.308909i
\(937\) 12.6526 + 12.6526i 0.413344 + 0.413344i 0.882902 0.469558i \(-0.155587\pi\)
−0.469558 + 0.882902i \(0.655587\pi\)
\(938\) −0.148037 0.552480i −0.00483357 0.0180391i
\(939\) −38.2256 32.5997i −1.24744 1.06385i
\(940\) 0 0
\(941\) 49.4334 1.61148 0.805741 0.592268i \(-0.201767\pi\)
0.805741 + 0.592268i \(0.201767\pi\)
\(942\) 9.96635 20.9340i 0.324721 0.682068i
\(943\) 6.23666 23.2755i 0.203094 0.757956i
\(944\) 3.57304i 0.116293i
\(945\) 0 0
\(946\) −17.7661 + 30.7718i −0.577625 + 1.00048i
\(947\) −23.6300 + 6.33163i −0.767871 + 0.205750i −0.621431 0.783469i \(-0.713448\pi\)
−0.146440 + 0.989220i \(0.546782\pi\)
\(948\) −6.35443 + 4.37408i −0.206382 + 0.142064i
\(949\) −5.03464 14.4916i −0.163431 0.470419i
\(950\) 0 0
\(951\) 37.9953 44.5524i 1.23208 1.44471i
\(952\) −1.05503 + 0.282693i −0.0341936 + 0.00916215i
\(953\) 11.1821 41.7321i 0.362223 1.35184i −0.508923 0.860812i \(-0.669956\pi\)
0.871146 0.491024i \(-0.163377\pi\)
\(954\) 13.1640 + 5.03122i 0.426199 + 0.162892i
\(955\) 0 0
\(956\) 5.31043 + 9.19793i 0.171751 + 0.297482i
\(957\) −23.5632 + 16.2198i −0.761691 + 0.524312i
\(958\) 2.84255 + 0.761659i 0.0918386 + 0.0246081i
\(959\) −0.705791 + 1.22247i −0.0227912 + 0.0394755i
\(960\) 0 0
\(961\) −16.5366 −0.533437
\(962\) −1.89758 26.1015i −0.0611803 0.841546i
\(963\) 2.02178 + 4.52328i 0.0651510 + 0.145761i
\(964\) 6.41870 11.1175i 0.206732 0.358071i
\(965\) 0 0
\(966\) −0.777310 2.18999i −0.0250095 0.0704619i
\(967\) 4.55251 4.55251i 0.146399 0.146399i −0.630108 0.776507i \(-0.716990\pi\)
0.776507 + 0.630108i \(0.216990\pi\)
\(968\) 10.4935 + 2.81172i 0.337273 + 0.0903721i
\(969\) 67.7845 24.0592i 2.17755 0.772893i
\(970\) 0 0
\(971\) −51.2257 + 29.5752i −1.64391 + 0.949113i −0.664488 + 0.747299i \(0.731350\pi\)
−0.979424 + 0.201814i \(0.935316\pi\)
\(972\) 11.4008 + 8.68250i 0.365681 + 0.278491i
\(973\) −0.419316 + 0.112355i −0.0134427 + 0.00360195i
\(974\) 35.5697 1.13973
\(975\) 0 0
\(976\) −20.3894 −0.652649
\(977\) 55.9598 14.9944i 1.79031 0.479713i 0.797914 0.602772i \(-0.205937\pi\)
0.992399 + 0.123059i \(0.0392703\pi\)
\(978\) −36.1590 + 2.87223i −1.15624 + 0.0918437i
\(979\) 11.5036 6.64164i 0.367658 0.212268i
\(980\) 0 0
\(981\) 1.89257 0.302576i 0.0604252 0.00966050i
\(982\) 37.2966 + 9.99359i 1.19018 + 0.318908i
\(983\) −17.2893 + 17.2893i −0.551443 + 0.551443i −0.926857 0.375414i \(-0.877500\pi\)
0.375414 + 0.926857i \(0.377500\pi\)
\(984\) −10.4778 + 3.71898i −0.334022 + 0.118557i
\(985\) 0 0
\(986\) −17.9295 + 31.0548i −0.570991 + 0.988985i
\(987\) −0.0424114 + 0.0291940i −0.00134997 + 0.000929254i
\(988\) −14.8016 21.8142i −0.470901 0.694002i
\(989\) 35.0811 1.11551
\(990\) 0 0
\(991\) 6.95908 12.0535i 0.221063 0.382892i −0.734068 0.679076i \(-0.762381\pi\)
0.955131 + 0.296184i \(0.0957142\pi\)
\(992\) −32.2259 8.63491i −1.02317 0.274159i
\(993\) 13.6952 + 19.8956i 0.434602 + 0.631367i
\(994\) −0.823384 1.42614i −0.0261162 0.0452345i
\(995\) 0 0
\(996\) 4.52721 + 0.835664i 0.143450 + 0.0264790i
\(997\) 12.5004 46.6520i 0.395891 1.47748i −0.424367 0.905490i \(-0.639503\pi\)
0.820258 0.571994i \(-0.193830\pi\)
\(998\) 59.2202 15.8680i 1.87458 0.502293i
\(999\) 19.3760 10.5751i 0.613029 0.334581i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bn.d.407.19 96
3.2 odd 2 inner 975.2.bn.d.407.6 96
5.2 odd 4 195.2.bf.a.173.19 yes 96
5.3 odd 4 inner 975.2.bn.d.368.6 96
5.4 even 2 195.2.bf.a.17.6 96
13.10 even 6 inner 975.2.bn.d.257.19 96
15.2 even 4 195.2.bf.a.173.6 yes 96
15.8 even 4 inner 975.2.bn.d.368.19 96
15.14 odd 2 195.2.bf.a.17.19 yes 96
39.23 odd 6 inner 975.2.bn.d.257.6 96
65.23 odd 12 inner 975.2.bn.d.218.6 96
65.49 even 6 195.2.bf.a.62.6 yes 96
65.62 odd 12 195.2.bf.a.23.19 yes 96
195.23 even 12 inner 975.2.bn.d.218.19 96
195.62 even 12 195.2.bf.a.23.6 yes 96
195.179 odd 6 195.2.bf.a.62.19 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bf.a.17.6 96 5.4 even 2
195.2.bf.a.17.19 yes 96 15.14 odd 2
195.2.bf.a.23.6 yes 96 195.62 even 12
195.2.bf.a.23.19 yes 96 65.62 odd 12
195.2.bf.a.62.6 yes 96 65.49 even 6
195.2.bf.a.62.19 yes 96 195.179 odd 6
195.2.bf.a.173.6 yes 96 15.2 even 4
195.2.bf.a.173.19 yes 96 5.2 odd 4
975.2.bn.d.218.6 96 65.23 odd 12 inner
975.2.bn.d.218.19 96 195.23 even 12 inner
975.2.bn.d.257.6 96 39.23 odd 6 inner
975.2.bn.d.257.19 96 13.10 even 6 inner
975.2.bn.d.368.6 96 5.3 odd 4 inner
975.2.bn.d.368.19 96 15.8 even 4 inner
975.2.bn.d.407.6 96 3.2 odd 2 inner
975.2.bn.d.407.19 96 1.1 even 1 trivial