Properties

Label 975.2.bn.d.368.6
Level $975$
Weight $2$
Character 975.368
Analytic conductor $7.785$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(218,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.218"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bn (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,2,0,0,-12,12,0,0,0,0,12,24,0,0,16,0,0,0,0,0,-20,0,0,0,0, 32,36,0,0,0,0,-30,0,0,-4,84,0,0,0,0,48,-8,0,0,0,0,28,0,0,-16,-28,0,0,0, 0,0,-84,0,0,-32,0,-90,0,0,0,-36,0,0,0,0,-90,0,0,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(76)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 368.6
Character \(\chi\) \(=\) 975.368
Dual form 975.2.bn.d.257.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.442218 - 1.65038i) q^{2} +(-1.72661 + 0.137150i) q^{3} +(-0.796141 + 0.459652i) q^{4} +(0.989888 + 2.78891i) q^{6} +(-0.0293212 + 0.109428i) q^{7} +(-1.30565 - 1.30565i) q^{8} +(2.96238 - 0.473611i) q^{9} +(-2.05447 + 3.55845i) q^{11} +(1.31159 - 0.902832i) q^{12} +(1.57162 - 3.24500i) q^{13} +0.193564 q^{14} +(-2.49674 + 4.32449i) q^{16} +(-1.35141 + 5.04353i) q^{17} +(-2.09165 - 4.67961i) q^{18} +(-3.97662 - 6.88771i) q^{19} +(0.0356182 - 0.192962i) q^{21} +(6.78132 + 1.81705i) q^{22} +(1.79398 + 6.69524i) q^{23} +(2.43343 + 2.07529i) q^{24} +(-6.05047 - 1.15878i) q^{26} +(-5.04992 + 1.22403i) q^{27} +(-0.0269551 - 0.100598i) q^{28} +(-2.00973 + 3.48095i) q^{29} +6.89468i q^{31} +(4.67403 + 1.25240i) q^{32} +(3.05924 - 6.42584i) q^{33} +8.92135 q^{34} +(-2.14078 + 1.73873i) q^{36} +(4.10339 - 1.09950i) q^{37} +(-9.60880 + 9.60880i) q^{38} +(-2.26853 + 5.81840i) q^{39} +(1.73822 - 3.01068i) q^{41} +(-0.334211 + 0.0265474i) q^{42} +(-1.30993 + 4.88872i) q^{43} -3.77737i q^{44} +(10.2563 - 5.92150i) q^{46} +(-0.185543 + 0.185543i) q^{47} +(3.71780 - 7.80914i) q^{48} +(6.05106 + 3.49358i) q^{49} +(1.64164 - 8.89356i) q^{51} +(0.240337 + 3.30587i) q^{52} +(1.94409 - 1.94409i) q^{53} +(4.25328 + 7.79300i) q^{54} +(0.181159 - 0.104592i) q^{56} +(7.81074 + 11.3470i) q^{57} +(6.63362 + 1.77747i) q^{58} +(-0.619675 + 0.357770i) q^{59} +(2.04160 + 3.53616i) q^{61} +(11.3788 - 3.04895i) q^{62} +(-0.0350341 + 0.338055i) q^{63} +1.71922i q^{64} +(-11.9579 - 2.20728i) q^{66} +(2.85424 - 0.764792i) q^{67} +(-1.24236 - 4.63654i) q^{68} +(-4.01577 - 11.3140i) q^{69} +(4.25380 + 7.36780i) q^{71} +(-4.48621 - 3.24947i) q^{72} +(-3.00868 + 3.00868i) q^{73} +(-3.62918 - 6.28592i) q^{74} +(6.33191 + 3.65573i) q^{76} +(-0.329156 - 0.329156i) q^{77} +(10.6057 + 1.17093i) q^{78} -4.84485i q^{79} +(8.55139 - 2.80603i) q^{81} +(-5.73743 - 1.53734i) q^{82} +(2.04442 + 2.04442i) q^{83} +(0.0603381 + 0.169997i) q^{84} +8.64751 q^{86} +(2.99261 - 6.28589i) q^{87} +(7.32854 - 1.96368i) q^{88} +(2.79966 + 1.61638i) q^{89} +(0.309013 + 0.267127i) q^{91} +(-4.50574 - 4.50574i) q^{92} +(-0.945607 - 11.9044i) q^{93} +(0.388267 + 0.224166i) q^{94} +(-8.24201 - 1.52137i) q^{96} +(-0.0386722 + 0.144327i) q^{97} +(3.08985 - 11.5315i) q^{98} +(-4.40081 + 11.5145i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 2 q^{3} - 12 q^{6} + 12 q^{7} + 12 q^{12} + 24 q^{13} + 16 q^{16} - 20 q^{22} + 32 q^{27} + 36 q^{28} - 30 q^{33} - 4 q^{36} + 84 q^{37} + 48 q^{42} - 8 q^{43} + 28 q^{48} - 16 q^{51} - 28 q^{52}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.442218 1.65038i −0.312695 1.16699i −0.926116 0.377238i \(-0.876874\pi\)
0.613421 0.789756i \(-0.289793\pi\)
\(3\) −1.72661 + 0.137150i −0.996860 + 0.0791838i
\(4\) −0.796141 + 0.459652i −0.398071 + 0.229826i
\(5\) 0 0
\(6\) 0.989888 + 2.78891i 0.404120 + 1.13857i
\(7\) −0.0293212 + 0.109428i −0.0110824 + 0.0413600i −0.971246 0.238080i \(-0.923482\pi\)
0.960163 + 0.279440i \(0.0901487\pi\)
\(8\) −1.30565 1.30565i −0.461618 0.461618i
\(9\) 2.96238 0.473611i 0.987460 0.157870i
\(10\) 0 0
\(11\) −2.05447 + 3.55845i −0.619447 + 1.07291i 0.370139 + 0.928976i \(0.379310\pi\)
−0.989587 + 0.143938i \(0.954023\pi\)
\(12\) 1.31159 0.902832i 0.378622 0.260625i
\(13\) 1.57162 3.24500i 0.435890 0.900000i
\(14\) 0.193564 0.0517323
\(15\) 0 0
\(16\) −2.49674 + 4.32449i −0.624186 + 1.08112i
\(17\) −1.35141 + 5.04353i −0.327765 + 1.22324i 0.583738 + 0.811942i \(0.301589\pi\)
−0.911503 + 0.411293i \(0.865077\pi\)
\(18\) −2.09165 4.67961i −0.493007 1.10299i
\(19\) −3.97662 6.88771i −0.912300 1.58015i −0.810807 0.585313i \(-0.800971\pi\)
−0.101493 0.994836i \(-0.532362\pi\)
\(20\) 0 0
\(21\) 0.0356182 0.192962i 0.00777254 0.0421077i
\(22\) 6.78132 + 1.81705i 1.44578 + 0.387396i
\(23\) 1.79398 + 6.69524i 0.374071 + 1.39605i 0.854697 + 0.519127i \(0.173743\pi\)
−0.480625 + 0.876926i \(0.659590\pi\)
\(24\) 2.43343 + 2.07529i 0.496722 + 0.423616i
\(25\) 0 0
\(26\) −6.05047 1.15878i −1.18659 0.227255i
\(27\) −5.04992 + 1.22403i −0.971858 + 0.235565i
\(28\) −0.0269551 0.100598i −0.00509404 0.0190112i
\(29\) −2.00973 + 3.48095i −0.373197 + 0.646396i −0.990055 0.140678i \(-0.955072\pi\)
0.616858 + 0.787074i \(0.288405\pi\)
\(30\) 0 0
\(31\) 6.89468i 1.23832i 0.785265 + 0.619160i \(0.212527\pi\)
−0.785265 + 0.619160i \(0.787473\pi\)
\(32\) 4.67403 + 1.25240i 0.826260 + 0.221396i
\(33\) 3.05924 6.42584i 0.532545 1.11860i
\(34\) 8.92135 1.53000
\(35\) 0 0
\(36\) −2.14078 + 1.73873i −0.356796 + 0.289788i
\(37\) 4.10339 1.09950i 0.674593 0.180757i 0.0947700 0.995499i \(-0.469788\pi\)
0.579823 + 0.814743i \(0.303122\pi\)
\(38\) −9.60880 + 9.60880i −1.55875 + 1.55875i
\(39\) −2.26853 + 5.81840i −0.363256 + 0.931690i
\(40\) 0 0
\(41\) 1.73822 3.01068i 0.271464 0.470189i −0.697773 0.716319i \(-0.745826\pi\)
0.969237 + 0.246130i \(0.0791589\pi\)
\(42\) −0.334211 + 0.0265474i −0.0515698 + 0.00409636i
\(43\) −1.30993 + 4.88872i −0.199762 + 0.745523i 0.791220 + 0.611531i \(0.209446\pi\)
−0.990982 + 0.133991i \(0.957221\pi\)
\(44\) 3.77737i 0.569461i
\(45\) 0 0
\(46\) 10.2563 5.92150i 1.51222 0.873078i
\(47\) −0.185543 + 0.185543i −0.0270642 + 0.0270642i −0.720509 0.693445i \(-0.756092\pi\)
0.693445 + 0.720509i \(0.256092\pi\)
\(48\) 3.71780 7.80914i 0.536619 1.12715i
\(49\) 6.05106 + 3.49358i 0.864438 + 0.499083i
\(50\) 0 0
\(51\) 1.64164 8.89356i 0.229875 1.24535i
\(52\) 0.240337 + 3.30587i 0.0333287 + 0.458442i
\(53\) 1.94409 1.94409i 0.267042 0.267042i −0.560865 0.827907i \(-0.689531\pi\)
0.827907 + 0.560865i \(0.189531\pi\)
\(54\) 4.25328 + 7.79300i 0.578799 + 1.06049i
\(55\) 0 0
\(56\) 0.181159 0.104592i 0.0242084 0.0139767i
\(57\) 7.81074 + 11.3470i 1.03456 + 1.50295i
\(58\) 6.63362 + 1.77747i 0.871037 + 0.233394i
\(59\) −0.619675 + 0.357770i −0.0806749 + 0.0465777i −0.539795 0.841797i \(-0.681498\pi\)
0.459120 + 0.888374i \(0.348165\pi\)
\(60\) 0 0
\(61\) 2.04160 + 3.53616i 0.261400 + 0.452758i 0.966614 0.256236i \(-0.0824825\pi\)
−0.705214 + 0.708994i \(0.749149\pi\)
\(62\) 11.3788 3.04895i 1.44511 0.387217i
\(63\) −0.0350341 + 0.338055i −0.00441389 + 0.0425909i
\(64\) 1.71922i 0.214903i
\(65\) 0 0
\(66\) −11.9579 2.20728i −1.47192 0.271697i
\(67\) 2.85424 0.764792i 0.348701 0.0934343i −0.0802172 0.996777i \(-0.525561\pi\)
0.428919 + 0.903343i \(0.358895\pi\)
\(68\) −1.24236 4.63654i −0.150658 0.562263i
\(69\) −4.01577 11.3140i −0.483442 1.36205i
\(70\) 0 0
\(71\) 4.25380 + 7.36780i 0.504833 + 0.874397i 0.999984 + 0.00558990i \(0.00177933\pi\)
−0.495151 + 0.868807i \(0.664887\pi\)
\(72\) −4.48621 3.24947i −0.528705 0.382954i
\(73\) −3.00868 + 3.00868i −0.352139 + 0.352139i −0.860905 0.508766i \(-0.830102\pi\)
0.508766 + 0.860905i \(0.330102\pi\)
\(74\) −3.62918 6.28592i −0.421884 0.730724i
\(75\) 0 0
\(76\) 6.33191 + 3.65573i 0.726319 + 0.419341i
\(77\) −0.329156 0.329156i −0.0375108 0.0375108i
\(78\) 10.6057 + 1.17093i 1.20086 + 0.132582i
\(79\) 4.84485i 0.545088i −0.962143 0.272544i \(-0.912135\pi\)
0.962143 0.272544i \(-0.0878650\pi\)
\(80\) 0 0
\(81\) 8.55139 2.80603i 0.950154 0.311781i
\(82\) −5.73743 1.53734i −0.633593 0.169771i
\(83\) 2.04442 + 2.04442i 0.224405 + 0.224405i 0.810350 0.585946i \(-0.199277\pi\)
−0.585946 + 0.810350i \(0.699277\pi\)
\(84\) 0.0603381 + 0.169997i 0.00658343 + 0.0185482i
\(85\) 0 0
\(86\) 8.64751 0.932485
\(87\) 2.99261 6.28589i 0.320841 0.673918i
\(88\) 7.32854 1.96368i 0.781225 0.209329i
\(89\) 2.79966 + 1.61638i 0.296763 + 0.171336i 0.640988 0.767551i \(-0.278525\pi\)
−0.344225 + 0.938887i \(0.611858\pi\)
\(90\) 0 0
\(91\) 0.309013 + 0.267127i 0.0323933 + 0.0280025i
\(92\) −4.50574 4.50574i −0.469756 0.469756i
\(93\) −0.945607 11.9044i −0.0980549 1.23443i
\(94\) 0.388267 + 0.224166i 0.0400466 + 0.0231209i
\(95\) 0 0
\(96\) −8.24201 1.52137i −0.841196 0.155274i
\(97\) −0.0386722 + 0.144327i −0.00392657 + 0.0146542i −0.967861 0.251485i \(-0.919081\pi\)
0.963935 + 0.266139i \(0.0857479\pi\)
\(98\) 3.08985 11.5315i 0.312122 1.16485i
\(99\) −4.40081 + 11.5145i −0.442298 + 1.15725i
\(100\) 0 0
\(101\) 10.5103 + 6.06812i 1.04581 + 0.603800i 0.921474 0.388440i \(-0.126986\pi\)
0.124339 + 0.992240i \(0.460319\pi\)
\(102\) −15.4037 + 1.22357i −1.52519 + 0.121151i
\(103\) −0.528320 0.528320i −0.0520569 0.0520569i 0.680599 0.732656i \(-0.261720\pi\)
−0.732656 + 0.680599i \(0.761720\pi\)
\(104\) −6.28884 + 2.18485i −0.616671 + 0.214242i
\(105\) 0 0
\(106\) −4.06820 2.34878i −0.395139 0.228133i
\(107\) −1.59525 + 0.427445i −0.154218 + 0.0413227i −0.335102 0.942182i \(-0.608771\pi\)
0.180884 + 0.983504i \(0.442104\pi\)
\(108\) 3.45782 3.29571i 0.332729 0.317130i
\(109\) 0.638870 0.0611926 0.0305963 0.999532i \(-0.490259\pi\)
0.0305963 + 0.999532i \(0.490259\pi\)
\(110\) 0 0
\(111\) −6.93416 + 2.46119i −0.658162 + 0.233606i
\(112\) −0.400014 0.400014i −0.0377977 0.0377977i
\(113\) −7.64451 2.04834i −0.719135 0.192692i −0.119349 0.992852i \(-0.538081\pi\)
−0.599786 + 0.800161i \(0.704747\pi\)
\(114\) 15.2728 17.9085i 1.43043 1.67729i
\(115\) 0 0
\(116\) 3.69510i 0.343082i
\(117\) 3.11888 10.3572i 0.288340 0.957528i
\(118\) 0.864487 + 0.864487i 0.0795825 + 0.0795825i
\(119\) −0.512280 0.295765i −0.0469606 0.0271127i
\(120\) 0 0
\(121\) −2.94173 5.09522i −0.267430 0.463202i
\(122\) 4.93316 4.93316i 0.446628 0.446628i
\(123\) −2.58831 + 5.43667i −0.233380 + 0.490208i
\(124\) −3.16915 5.48913i −0.284598 0.492939i
\(125\) 0 0
\(126\) 0.573411 0.0916742i 0.0510835 0.00816699i
\(127\) 3.29674 + 12.3036i 0.292539 + 1.09177i 0.943152 + 0.332361i \(0.107845\pi\)
−0.650614 + 0.759409i \(0.725488\pi\)
\(128\) 12.1854 3.26508i 1.07705 0.288595i
\(129\) 1.59125 8.62058i 0.140102 0.759000i
\(130\) 0 0
\(131\) 12.9569i 1.13205i −0.824390 0.566023i \(-0.808481\pi\)
0.824390 0.566023i \(-0.191519\pi\)
\(132\) 0.518068 + 6.52206i 0.0450921 + 0.567673i
\(133\) 0.870310 0.233199i 0.0754655 0.0202209i
\(134\) −2.52439 4.37238i −0.218074 0.377716i
\(135\) 0 0
\(136\) 8.34958 4.82063i 0.715970 0.413366i
\(137\) −12.0355 3.22490i −1.02826 0.275522i −0.295021 0.955491i \(-0.595327\pi\)
−0.733241 + 0.679969i \(0.761993\pi\)
\(138\) −16.8966 + 11.6308i −1.43833 + 0.990079i
\(139\) −3.31851 + 1.91594i −0.281472 + 0.162508i −0.634090 0.773260i \(-0.718625\pi\)
0.352618 + 0.935767i \(0.385292\pi\)
\(140\) 0 0
\(141\) 0.294914 0.345808i 0.0248362 0.0291223i
\(142\) 10.2785 10.2785i 0.862557 0.862557i
\(143\) 8.31831 + 12.2593i 0.695612 + 1.02517i
\(144\) −5.34818 + 13.9933i −0.445682 + 1.16610i
\(145\) 0 0
\(146\) 6.29594 + 3.63496i 0.521056 + 0.300832i
\(147\) −10.9270 5.20216i −0.901243 0.429067i
\(148\) −2.76149 + 2.76149i −0.226993 + 0.226993i
\(149\) −10.3032 + 5.94857i −0.844073 + 0.487326i −0.858647 0.512568i \(-0.828694\pi\)
0.0145735 + 0.999894i \(0.495361\pi\)
\(150\) 0 0
\(151\) 11.1014i 0.903416i 0.892166 + 0.451708i \(0.149185\pi\)
−0.892166 + 0.451708i \(0.850815\pi\)
\(152\) −3.80088 + 14.1851i −0.308292 + 1.15056i
\(153\) −1.61472 + 15.5809i −0.130542 + 1.25964i
\(154\) −0.397673 + 0.688790i −0.0320454 + 0.0555043i
\(155\) 0 0
\(156\) −0.868370 5.67500i −0.0695253 0.454364i
\(157\) −5.53986 + 5.53986i −0.442129 + 0.442129i −0.892727 0.450598i \(-0.851211\pi\)
0.450598 + 0.892727i \(0.351211\pi\)
\(158\) −7.99583 + 2.14248i −0.636114 + 0.170446i
\(159\) −3.09006 + 3.62333i −0.245058 + 0.287349i
\(160\) 0 0
\(161\) −0.785250 −0.0618864
\(162\) −8.41259 12.8721i −0.660955 1.01133i
\(163\) −11.8393 3.17233i −0.927326 0.248476i −0.236612 0.971604i \(-0.576037\pi\)
−0.690714 + 0.723128i \(0.742704\pi\)
\(164\) 3.19590i 0.249558i
\(165\) 0 0
\(166\) 2.46999 4.27815i 0.191708 0.332049i
\(167\) 2.30903 + 8.61742i 0.178678 + 0.666836i 0.995896 + 0.0905069i \(0.0288487\pi\)
−0.817218 + 0.576329i \(0.804485\pi\)
\(168\) −0.298446 + 0.205436i −0.0230256 + 0.0158497i
\(169\) −8.06000 10.1998i −0.620000 0.784602i
\(170\) 0 0
\(171\) −15.0424 18.5206i −1.15032 1.41631i
\(172\) −1.20422 4.49422i −0.0918211 0.342681i
\(173\) −8.49801 2.27704i −0.646092 0.173120i −0.0791307 0.996864i \(-0.525214\pi\)
−0.566961 + 0.823744i \(0.691881\pi\)
\(174\) −11.6975 2.15920i −0.886783 0.163689i
\(175\) 0 0
\(176\) −10.2590 17.7691i −0.773301 1.33940i
\(177\) 1.02087 0.702718i 0.0767334 0.0528196i
\(178\) 1.42959 5.33529i 0.107152 0.399897i
\(179\) −9.95273 + 17.2386i −0.743902 + 1.28848i 0.206804 + 0.978382i \(0.433694\pi\)
−0.950706 + 0.310094i \(0.899640\pi\)
\(180\) 0 0
\(181\) 7.45086 0.553818 0.276909 0.960896i \(-0.410690\pi\)
0.276909 + 0.960896i \(0.410690\pi\)
\(182\) 0.304210 0.628116i 0.0225496 0.0465590i
\(183\) −4.01004 5.82556i −0.296430 0.430638i
\(184\) 6.39934 11.0840i 0.471766 0.817122i
\(185\) 0 0
\(186\) −19.2287 + 6.82496i −1.40991 + 0.500430i
\(187\) −15.1707 15.1707i −1.10939 1.10939i
\(188\) 0.0624332 0.233004i 0.00455341 0.0169935i
\(189\) 0.0141260 0.588495i 0.00102752 0.0428067i
\(190\) 0 0
\(191\) −19.8776 + 11.4763i −1.43829 + 0.830399i −0.997731 0.0673227i \(-0.978554\pi\)
−0.440562 + 0.897722i \(0.645221\pi\)
\(192\) −0.235792 2.96843i −0.0170168 0.214228i
\(193\) 5.67196 + 21.1680i 0.408276 + 1.52371i 0.797932 + 0.602748i \(0.205928\pi\)
−0.389655 + 0.920961i \(0.627406\pi\)
\(194\) 0.255295 0.0183291
\(195\) 0 0
\(196\) −6.42333 −0.458810
\(197\) −2.25019 8.39781i −0.160319 0.598319i −0.998591 0.0530668i \(-0.983100\pi\)
0.838272 0.545253i \(-0.183566\pi\)
\(198\) 20.9494 + 2.17108i 1.48881 + 0.154292i
\(199\) −17.5413 + 10.1275i −1.24347 + 0.717919i −0.969799 0.243904i \(-0.921572\pi\)
−0.273673 + 0.961823i \(0.588239\pi\)
\(200\) 0 0
\(201\) −4.82328 + 1.71196i −0.340208 + 0.120752i
\(202\) 5.36686 20.0294i 0.377611 1.40926i
\(203\) −0.321987 0.321987i −0.0225990 0.0225990i
\(204\) 2.78097 + 7.83511i 0.194707 + 0.548568i
\(205\) 0 0
\(206\) −0.638295 + 1.10556i −0.0444721 + 0.0770280i
\(207\) 8.48540 + 18.9842i 0.589776 + 1.31949i
\(208\) 10.1090 + 14.8984i 0.700934 + 1.03302i
\(209\) 32.6795 2.26049
\(210\) 0 0
\(211\) 3.64767 6.31794i 0.251116 0.434945i −0.712718 0.701451i \(-0.752536\pi\)
0.963833 + 0.266506i \(0.0858692\pi\)
\(212\) −0.654166 + 2.44138i −0.0449283 + 0.167675i
\(213\) −8.35516 12.1379i −0.572486 0.831677i
\(214\) 1.41089 + 2.44374i 0.0964466 + 0.167050i
\(215\) 0 0
\(216\) 8.19162 + 4.99529i 0.557369 + 0.339886i
\(217\) −0.754473 0.202160i −0.0512169 0.0137235i
\(218\) −0.282519 1.05438i −0.0191346 0.0714114i
\(219\) 4.78218 5.60746i 0.323149 0.378917i
\(220\) 0 0
\(221\) 14.2423 + 12.3118i 0.958043 + 0.828184i
\(222\) 7.12830 + 10.3556i 0.478420 + 0.695023i
\(223\) 3.14269 + 11.7287i 0.210450 + 0.785411i 0.987719 + 0.156242i \(0.0499381\pi\)
−0.777268 + 0.629169i \(0.783395\pi\)
\(224\) −0.274097 + 0.474749i −0.0183139 + 0.0317205i
\(225\) 0 0
\(226\) 13.5221i 0.899479i
\(227\) 13.3950 + 3.58919i 0.889061 + 0.238223i 0.674312 0.738446i \(-0.264440\pi\)
0.214748 + 0.976669i \(0.431107\pi\)
\(228\) −11.4341 5.44360i −0.757244 0.360511i
\(229\) 8.51901 0.562952 0.281476 0.959568i \(-0.409176\pi\)
0.281476 + 0.959568i \(0.409176\pi\)
\(230\) 0 0
\(231\) 0.613468 + 0.523181i 0.0403633 + 0.0344228i
\(232\) 7.16892 1.92091i 0.470663 0.126114i
\(233\) −8.61258 + 8.61258i −0.564229 + 0.564229i −0.930506 0.366277i \(-0.880632\pi\)
0.366277 + 0.930506i \(0.380632\pi\)
\(234\) −18.4726 0.567169i −1.20759 0.0370770i
\(235\) 0 0
\(236\) 0.328899 0.569670i 0.0214095 0.0370824i
\(237\) 0.664473 + 8.36517i 0.0431621 + 0.543376i
\(238\) −0.261585 + 0.976248i −0.0169560 + 0.0632807i
\(239\) 11.5531i 0.747310i −0.927568 0.373655i \(-0.878104\pi\)
0.927568 0.373655i \(-0.121896\pi\)
\(240\) 0 0
\(241\) 12.0934 6.98212i 0.779004 0.449758i −0.0570731 0.998370i \(-0.518177\pi\)
0.836077 + 0.548612i \(0.184843\pi\)
\(242\) −7.10816 + 7.10816i −0.456930 + 0.456930i
\(243\) −14.3801 + 6.01775i −0.922482 + 0.386039i
\(244\) −3.25080 1.87685i −0.208111 0.120153i
\(245\) 0 0
\(246\) 10.1172 + 1.86750i 0.645047 + 0.119067i
\(247\) −28.6004 + 2.07924i −1.81980 + 0.132299i
\(248\) 9.00206 9.00206i 0.571631 0.571631i
\(249\) −3.81032 3.24953i −0.241469 0.205931i
\(250\) 0 0
\(251\) −14.9246 + 8.61672i −0.942032 + 0.543882i −0.890597 0.454794i \(-0.849713\pi\)
−0.0514354 + 0.998676i \(0.516380\pi\)
\(252\) −0.127496 0.285243i −0.00803147 0.0179686i
\(253\) −27.5104 7.37138i −1.72956 0.463435i
\(254\) 18.8477 10.8818i 1.18261 0.682782i
\(255\) 0 0
\(256\) −9.05800 15.6889i −0.566125 0.980557i
\(257\) 0.404361 0.108348i 0.0252233 0.00675857i −0.246185 0.969223i \(-0.579177\pi\)
0.271409 + 0.962464i \(0.412511\pi\)
\(258\) −14.9309 + 1.18601i −0.929557 + 0.0738377i
\(259\) 0.481265i 0.0299044i
\(260\) 0 0
\(261\) −4.30496 + 11.2637i −0.266470 + 0.697207i
\(262\) −21.3837 + 5.72975i −1.32109 + 0.353985i
\(263\) −3.38670 12.6393i −0.208833 0.779374i −0.988247 0.152865i \(-0.951150\pi\)
0.779414 0.626509i \(-0.215517\pi\)
\(264\) −12.3842 + 4.39562i −0.762197 + 0.270532i
\(265\) 0 0
\(266\) −0.769733 1.33322i −0.0471953 0.0817447i
\(267\) −5.05561 2.40689i −0.309398 0.147299i
\(268\) −1.92084 + 1.92084i −0.117334 + 0.117334i
\(269\) −0.403612 0.699076i −0.0246086 0.0426234i 0.853459 0.521160i \(-0.174501\pi\)
−0.878067 + 0.478537i \(0.841167\pi\)
\(270\) 0 0
\(271\) −9.22378 5.32535i −0.560305 0.323492i 0.192963 0.981206i \(-0.438190\pi\)
−0.753268 + 0.657714i \(0.771524\pi\)
\(272\) −18.4366 18.4366i −1.11788 1.11788i
\(273\) −0.570181 0.418844i −0.0345089 0.0253496i
\(274\) 21.2892i 1.28613i
\(275\) 0 0
\(276\) 8.39764 + 7.16171i 0.505478 + 0.431084i
\(277\) 27.5691 + 7.38713i 1.65647 + 0.443849i 0.961414 0.275107i \(-0.0887134\pi\)
0.695055 + 0.718957i \(0.255380\pi\)
\(278\) 4.62953 + 4.62953i 0.277661 + 0.277661i
\(279\) 3.26539 + 20.4246i 0.195494 + 1.22279i
\(280\) 0 0
\(281\) −13.4870 −0.804568 −0.402284 0.915515i \(-0.631784\pi\)
−0.402284 + 0.915515i \(0.631784\pi\)
\(282\) −0.701130 0.333797i −0.0417517 0.0198773i
\(283\) 1.10046 0.294869i 0.0654158 0.0175281i −0.225963 0.974136i \(-0.572553\pi\)
0.291379 + 0.956608i \(0.405886\pi\)
\(284\) −6.77325 3.91054i −0.401918 0.232048i
\(285\) 0 0
\(286\) 16.5540 19.1496i 0.978858 1.13234i
\(287\) 0.278487 + 0.278487i 0.0164386 + 0.0164386i
\(288\) 14.4394 + 1.49642i 0.850850 + 0.0881774i
\(289\) −8.88844 5.13174i −0.522850 0.301867i
\(290\) 0 0
\(291\) 0.0469775 0.254500i 0.00275387 0.0149191i
\(292\) 1.01239 3.77827i 0.0592454 0.221107i
\(293\) 1.95360 7.29093i 0.114130 0.425941i −0.885090 0.465420i \(-0.845903\pi\)
0.999220 + 0.0394794i \(0.0125700\pi\)
\(294\) −3.75342 + 20.3341i −0.218904 + 1.18591i
\(295\) 0 0
\(296\) −6.79317 3.92204i −0.394845 0.227964i
\(297\) 6.01927 20.4847i 0.349274 1.18864i
\(298\) 14.3737 + 14.3737i 0.832644 + 0.832644i
\(299\) 24.5455 + 4.70092i 1.41950 + 0.271861i
\(300\) 0 0
\(301\) −0.496555 0.286686i −0.0286210 0.0165243i
\(302\) 18.3214 4.90922i 1.05428 0.282494i
\(303\) −18.9794 9.03580i −1.09034 0.519093i
\(304\) 39.7144 2.27778
\(305\) 0 0
\(306\) 26.4284 4.22525i 1.51081 0.241541i
\(307\) −5.28300 5.28300i −0.301517 0.301517i 0.540090 0.841607i \(-0.318390\pi\)
−0.841607 + 0.540090i \(0.818390\pi\)
\(308\) 0.413352 + 0.110757i 0.0235529 + 0.00631098i
\(309\) 0.984663 + 0.839744i 0.0560155 + 0.0477714i
\(310\) 0 0
\(311\) 2.37607i 0.134735i −0.997728 0.0673674i \(-0.978540\pi\)
0.997728 0.0673674i \(-0.0214599\pi\)
\(312\) 10.5587 4.63490i 0.597770 0.262400i
\(313\) −20.5099 20.5099i −1.15929 1.15929i −0.984629 0.174659i \(-0.944118\pi\)
−0.174659 0.984629i \(-0.555882\pi\)
\(314\) 11.5927 + 6.69304i 0.654213 + 0.377710i
\(315\) 0 0
\(316\) 2.22694 + 3.85718i 0.125275 + 0.216983i
\(317\) −23.9045 + 23.9045i −1.34261 + 1.34261i −0.449162 + 0.893450i \(0.648277\pi\)
−0.893450 + 0.449162i \(0.851723\pi\)
\(318\) 7.34634 + 3.49747i 0.411962 + 0.196128i
\(319\) −8.25787 14.3030i −0.462352 0.800817i
\(320\) 0 0
\(321\) 2.69575 0.956821i 0.150462 0.0534045i
\(322\) 0.347251 + 1.29596i 0.0193516 + 0.0722210i
\(323\) 40.1124 10.7481i 2.23191 0.598040i
\(324\) −5.51831 + 6.16466i −0.306573 + 0.342481i
\(325\) 0 0
\(326\) 20.9422i 1.15988i
\(327\) −1.10308 + 0.0876212i −0.0610005 + 0.00484546i
\(328\) −6.20041 + 1.66140i −0.342361 + 0.0917352i
\(329\) −0.0148633 0.0257440i −0.000819441 0.00141931i
\(330\) 0 0
\(331\) 12.0767 6.97251i 0.663798 0.383244i −0.129925 0.991524i \(-0.541474\pi\)
0.793722 + 0.608280i \(0.208140\pi\)
\(332\) −2.56737 0.687925i −0.140903 0.0377548i
\(333\) 11.6351 5.20054i 0.637597 0.284988i
\(334\) 13.2009 7.62155i 0.722322 0.417033i
\(335\) 0 0
\(336\) 0.745531 + 0.635807i 0.0406720 + 0.0346861i
\(337\) 2.58183 2.58183i 0.140641 0.140641i −0.633281 0.773922i \(-0.718292\pi\)
0.773922 + 0.633281i \(0.218292\pi\)
\(338\) −13.2693 + 17.8126i −0.721754 + 0.968877i
\(339\) 13.4800 + 2.48824i 0.732135 + 0.135143i
\(340\) 0 0
\(341\) −24.5344 14.1649i −1.32861 0.767074i
\(342\) −23.9141 + 33.0157i −1.29313 + 1.78529i
\(343\) −1.12047 + 1.12047i −0.0604997 + 0.0604997i
\(344\) 8.09329 4.67266i 0.436361 0.251933i
\(345\) 0 0
\(346\) 15.0319i 0.808119i
\(347\) 4.13034 15.4146i 0.221728 0.827500i −0.761961 0.647623i \(-0.775763\pi\)
0.983689 0.179877i \(-0.0575701\pi\)
\(348\) 0.506785 + 6.38001i 0.0271665 + 0.342004i
\(349\) 2.98342 5.16743i 0.159699 0.276606i −0.775061 0.631886i \(-0.782281\pi\)
0.934760 + 0.355280i \(0.115614\pi\)
\(350\) 0 0
\(351\) −3.96459 + 18.3107i −0.211614 + 0.977353i
\(352\) −14.0593 + 14.0593i −0.749363 + 0.749363i
\(353\) 12.0317 3.22389i 0.640383 0.171590i 0.0760061 0.997107i \(-0.475783\pi\)
0.564377 + 0.825517i \(0.309116\pi\)
\(354\) −1.61120 1.37407i −0.0856342 0.0730309i
\(355\) 0 0
\(356\) −2.97190 −0.157510
\(357\) 0.925073 + 0.440412i 0.0489600 + 0.0233091i
\(358\) 32.8515 + 8.80254i 1.73626 + 0.465229i
\(359\) 29.8863i 1.57734i −0.614816 0.788671i \(-0.710770\pi\)
0.614816 0.788671i \(-0.289230\pi\)
\(360\) 0 0
\(361\) −22.1271 + 38.3252i −1.16458 + 2.01712i
\(362\) −3.29490 12.2967i −0.173176 0.646302i
\(363\) 5.77804 + 8.39402i 0.303268 + 0.440572i
\(364\) −0.368803 0.0706327i −0.0193305 0.00370216i
\(365\) 0 0
\(366\) −7.84107 + 9.19424i −0.409860 + 0.480591i
\(367\) 3.47695 + 12.9762i 0.181496 + 0.677351i 0.995354 + 0.0962869i \(0.0306966\pi\)
−0.813858 + 0.581064i \(0.802637\pi\)
\(368\) −33.4326 8.95823i −1.74279 0.466980i
\(369\) 3.72337 9.74201i 0.193831 0.507149i
\(370\) 0 0
\(371\) 0.155736 + 0.269742i 0.00808539 + 0.0140043i
\(372\) 6.22474 + 9.04296i 0.322738 + 0.468855i
\(373\) 5.16696 19.2834i 0.267535 0.998455i −0.693145 0.720798i \(-0.743776\pi\)
0.960680 0.277657i \(-0.0895578\pi\)
\(374\) −18.3287 + 31.7462i −0.947753 + 1.64156i
\(375\) 0 0
\(376\) 0.484510 0.0249867
\(377\) 8.13714 + 11.9923i 0.419084 + 0.617635i
\(378\) −0.977486 + 0.236929i −0.0502764 + 0.0121863i
\(379\) −16.7541 + 29.0190i −0.860601 + 1.49061i 0.0107483 + 0.999942i \(0.496579\pi\)
−0.871350 + 0.490663i \(0.836755\pi\)
\(380\) 0 0
\(381\) −7.37965 20.7914i −0.378071 1.06518i
\(382\) 27.7305 + 27.7305i 1.41882 + 1.41882i
\(383\) 0.699279 2.60975i 0.0357315 0.133352i −0.945756 0.324878i \(-0.894677\pi\)
0.981488 + 0.191526i \(0.0613436\pi\)
\(384\) −20.5917 + 7.30876i −1.05082 + 0.372973i
\(385\) 0 0
\(386\) 32.4270 18.7218i 1.65049 0.952912i
\(387\) −1.56515 + 15.1026i −0.0795612 + 0.767710i
\(388\) −0.0355516 0.132680i −0.00180486 0.00673582i
\(389\) −38.6182 −1.95802 −0.979011 0.203807i \(-0.934668\pi\)
−0.979011 + 0.203807i \(0.934668\pi\)
\(390\) 0 0
\(391\) −36.1920 −1.83031
\(392\) −3.33918 12.4620i −0.168654 0.629426i
\(393\) 1.77704 + 22.3715i 0.0896397 + 1.12849i
\(394\) −12.8645 + 7.42732i −0.648104 + 0.374183i
\(395\) 0 0
\(396\) −1.78901 11.1900i −0.0899010 0.562320i
\(397\) 2.93908 10.9688i 0.147508 0.550509i −0.852122 0.523342i \(-0.824685\pi\)
0.999631 0.0271666i \(-0.00864845\pi\)
\(398\) 24.4713 + 24.4713i 1.22663 + 1.22663i
\(399\) −1.47070 + 0.522007i −0.0736273 + 0.0261331i
\(400\) 0 0
\(401\) 15.5856 26.9950i 0.778307 1.34807i −0.154611 0.987975i \(-0.549412\pi\)
0.932917 0.360091i \(-0.117254\pi\)
\(402\) 4.95832 + 7.20318i 0.247299 + 0.359262i
\(403\) 22.3732 + 10.8358i 1.11449 + 0.539771i
\(404\) −11.1569 −0.555076
\(405\) 0 0
\(406\) −0.389012 + 0.673788i −0.0193063 + 0.0334395i
\(407\) −4.51779 + 16.8606i −0.223938 + 0.835749i
\(408\) −13.7553 + 9.46851i −0.680990 + 0.468761i
\(409\) −5.22725 9.05386i −0.258471 0.447685i 0.707362 0.706852i \(-0.249885\pi\)
−0.965832 + 0.259167i \(0.916552\pi\)
\(410\) 0 0
\(411\) 21.2229 + 3.91748i 1.04685 + 0.193235i
\(412\) 0.663461 + 0.177774i 0.0326864 + 0.00875828i
\(413\) −0.0209805 0.0783003i −0.00103238 0.00385290i
\(414\) 27.5787 22.3993i 1.35542 1.10086i
\(415\) 0 0
\(416\) 11.4099 13.1989i 0.559414 0.647130i
\(417\) 5.46700 3.76322i 0.267720 0.184286i
\(418\) −14.4514 53.9335i −0.706843 2.63797i
\(419\) 10.9200 18.9139i 0.533476 0.924007i −0.465760 0.884911i \(-0.654219\pi\)
0.999235 0.0390956i \(-0.0124477\pi\)
\(420\) 0 0
\(421\) 11.3030i 0.550876i −0.961319 0.275438i \(-0.911177\pi\)
0.961319 0.275438i \(-0.0888229\pi\)
\(422\) −12.0401 3.22612i −0.586101 0.157045i
\(423\) −0.461774 + 0.637524i −0.0224522 + 0.0309975i
\(424\) −5.07663 −0.246543
\(425\) 0 0
\(426\) −16.3374 + 19.1568i −0.791548 + 0.928149i
\(427\) −0.446818 + 0.119724i −0.0216230 + 0.00579387i
\(428\) 1.07357 1.07357i 0.0518927 0.0518927i
\(429\) −16.0439 20.0262i −0.774605 0.966875i
\(430\) 0 0
\(431\) 1.35987 2.35537i 0.0655028 0.113454i −0.831414 0.555653i \(-0.812468\pi\)
0.896917 + 0.442199i \(0.145802\pi\)
\(432\) 7.31505 24.8944i 0.351945 1.19773i
\(433\) 3.66753 13.6874i 0.176250 0.657775i −0.820085 0.572242i \(-0.806074\pi\)
0.996335 0.0855335i \(-0.0272595\pi\)
\(434\) 1.33456i 0.0640611i
\(435\) 0 0
\(436\) −0.508630 + 0.293658i −0.0243590 + 0.0140637i
\(437\) 38.9809 38.9809i 1.86471 1.86471i
\(438\) −11.3692 5.41268i −0.543241 0.258628i
\(439\) 8.10140 + 4.67735i 0.386659 + 0.223237i 0.680711 0.732552i \(-0.261671\pi\)
−0.294053 + 0.955789i \(0.595004\pi\)
\(440\) 0 0
\(441\) 19.5801 + 7.48347i 0.932388 + 0.356356i
\(442\) 14.0210 28.9497i 0.666910 1.37700i
\(443\) 5.74199 5.74199i 0.272810 0.272810i −0.557420 0.830230i \(-0.688209\pi\)
0.830230 + 0.557420i \(0.188209\pi\)
\(444\) 4.38928 5.14676i 0.208306 0.244254i
\(445\) 0 0
\(446\) 17.9670 10.3733i 0.850763 0.491188i
\(447\) 16.9738 11.6840i 0.802835 0.552633i
\(448\) −0.188132 0.0504097i −0.00888838 0.00238163i
\(449\) 23.4891 13.5614i 1.10852 0.640004i 0.170074 0.985431i \(-0.445599\pi\)
0.938446 + 0.345427i \(0.112266\pi\)
\(450\) 0 0
\(451\) 7.14224 + 12.3707i 0.336315 + 0.582515i
\(452\) 7.02763 1.88305i 0.330552 0.0885711i
\(453\) −1.52256 19.1678i −0.0715359 0.900579i
\(454\) 23.6941i 1.11202i
\(455\) 0 0
\(456\) 4.61715 25.0134i 0.216218 1.17136i
\(457\) −12.9168 + 3.46105i −0.604224 + 0.161901i −0.547946 0.836514i \(-0.684590\pi\)
−0.0562781 + 0.998415i \(0.517923\pi\)
\(458\) −3.76726 14.0596i −0.176032 0.656962i
\(459\) 0.651065 27.1236i 0.0303891 1.26602i
\(460\) 0 0
\(461\) −17.1508 29.7061i −0.798792 1.38355i −0.920403 0.390971i \(-0.872139\pi\)
0.121611 0.992578i \(-0.461194\pi\)
\(462\) 0.592159 1.24381i 0.0275498 0.0578675i
\(463\) −19.4344 + 19.4344i −0.903191 + 0.903191i −0.995711 0.0925195i \(-0.970508\pi\)
0.0925195 + 0.995711i \(0.470508\pi\)
\(464\) −10.0356 17.3821i −0.465889 0.806943i
\(465\) 0 0
\(466\) 18.0226 + 10.4054i 0.834883 + 0.482020i
\(467\) 19.6345 + 19.6345i 0.908575 + 0.908575i 0.996157 0.0875827i \(-0.0279142\pi\)
−0.0875827 + 0.996157i \(0.527914\pi\)
\(468\) 2.27767 + 9.67943i 0.105285 + 0.447432i
\(469\) 0.334760i 0.0154578i
\(470\) 0 0
\(471\) 8.80540 10.3250i 0.405731 0.475750i
\(472\) 1.27621 + 0.341958i 0.0587421 + 0.0157399i
\(473\) −14.7051 14.7051i −0.676140 0.676140i
\(474\) 13.5119 4.79586i 0.620620 0.220281i
\(475\) 0 0
\(476\) 0.543796 0.0249248
\(477\) 4.83840 6.67989i 0.221535 0.305851i
\(478\) −19.0670 + 5.10900i −0.872107 + 0.233680i
\(479\) −1.49161 0.861181i −0.0681534 0.0393484i 0.465536 0.885029i \(-0.345862\pi\)
−0.533689 + 0.845681i \(0.679195\pi\)
\(480\) 0 0
\(481\) 2.88111 15.0435i 0.131367 0.685924i
\(482\) −16.8711 16.8711i −0.768456 0.768456i
\(483\) 1.35582 0.107697i 0.0616921 0.00490040i
\(484\) 4.68406 + 2.70434i 0.212912 + 0.122925i
\(485\) 0 0
\(486\) 16.2907 + 21.0714i 0.738961 + 0.955819i
\(487\) 5.38812 20.1087i 0.244159 0.911213i −0.729645 0.683826i \(-0.760315\pi\)
0.973804 0.227388i \(-0.0730184\pi\)
\(488\) 1.95137 7.28262i 0.0883344 0.329669i
\(489\) 20.8770 + 3.85362i 0.944089 + 0.174267i
\(490\) 0 0
\(491\) 19.5711 + 11.2994i 0.883233 + 0.509935i 0.871723 0.489999i \(-0.163003\pi\)
0.0115102 + 0.999934i \(0.496336\pi\)
\(492\) −0.438319 5.51808i −0.0197609 0.248774i
\(493\) −14.8403 14.8403i −0.668374 0.668374i
\(494\) 16.0791 + 46.2819i 0.723434 + 2.08232i
\(495\) 0 0
\(496\) −29.8159 17.2142i −1.33878 0.772942i
\(497\) −0.930972 + 0.249453i −0.0417598 + 0.0111895i
\(498\) −3.67797 + 7.72547i −0.164814 + 0.346186i
\(499\) −35.8828 −1.60634 −0.803168 0.595753i \(-0.796854\pi\)
−0.803168 + 0.595753i \(0.796854\pi\)
\(500\) 0 0
\(501\) −5.16868 14.5623i −0.230920 0.650594i
\(502\) 20.8208 + 20.8208i 0.929276 + 0.929276i
\(503\) 31.9352 + 8.55700i 1.42392 + 0.381538i 0.886872 0.462015i \(-0.152873\pi\)
0.537047 + 0.843553i \(0.319540\pi\)
\(504\) 0.487125 0.395640i 0.0216983 0.0176232i
\(505\) 0 0
\(506\) 48.6623i 2.16330i
\(507\) 15.3154 + 16.5057i 0.680181 + 0.733044i
\(508\) −8.28006 8.28006i −0.367368 0.367368i
\(509\) −5.25012 3.03116i −0.232707 0.134354i 0.379113 0.925350i \(-0.376229\pi\)
−0.611820 + 0.790997i \(0.709562\pi\)
\(510\) 0 0
\(511\) −0.241016 0.417452i −0.0106619 0.0184670i
\(512\) −4.04633 + 4.04633i −0.178824 + 0.178824i
\(513\) 28.5124 + 29.9149i 1.25886 + 1.32078i
\(514\) −0.357631 0.619435i −0.0157744 0.0273221i
\(515\) 0 0
\(516\) 2.69561 + 7.59462i 0.118668 + 0.334334i
\(517\) −0.279053 1.04144i −0.0122727 0.0458025i
\(518\) 0.794270 0.212824i 0.0348982 0.00935095i
\(519\) 14.9851 + 2.76605i 0.657772 + 0.121416i
\(520\) 0 0
\(521\) 23.5394i 1.03128i 0.856805 + 0.515640i \(0.172446\pi\)
−0.856805 + 0.515640i \(0.827554\pi\)
\(522\) 20.4931 + 2.12379i 0.896960 + 0.0929560i
\(523\) 30.6087 8.20158i 1.33843 0.358630i 0.482575 0.875854i \(-0.339701\pi\)
0.855850 + 0.517225i \(0.173035\pi\)
\(524\) 5.95565 + 10.3155i 0.260174 + 0.450634i
\(525\) 0 0
\(526\) −19.3620 + 11.1787i −0.844224 + 0.487413i
\(527\) −34.7735 9.31753i −1.51476 0.405878i
\(528\) 20.1503 + 29.2733i 0.876931 + 1.27396i
\(529\) −21.6892 + 12.5223i −0.943010 + 0.544447i
\(530\) 0 0
\(531\) −1.66627 + 1.35334i −0.0723100 + 0.0587297i
\(532\) −0.585699 + 0.585699i −0.0253933 + 0.0253933i
\(533\) −7.03782 10.3722i −0.304842 0.449268i
\(534\) −1.73660 + 9.40804i −0.0751502 + 0.407126i
\(535\) 0 0
\(536\) −4.72521 2.72810i −0.204098 0.117836i
\(537\) 14.8202 31.1295i 0.639540 1.34334i
\(538\) −0.975256 + 0.975256i −0.0420463 + 0.0420463i
\(539\) −24.8635 + 14.3550i −1.07095 + 0.618312i
\(540\) 0 0
\(541\) 26.7974i 1.15211i 0.817411 + 0.576055i \(0.195409\pi\)
−0.817411 + 0.576055i \(0.804591\pi\)
\(542\) −4.70993 + 17.5777i −0.202309 + 0.755027i
\(543\) −12.8647 + 1.02189i −0.552079 + 0.0438534i
\(544\) −12.6331 + 21.8811i −0.541638 + 0.938145i
\(545\) 0 0
\(546\) −0.439107 + 1.12624i −0.0187920 + 0.0481984i
\(547\) −6.51421 + 6.51421i −0.278528 + 0.278528i −0.832521 0.553993i \(-0.813103\pi\)
0.553993 + 0.832521i \(0.313103\pi\)
\(548\) 11.0643 2.96467i 0.472643 0.126644i
\(549\) 7.72276 + 9.50851i 0.329599 + 0.405813i
\(550\) 0 0
\(551\) 31.9677 1.36187
\(552\) −9.52901 + 20.0154i −0.405581 + 0.851912i
\(553\) 0.530163 + 0.142057i 0.0225448 + 0.00604087i
\(554\) 48.7662i 2.07188i
\(555\) 0 0
\(556\) 1.76133 3.05072i 0.0746971 0.129379i
\(557\) 6.08328 + 22.7031i 0.257757 + 0.961962i 0.966536 + 0.256531i \(0.0825797\pi\)
−0.708779 + 0.705431i \(0.750754\pi\)
\(558\) 32.2644 14.4213i 1.36586 0.610501i
\(559\) 13.8052 + 11.9339i 0.583896 + 0.504752i
\(560\) 0 0
\(561\) 28.2746 + 24.1133i 1.19376 + 1.01806i
\(562\) 5.96419 + 22.2587i 0.251584 + 0.938926i
\(563\) −35.8569 9.60782i −1.51119 0.404921i −0.594358 0.804201i \(-0.702594\pi\)
−0.916829 + 0.399279i \(0.869260\pi\)
\(564\) −0.0758413 + 0.410870i −0.00319350 + 0.0173007i
\(565\) 0 0
\(566\) −0.973289 1.68579i −0.0409104 0.0708589i
\(567\) 0.0563221 + 1.01804i 0.00236531 + 0.0427537i
\(568\) 4.06580 15.1738i 0.170597 0.636678i
\(569\) −6.61515 + 11.4578i −0.277322 + 0.480335i −0.970718 0.240221i \(-0.922780\pi\)
0.693397 + 0.720556i \(0.256113\pi\)
\(570\) 0 0
\(571\) 16.3611 0.684690 0.342345 0.939574i \(-0.388779\pi\)
0.342345 + 0.939574i \(0.388779\pi\)
\(572\) −12.2576 5.93661i −0.512515 0.248222i
\(573\) 32.7469 22.5414i 1.36802 0.941681i
\(574\) 0.336457 0.582760i 0.0140434 0.0243240i
\(575\) 0 0
\(576\) 0.814243 + 5.09299i 0.0339268 + 0.212208i
\(577\) 1.55067 + 1.55067i 0.0645553 + 0.0645553i 0.738647 0.674092i \(-0.235465\pi\)
−0.674092 + 0.738647i \(0.735465\pi\)
\(578\) −4.53869 + 16.9386i −0.188785 + 0.704554i
\(579\) −12.6965 35.7711i −0.527648 1.48660i
\(580\) 0 0
\(581\) −0.283663 + 0.163773i −0.0117683 + 0.00679444i
\(582\) −0.440796 + 0.0350138i −0.0182716 + 0.00145137i
\(583\) 2.92388 + 10.9121i 0.121095 + 0.451931i
\(584\) 7.85658 0.325107
\(585\) 0 0
\(586\) −12.8967 −0.532758
\(587\) −5.23017 19.5193i −0.215872 0.805646i −0.985858 0.167585i \(-0.946403\pi\)
0.769986 0.638061i \(-0.220263\pi\)
\(588\) 11.0906 0.880963i 0.457369 0.0363303i
\(589\) 47.4885 27.4175i 1.95673 1.12972i
\(590\) 0 0
\(591\) 5.03696 + 14.1912i 0.207193 + 0.583746i
\(592\) −5.49034 + 20.4902i −0.225651 + 0.842143i
\(593\) 3.08282 + 3.08282i 0.126596 + 0.126596i 0.767566 0.640970i \(-0.221468\pi\)
−0.640970 + 0.767566i \(0.721468\pi\)
\(594\) −36.4693 0.875395i −1.49635 0.0359179i
\(595\) 0 0
\(596\) 5.46855 9.47180i 0.224000 0.387980i
\(597\) 28.8981 19.8921i 1.18272 0.814128i
\(598\) −3.09615 42.5882i −0.126611 1.74156i
\(599\) −17.9813 −0.734698 −0.367349 0.930083i \(-0.619734\pi\)
−0.367349 + 0.930083i \(0.619734\pi\)
\(600\) 0 0
\(601\) −4.18909 + 7.25572i −0.170877 + 0.295967i −0.938727 0.344663i \(-0.887993\pi\)
0.767850 + 0.640630i \(0.221327\pi\)
\(602\) −0.253555 + 0.946282i −0.0103341 + 0.0385676i
\(603\) 8.09314 3.61741i 0.329578 0.147312i
\(604\) −5.10277 8.83825i −0.207629 0.359623i
\(605\) 0 0
\(606\) −6.51944 + 35.3190i −0.264834 + 1.43474i
\(607\) −17.1283 4.58950i −0.695214 0.186282i −0.106128 0.994352i \(-0.533845\pi\)
−0.589086 + 0.808070i \(0.700512\pi\)
\(608\) −9.96067 37.1737i −0.403958 1.50759i
\(609\) 0.600107 + 0.511786i 0.0243176 + 0.0207386i
\(610\) 0 0
\(611\) 0.310483 + 0.893690i 0.0125608 + 0.0361548i
\(612\) −5.87625 13.1468i −0.237533 0.531428i
\(613\) 9.88511 + 36.8917i 0.399256 + 1.49004i 0.814409 + 0.580291i \(0.197061\pi\)
−0.415153 + 0.909752i \(0.636272\pi\)
\(614\) −6.38272 + 11.0552i −0.257585 + 0.446151i
\(615\) 0 0
\(616\) 0.859527i 0.0346313i
\(617\) 27.1576 + 7.27686i 1.09332 + 0.292955i 0.760043 0.649872i \(-0.225178\pi\)
0.333281 + 0.942828i \(0.391844\pi\)
\(618\) 0.950461 1.99642i 0.0382331 0.0803076i
\(619\) 34.9871 1.40625 0.703125 0.711066i \(-0.251787\pi\)
0.703125 + 0.711066i \(0.251787\pi\)
\(620\) 0 0
\(621\) −17.2547 31.6145i −0.692406 1.26865i
\(622\) −3.92142 + 1.05074i −0.157235 + 0.0421309i
\(623\) −0.258967 + 0.258967i −0.0103753 + 0.0103753i
\(624\) −19.4977 24.3373i −0.780531 0.974271i
\(625\) 0 0
\(626\) −24.7792 + 42.9189i −0.990378 + 1.71538i
\(627\) −56.4248 + 4.48200i −2.25339 + 0.178994i
\(628\) 1.86410 6.95692i 0.0743857 0.277611i
\(629\) 22.1814i 0.884431i
\(630\) 0 0
\(631\) −10.8292 + 6.25222i −0.431102 + 0.248897i −0.699816 0.714323i \(-0.746735\pi\)
0.268714 + 0.963220i \(0.413401\pi\)
\(632\) −6.32569 + 6.32569i −0.251623 + 0.251623i
\(633\) −5.43160 + 11.4089i −0.215887 + 0.453464i
\(634\) 50.0225 + 28.8805i 1.98665 + 1.14699i
\(635\) 0 0
\(636\) 0.794654 4.30503i 0.0315101 0.170706i
\(637\) 20.8467 14.1451i 0.825974 0.560449i
\(638\) −19.9537 + 19.9537i −0.789973 + 0.789973i
\(639\) 16.0908 + 19.8116i 0.636544 + 0.783733i
\(640\) 0 0
\(641\) 3.54806 2.04848i 0.140140 0.0809099i −0.428291 0.903641i \(-0.640884\pi\)
0.568431 + 0.822731i \(0.307551\pi\)
\(642\) −2.77122 4.02588i −0.109371 0.158889i
\(643\) 40.3600 + 10.8144i 1.59164 + 0.426479i 0.942505 0.334192i \(-0.108464\pi\)
0.649137 + 0.760672i \(0.275130\pi\)
\(644\) 0.625170 0.360942i 0.0246351 0.0142231i
\(645\) 0 0
\(646\) −35.4768 61.4477i −1.39582 2.41763i
\(647\) −6.30036 + 1.68818i −0.247693 + 0.0663691i −0.380529 0.924769i \(-0.624258\pi\)
0.132836 + 0.991138i \(0.457591\pi\)
\(648\) −14.8289 7.50144i −0.582532 0.294685i
\(649\) 2.94012i 0.115410i
\(650\) 0 0
\(651\) 1.33041 + 0.245576i 0.0521428 + 0.00962489i
\(652\) 10.8839 2.91634i 0.426247 0.114213i
\(653\) 11.9894 + 44.7451i 0.469182 + 1.75101i 0.642637 + 0.766171i \(0.277840\pi\)
−0.173454 + 0.984842i \(0.555493\pi\)
\(654\) 0.632409 + 1.78175i 0.0247292 + 0.0696720i
\(655\) 0 0
\(656\) 8.67976 + 15.0338i 0.338888 + 0.586971i
\(657\) −7.48790 + 10.3378i −0.292131 + 0.403315i
\(658\) −0.0359145 + 0.0359145i −0.00140009 + 0.00140009i
\(659\) 12.0799 + 20.9230i 0.470566 + 0.815045i 0.999433 0.0336601i \(-0.0107164\pi\)
−0.528867 + 0.848705i \(0.677383\pi\)
\(660\) 0 0
\(661\) 35.3712 + 20.4215i 1.37578 + 0.794306i 0.991648 0.128973i \(-0.0411680\pi\)
0.384130 + 0.923279i \(0.374501\pi\)
\(662\) −16.8478 16.8478i −0.654809 0.654809i
\(663\) −26.2796 19.3044i −1.02061 0.749722i
\(664\) 5.33862i 0.207178i
\(665\) 0 0
\(666\) −13.7281 16.9025i −0.531953 0.654958i
\(667\) −26.9112 7.21084i −1.04201 0.279205i
\(668\) −5.79933 5.79933i −0.224383 0.224383i
\(669\) −7.03481 19.8199i −0.271981 0.766281i
\(670\) 0 0
\(671\) −16.7777 −0.647694
\(672\) 0.408147 0.857300i 0.0157446 0.0330711i
\(673\) −11.9542 + 3.20311i −0.460799 + 0.123471i −0.481748 0.876310i \(-0.659998\pi\)
0.0209488 + 0.999781i \(0.493331\pi\)
\(674\) −5.40272 3.11926i −0.208105 0.120150i
\(675\) 0 0
\(676\) 11.1053 + 4.41570i 0.427126 + 0.169834i
\(677\) 17.7462 + 17.7462i 0.682043 + 0.682043i 0.960460 0.278418i \(-0.0898099\pi\)
−0.278418 + 0.960460i \(0.589810\pi\)
\(678\) −1.85457 23.3475i −0.0712242 0.896655i
\(679\) −0.0146595 0.00846367i −0.000562580 0.000324806i
\(680\) 0 0
\(681\) −23.6203 4.36001i −0.905132 0.167076i
\(682\) −12.5280 + 46.7550i −0.479721 + 1.79034i
\(683\) −5.71276 + 21.3203i −0.218593 + 0.815798i 0.766278 + 0.642509i \(0.222106\pi\)
−0.984871 + 0.173290i \(0.944560\pi\)
\(684\) 20.4889 + 7.83079i 0.783413 + 0.299418i
\(685\) 0 0
\(686\) 2.34469 + 1.35371i 0.0895208 + 0.0516848i
\(687\) −14.7090 + 1.16839i −0.561185 + 0.0445767i
\(688\) −17.8706 17.8706i −0.681312 0.681312i
\(689\) −3.25319 9.36396i −0.123937 0.356738i
\(690\) 0 0
\(691\) −7.86173 4.53897i −0.299074 0.172671i 0.342953 0.939353i \(-0.388573\pi\)
−0.642027 + 0.766682i \(0.721906\pi\)
\(692\) 7.81226 2.09329i 0.296978 0.0795749i
\(693\) −1.13098 0.819193i −0.0429622 0.0311186i
\(694\) −27.2665 −1.03502
\(695\) 0 0
\(696\) −12.1145 + 4.29988i −0.459199 + 0.162987i
\(697\) 12.8354 + 12.8354i 0.486176 + 0.486176i
\(698\) −9.84754 2.63864i −0.372735 0.0998740i
\(699\) 13.6894 16.0518i 0.517779 0.607135i
\(700\) 0 0
\(701\) 31.3445i 1.18386i 0.805988 + 0.591932i \(0.201635\pi\)
−0.805988 + 0.591932i \(0.798365\pi\)
\(702\) 31.9728 1.55424i 1.20674 0.0586611i
\(703\) −23.8907 23.8907i −0.901053 0.901053i
\(704\) −6.11777 3.53210i −0.230572 0.133121i
\(705\) 0 0
\(706\) −10.6413 18.4312i −0.400489 0.693667i
\(707\) −0.972198 + 0.972198i −0.0365633 + 0.0365633i
\(708\) −0.489751 + 1.02871i −0.0184060 + 0.0386612i
\(709\) 16.2682 + 28.1774i 0.610967 + 1.05823i 0.991078 + 0.133285i \(0.0425524\pi\)
−0.380111 + 0.924941i \(0.624114\pi\)
\(710\) 0 0
\(711\) −2.29457 14.3523i −0.0860532 0.538252i
\(712\) −1.54495 5.76582i −0.0578993 0.216083i
\(713\) −46.1615 + 12.3689i −1.72876 + 0.463220i
\(714\) 0.317763 1.72148i 0.0118920 0.0644247i
\(715\) 0 0
\(716\) 18.2992i 0.683873i
\(717\) 1.58452 + 19.9478i 0.0591749 + 0.744964i
\(718\) −49.3238 + 13.2163i −1.84075 + 0.493227i
\(719\) 14.5548 + 25.2096i 0.542802 + 0.940160i 0.998742 + 0.0501495i \(0.0159698\pi\)
−0.455940 + 0.890010i \(0.650697\pi\)
\(720\) 0 0
\(721\) 0.0733041 0.0423222i 0.00272999 0.00157616i
\(722\) 73.0360 + 19.5699i 2.71812 + 0.728318i
\(723\) −19.9230 + 13.7140i −0.740944 + 0.510030i
\(724\) −5.93194 + 3.42480i −0.220459 + 0.127282i
\(725\) 0 0
\(726\) 11.2982 13.2479i 0.419314 0.491677i
\(727\) −12.8617 + 12.8617i −0.477014 + 0.477014i −0.904175 0.427161i \(-0.859514\pi\)
0.427161 + 0.904175i \(0.359514\pi\)
\(728\) −0.0546877 0.752239i −0.00202686 0.0278798i
\(729\) 24.0035 12.3626i 0.889018 0.457873i
\(730\) 0 0
\(731\) −22.8861 13.2133i −0.846475 0.488712i
\(732\) 5.87029 + 2.79475i 0.216972 + 0.103297i
\(733\) 9.86693 9.86693i 0.364443 0.364443i −0.501003 0.865446i \(-0.667035\pi\)
0.865446 + 0.501003i \(0.167035\pi\)
\(734\) 19.8780 11.4766i 0.733711 0.423608i
\(735\) 0 0
\(736\) 33.5405i 1.23632i
\(737\) −3.14249 + 11.7279i −0.115755 + 0.432004i
\(738\) −17.7245 1.83687i −0.652450 0.0676162i
\(739\) −12.6022 + 21.8276i −0.463578 + 0.802941i −0.999136 0.0415576i \(-0.986768\pi\)
0.535558 + 0.844498i \(0.320101\pi\)
\(740\) 0 0
\(741\) 49.0966 7.51259i 1.80361 0.275982i
\(742\) 0.376307 0.376307i 0.0138147 0.0138147i
\(743\) −36.3190 + 9.73165i −1.33242 + 0.357020i −0.853615 0.520904i \(-0.825595\pi\)
−0.478801 + 0.877924i \(0.658928\pi\)
\(744\) −14.3084 + 16.7777i −0.524573 + 0.615100i
\(745\) 0 0
\(746\) −34.1098 −1.24885
\(747\) 7.02462 + 5.08809i 0.257017 + 0.186164i
\(748\) 19.0513 + 5.10478i 0.696584 + 0.186649i
\(749\) 0.187098i 0.00683642i
\(750\) 0 0
\(751\) 14.1002 24.4223i 0.514524 0.891182i −0.485334 0.874329i \(-0.661302\pi\)
0.999858 0.0168530i \(-0.00536474\pi\)
\(752\) −0.339125 1.26563i −0.0123666 0.0461529i
\(753\) 24.5872 16.9246i 0.896007 0.616768i
\(754\) 16.1934 18.7326i 0.589730 0.682200i
\(755\) 0 0
\(756\) 0.259257 + 0.475018i 0.00942907 + 0.0172762i
\(757\) −7.80797 29.1397i −0.283785 1.05910i −0.949722 0.313093i \(-0.898635\pi\)
0.665937 0.746008i \(-0.268032\pi\)
\(758\) 55.3013 + 14.8179i 2.00863 + 0.538211i
\(759\) 48.5108 + 8.95446i 1.76083 + 0.325026i
\(760\) 0 0
\(761\) −14.3226 24.8075i −0.519195 0.899272i −0.999751 0.0223082i \(-0.992898\pi\)
0.480556 0.876964i \(-0.340435\pi\)
\(762\) −31.0503 + 21.3735i −1.12483 + 0.774282i
\(763\) −0.0187324 + 0.0699104i −0.000678160 + 0.00253093i
\(764\) 10.5503 18.2736i 0.381695 0.661115i
\(765\) 0 0
\(766\) −4.61630 −0.166794
\(767\) 0.187066 + 2.57312i 0.00675455 + 0.0929101i
\(768\) 17.7914 + 25.8464i 0.641992 + 0.932650i
\(769\) −26.5529 + 45.9910i −0.957522 + 1.65848i −0.229035 + 0.973418i \(0.573557\pi\)
−0.728488 + 0.685059i \(0.759776\pi\)
\(770\) 0 0
\(771\) −0.683314 + 0.242533i −0.0246090 + 0.00873463i
\(772\) −14.2456 14.2456i −0.512711 0.512711i
\(773\) 9.14659 34.1355i 0.328980 1.22777i −0.581270 0.813711i \(-0.697444\pi\)
0.910250 0.414059i \(-0.135889\pi\)
\(774\) 25.6172 4.09555i 0.920791 0.147212i
\(775\) 0 0
\(776\) 0.238933 0.137948i 0.00857720 0.00495205i
\(777\) −0.0660057 0.830959i −0.00236794 0.0298105i
\(778\) 17.0777 + 63.7347i 0.612264 + 2.28500i
\(779\) −27.6489 −0.990626
\(780\) 0 0
\(781\) −34.9573 −1.25087
\(782\) 16.0047 + 59.7305i 0.572329 + 2.13596i
\(783\) 5.88817 20.0385i 0.210426 0.716118i
\(784\) −30.2159 + 17.4452i −1.07914 + 0.623042i
\(785\) 0 0
\(786\) 36.1355 12.8258i 1.28891 0.457482i
\(787\) −4.96521 + 18.5304i −0.176991 + 0.660539i 0.819213 + 0.573489i \(0.194410\pi\)
−0.996204 + 0.0870495i \(0.972256\pi\)
\(788\) 5.65154 + 5.65154i 0.201328 + 0.201328i
\(789\) 7.58100 + 21.3587i 0.269891 + 0.760391i
\(790\) 0 0
\(791\) 0.448293 0.776465i 0.0159394 0.0276079i
\(792\) 20.7799 9.28803i 0.738382 0.330036i
\(793\) 14.6834 1.06748i 0.521424 0.0379075i
\(794\) −19.4024 −0.688566
\(795\) 0 0
\(796\) 9.31025 16.1258i 0.329993 0.571565i
\(797\) 4.06620 15.1753i 0.144032 0.537535i −0.855764 0.517366i \(-0.826913\pi\)
0.999797 0.0201695i \(-0.00642060\pi\)
\(798\) 1.51188 + 2.19638i 0.0535200 + 0.0777509i
\(799\) −0.685047 1.18654i −0.0242352 0.0419766i
\(800\) 0 0
\(801\) 9.05919 + 3.46239i 0.320091 + 0.122338i
\(802\) −51.4442 13.7844i −1.81656 0.486745i
\(803\) −4.52499 16.8875i −0.159683 0.595946i
\(804\) 3.05311 3.57999i 0.107675 0.126257i
\(805\) 0 0
\(806\) 7.98939 41.7160i 0.281414 1.46938i
\(807\) 0.792760 + 1.15168i 0.0279065 + 0.0405410i
\(808\) −5.79994 21.6457i −0.204041 0.761492i
\(809\) 9.50547 16.4640i 0.334195 0.578842i −0.649135 0.760673i \(-0.724869\pi\)
0.983330 + 0.181831i \(0.0582024\pi\)
\(810\) 0 0
\(811\) 18.8816i 0.663023i −0.943451 0.331512i \(-0.892441\pi\)
0.943451 0.331512i \(-0.107559\pi\)
\(812\) 0.404349 + 0.108345i 0.0141899 + 0.00380216i
\(813\) 16.6563 + 7.92978i 0.584161 + 0.278109i
\(814\) 29.8242 1.04534
\(815\) 0 0
\(816\) 34.3614 + 29.3042i 1.20289 + 1.02585i
\(817\) 38.8812 10.4182i 1.36028 0.364486i
\(818\) −12.6307 + 12.6307i −0.441623 + 0.441623i
\(819\) 1.04193 + 0.644981i 0.0364079 + 0.0225374i
\(820\) 0 0
\(821\) 0.931007 1.61255i 0.0324924 0.0562784i −0.849322 0.527875i \(-0.822989\pi\)
0.881814 + 0.471597i \(0.156322\pi\)
\(822\) −2.91983 36.7583i −0.101841 1.28209i
\(823\) −5.74475 + 21.4397i −0.200249 + 0.747341i 0.790596 + 0.612338i \(0.209771\pi\)
−0.990845 + 0.135003i \(0.956896\pi\)
\(824\) 1.37961i 0.0480608i
\(825\) 0 0
\(826\) −0.119947 + 0.0692515i −0.00417349 + 0.00240957i
\(827\) 5.90430 5.90430i 0.205313 0.205313i −0.596959 0.802272i \(-0.703625\pi\)
0.802272 + 0.596959i \(0.203625\pi\)
\(828\) −15.4817 11.2138i −0.538026 0.389705i
\(829\) −27.7895 16.0443i −0.965168 0.557240i −0.0674084 0.997725i \(-0.521473\pi\)
−0.897760 + 0.440485i \(0.854806\pi\)
\(830\) 0 0
\(831\) −48.6143 8.97358i −1.68641 0.311290i
\(832\) 5.57887 + 2.70197i 0.193412 + 0.0936739i
\(833\) −25.7974 + 25.7974i −0.893829 + 0.893829i
\(834\) −8.62834 7.35846i −0.298775 0.254802i
\(835\) 0 0
\(836\) −26.0175 + 15.0212i −0.899833 + 0.519519i
\(837\) −8.43932 34.8176i −0.291706 1.20347i
\(838\) −36.0442 9.65801i −1.24513 0.333630i
\(839\) −6.21211 + 3.58656i −0.214466 + 0.123822i −0.603385 0.797450i \(-0.706182\pi\)
0.388919 + 0.921272i \(0.372848\pi\)
\(840\) 0 0
\(841\) 6.42199 + 11.1232i 0.221448 + 0.383559i
\(842\) −18.6543 + 4.99840i −0.642869 + 0.172256i
\(843\) 23.2868 1.84975i 0.802042 0.0637088i
\(844\) 6.70663i 0.230852i
\(845\) 0 0
\(846\) 1.25636 + 0.480177i 0.0431946 + 0.0165088i
\(847\) 0.643817 0.172510i 0.0221218 0.00592752i
\(848\) 3.55330 + 13.2611i 0.122021 + 0.455388i
\(849\) −1.85963 + 0.660053i −0.0638225 + 0.0226530i
\(850\) 0 0
\(851\) 14.7228 + 25.5007i 0.504692 + 0.874152i
\(852\) 12.2311 + 5.82303i 0.419031 + 0.199494i
\(853\) 26.8806 26.8806i 0.920373 0.920373i −0.0766825 0.997056i \(-0.524433\pi\)
0.997056 + 0.0766825i \(0.0244328\pi\)
\(854\) 0.395181 + 0.684474i 0.0135228 + 0.0234222i
\(855\) 0 0
\(856\) 2.64094 + 1.52474i 0.0902653 + 0.0521147i
\(857\) −31.5042 31.5042i −1.07616 1.07616i −0.996850 0.0793118i \(-0.974728\pi\)
−0.0793118 0.996850i \(-0.525272\pi\)
\(858\) −25.9559 + 35.3344i −0.886121 + 1.20630i
\(859\) 29.9066i 1.02040i −0.860055 0.510201i \(-0.829571\pi\)
0.860055 0.510201i \(-0.170429\pi\)
\(860\) 0 0
\(861\) −0.519033 0.442644i −0.0176886 0.0150853i
\(862\) −4.48861 1.20272i −0.152883 0.0409648i
\(863\) 9.69182 + 9.69182i 0.329913 + 0.329913i 0.852553 0.522640i \(-0.175053\pi\)
−0.522640 + 0.852553i \(0.675053\pi\)
\(864\) −25.1365 0.603367i −0.855161 0.0205270i
\(865\) 0 0
\(866\) −24.2113 −0.822732
\(867\) 16.0507 + 7.64148i 0.545111 + 0.259518i
\(868\) 0.693590 0.185847i 0.0235420 0.00630806i
\(869\) 17.2402 + 9.95361i 0.584832 + 0.337653i
\(870\) 0 0
\(871\) 2.00405 10.4640i 0.0679045 0.354558i
\(872\) −0.834142 0.834142i −0.0282476 0.0282476i
\(873\) −0.0462071 + 0.445866i −0.00156387 + 0.0150903i
\(874\) −81.5712 47.0952i −2.75919 1.59302i
\(875\) 0 0
\(876\) −1.22981 + 6.66246i −0.0415513 + 0.225104i
\(877\) 9.13551 34.0942i 0.308484 1.15128i −0.621420 0.783478i \(-0.713444\pi\)
0.929904 0.367801i \(-0.119889\pi\)
\(878\) 4.13681 15.4388i 0.139610 0.521033i
\(879\) −2.37315 + 12.8565i −0.0800445 + 0.433640i
\(880\) 0 0
\(881\) −0.0237715 0.0137245i −0.000800881 0.000462389i 0.499600 0.866257i \(-0.333481\pi\)
−0.500400 + 0.865794i \(0.666814\pi\)
\(882\) 3.69187 35.6240i 0.124312 1.19952i
\(883\) 12.5285 + 12.5285i 0.421617 + 0.421617i 0.885760 0.464143i \(-0.153638\pi\)
−0.464143 + 0.885760i \(0.653638\pi\)
\(884\) −16.9981 3.25545i −0.571707 0.109492i
\(885\) 0 0
\(886\) −12.0157 6.93725i −0.403674 0.233061i
\(887\) −2.92906 + 0.784839i −0.0983482 + 0.0263523i −0.307658 0.951497i \(-0.599545\pi\)
0.209309 + 0.977849i \(0.432878\pi\)
\(888\) 12.2671 + 5.84015i 0.411656 + 0.195983i
\(889\) −1.44303 −0.0483976
\(890\) 0 0
\(891\) −7.58347 + 36.1946i −0.254056 + 1.21257i
\(892\) −7.89315 7.89315i −0.264282 0.264282i
\(893\) 2.01580 + 0.540132i 0.0674562 + 0.0180748i
\(894\) −26.7891 22.8464i −0.895961 0.764097i
\(895\) 0 0
\(896\) 1.42917i 0.0477451i
\(897\) −43.0253 4.75024i −1.43657 0.158606i
\(898\) −32.7688 32.7688i −1.09351 1.09351i
\(899\) −24.0000 13.8564i −0.800446 0.462138i
\(900\) 0 0
\(901\) 7.17782 + 12.4324i 0.239128 + 0.414182i
\(902\) 17.2580 17.2580i 0.574627 0.574627i
\(903\) 0.896678 + 0.426893i 0.0298396 + 0.0142061i
\(904\) 7.30666 + 12.6555i 0.243016 + 0.420916i
\(905\) 0 0
\(906\) −30.9607 + 10.9891i −1.02860 + 0.365089i
\(907\) −4.50525 16.8138i −0.149594 0.558294i −0.999508 0.0313715i \(-0.990012\pi\)
0.849913 0.526922i \(-0.176654\pi\)
\(908\) −12.3141 + 3.29956i −0.408659 + 0.109500i
\(909\) 34.0094 + 12.9983i 1.12802 + 0.431126i
\(910\) 0 0
\(911\) 4.78351i 0.158485i −0.996855 0.0792423i \(-0.974750\pi\)
0.996855 0.0792423i \(-0.0252501\pi\)
\(912\) −68.5714 + 5.44685i −2.27063 + 0.180363i
\(913\) −11.4752 + 3.07477i −0.379774 + 0.101760i
\(914\) 11.4241 + 19.7871i 0.377876 + 0.654500i
\(915\) 0 0
\(916\) −6.78234 + 3.91578i −0.224095 + 0.129381i
\(917\) 1.41785 + 0.379911i 0.0468214 + 0.0125458i
\(918\) −45.0521 + 10.9200i −1.48694 + 0.360415i
\(919\) −20.5581 + 11.8693i −0.678151 + 0.391530i −0.799158 0.601121i \(-0.794721\pi\)
0.121007 + 0.992652i \(0.461388\pi\)
\(920\) 0 0
\(921\) 9.84626 + 8.39713i 0.324445 + 0.276695i
\(922\) −41.4418 + 41.4418i −1.36481 + 1.36481i
\(923\) 30.5938 2.22417i 1.00701 0.0732094i
\(924\) −0.728888 0.134543i −0.0239787 0.00442616i
\(925\) 0 0
\(926\) 40.6683 + 23.4798i 1.33644 + 0.771595i
\(927\) −1.81530 1.31487i −0.0596223 0.0431859i
\(928\) −13.7531 + 13.7531i −0.451467 + 0.451467i
\(929\) 27.3742 15.8045i 0.898117 0.518528i 0.0215282 0.999768i \(-0.493147\pi\)
0.876589 + 0.481240i \(0.159814\pi\)
\(930\) 0 0
\(931\) 55.5706i 1.82125i
\(932\) 2.89804 10.8156i 0.0949283 0.354277i
\(933\) 0.325879 + 4.10256i 0.0106688 + 0.134312i
\(934\) 23.7216 41.0870i 0.776194 1.34441i
\(935\) 0 0
\(936\) −17.5952 + 9.45081i −0.575116 + 0.308909i
\(937\) 12.6526 12.6526i 0.413344 0.413344i −0.469558 0.882902i \(-0.655587\pi\)
0.882902 + 0.469558i \(0.155587\pi\)
\(938\) 0.552480 0.148037i 0.0180391 0.00483357i
\(939\) 38.2256 + 32.5997i 1.24744 + 1.06385i
\(940\) 0 0
\(941\) 49.4334 1.61148 0.805741 0.592268i \(-0.201767\pi\)
0.805741 + 0.592268i \(0.201767\pi\)
\(942\) −20.9340 9.96635i −0.682068 0.324721i
\(943\) 23.2755 + 6.23666i 0.757956 + 0.203094i
\(944\) 3.57304i 0.116293i
\(945\) 0 0
\(946\) −17.7661 + 30.7718i −0.577625 + 1.00048i
\(947\) 6.33163 + 23.6300i 0.205750 + 0.767871i 0.989220 + 0.146440i \(0.0467815\pi\)
−0.783469 + 0.621431i \(0.786552\pi\)
\(948\) −4.37408 6.35443i −0.142064 0.206382i
\(949\) 5.03464 + 14.4916i 0.163431 + 0.470419i
\(950\) 0 0
\(951\) 37.9953 44.5524i 1.23208 1.44471i
\(952\) 0.282693 + 1.05503i 0.00916215 + 0.0341936i
\(953\) 41.7321 + 11.1821i 1.35184 + 0.362223i 0.860812 0.508923i \(-0.169956\pi\)
0.491024 + 0.871146i \(0.336623\pi\)
\(954\) −13.1640 5.03122i −0.426199 0.162892i
\(955\) 0 0
\(956\) 5.31043 + 9.19793i 0.171751 + 0.297482i
\(957\) 16.2198 + 23.5632i 0.524312 + 0.761691i
\(958\) −0.761659 + 2.84255i −0.0246081 + 0.0918386i
\(959\) 0.705791 1.22247i 0.0227912 0.0394755i
\(960\) 0 0
\(961\) −16.5366 −0.533437
\(962\) −26.1015 + 1.89758i −0.841546 + 0.0611803i
\(963\) −4.52328 + 2.02178i −0.145761 + 0.0651510i
\(964\) −6.41870 + 11.1175i −0.206732 + 0.358071i
\(965\) 0 0
\(966\) −0.777310 2.18999i −0.0250095 0.0704619i
\(967\) −4.55251 4.55251i −0.146399 0.146399i 0.630108 0.776507i \(-0.283010\pi\)
−0.776507 + 0.630108i \(0.783010\pi\)
\(968\) −2.81172 + 10.4935i −0.0903721 + 0.337273i
\(969\) −67.7845 + 24.0592i −2.17755 + 0.772893i
\(970\) 0 0
\(971\) −51.2257 + 29.5752i −1.64391 + 0.949113i −0.664488 + 0.747299i \(0.731350\pi\)
−0.979424 + 0.201814i \(0.935316\pi\)
\(972\) 8.68250 11.4008i 0.278491 0.365681i
\(973\) −0.112355 0.419316i −0.00360195 0.0134427i
\(974\) −35.5697 −1.13973
\(975\) 0 0
\(976\) −20.3894 −0.652649
\(977\) −14.9944 55.9598i −0.479713 1.79031i −0.602772 0.797914i \(-0.705937\pi\)
0.123059 0.992399i \(-0.460730\pi\)
\(978\) −2.87223 36.1590i −0.0918437 1.15624i
\(979\) −11.5036 + 6.64164i −0.367658 + 0.212268i
\(980\) 0 0
\(981\) 1.89257 0.302576i 0.0604252 0.00966050i
\(982\) 9.99359 37.2966i 0.318908 1.19018i
\(983\) −17.2893 17.2893i −0.551443 0.551443i 0.375414 0.926857i \(-0.377500\pi\)
−0.926857 + 0.375414i \(0.877500\pi\)
\(984\) 10.4778 3.71898i 0.334022 0.118557i
\(985\) 0 0
\(986\) −17.9295 + 31.0548i −0.570991 + 0.988985i
\(987\) 0.0291940 + 0.0424114i 0.000929254 + 0.00134997i
\(988\) 21.8142 14.8016i 0.694002 0.470901i
\(989\) −35.0811 −1.11551
\(990\) 0 0
\(991\) 6.95908 12.0535i 0.221063 0.382892i −0.734068 0.679076i \(-0.762381\pi\)
0.955131 + 0.296184i \(0.0957142\pi\)
\(992\) −8.63491 + 32.2259i −0.274159 + 1.02317i
\(993\) −19.8956 + 13.6952i −0.631367 + 0.434602i
\(994\) 0.823384 + 1.42614i 0.0261162 + 0.0452345i
\(995\) 0 0
\(996\) 4.52721 + 0.835664i 0.143450 + 0.0264790i
\(997\) −46.6520 12.5004i −1.47748 0.395891i −0.571994 0.820258i \(-0.693830\pi\)
−0.905490 + 0.424367i \(0.860497\pi\)
\(998\) 15.8680 + 59.2202i 0.502293 + 1.87458i
\(999\) −19.3760 + 10.5751i −0.613029 + 0.334581i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bn.d.368.6 96
3.2 odd 2 inner 975.2.bn.d.368.19 96
5.2 odd 4 inner 975.2.bn.d.407.19 96
5.3 odd 4 195.2.bf.a.17.6 96
5.4 even 2 195.2.bf.a.173.19 yes 96
13.10 even 6 inner 975.2.bn.d.218.6 96
15.2 even 4 inner 975.2.bn.d.407.6 96
15.8 even 4 195.2.bf.a.17.19 yes 96
15.14 odd 2 195.2.bf.a.173.6 yes 96
39.23 odd 6 inner 975.2.bn.d.218.19 96
65.23 odd 12 195.2.bf.a.62.6 yes 96
65.49 even 6 195.2.bf.a.23.19 yes 96
65.62 odd 12 inner 975.2.bn.d.257.19 96
195.23 even 12 195.2.bf.a.62.19 yes 96
195.62 even 12 inner 975.2.bn.d.257.6 96
195.179 odd 6 195.2.bf.a.23.6 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bf.a.17.6 96 5.3 odd 4
195.2.bf.a.17.19 yes 96 15.8 even 4
195.2.bf.a.23.6 yes 96 195.179 odd 6
195.2.bf.a.23.19 yes 96 65.49 even 6
195.2.bf.a.62.6 yes 96 65.23 odd 12
195.2.bf.a.62.19 yes 96 195.23 even 12
195.2.bf.a.173.6 yes 96 15.14 odd 2
195.2.bf.a.173.19 yes 96 5.4 even 2
975.2.bn.d.218.6 96 13.10 even 6 inner
975.2.bn.d.218.19 96 39.23 odd 6 inner
975.2.bn.d.257.6 96 195.62 even 12 inner
975.2.bn.d.257.19 96 65.62 odd 12 inner
975.2.bn.d.368.6 96 1.1 even 1 trivial
975.2.bn.d.368.19 96 3.2 odd 2 inner
975.2.bn.d.407.6 96 15.2 even 4 inner
975.2.bn.d.407.19 96 5.2 odd 4 inner