Properties

Label 975.2.bn.d.368.19
Level $975$
Weight $2$
Character 975.368
Analytic conductor $7.785$
Analytic rank $0$
Dimension $96$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(218,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.218"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bn (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0,2,0,0,-12,12,0,0,0,0,12,24,0,0,16,0,0,0,0,0,-20,0,0,0,0, 32,36,0,0,0,0,-30,0,0,-4,84,0,0,0,0,48,-8,0,0,0,0,28,0,0,-16,-28,0,0,0, 0,0,-84,0,0,-32,0,-90,0,0,0,-36,0,0,0,0,-90,0,0,0,72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(76)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(24\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 368.19
Character \(\chi\) \(=\) 975.368
Dual form 975.2.bn.d.257.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.442218 + 1.65038i) q^{2} +(-1.56387 + 0.744530i) q^{3} +(-0.796141 + 0.459652i) q^{4} +(-1.92033 - 2.25172i) q^{6} +(-0.0293212 + 0.109428i) q^{7} +(1.30565 + 1.30565i) q^{8} +(1.89135 - 2.32869i) q^{9} +(2.05447 - 3.55845i) q^{11} +(0.902832 - 1.31159i) q^{12} +(1.57162 - 3.24500i) q^{13} -0.193564 q^{14} +(-2.49674 + 4.32449i) q^{16} +(1.35141 - 5.04353i) q^{17} +(4.67961 + 2.09165i) q^{18} +(-3.97662 - 6.88771i) q^{19} +(-0.0356182 - 0.192962i) q^{21} +(6.78132 + 1.81705i) q^{22} +(-1.79398 - 6.69524i) q^{23} +(-3.01397 - 1.06977i) q^{24} +(6.05047 + 1.15878i) q^{26} +(-1.22403 + 5.04992i) q^{27} +(-0.0269551 - 0.100598i) q^{28} +(2.00973 - 3.48095i) q^{29} +6.89468i q^{31} +(-4.67403 - 1.25240i) q^{32} +(-0.563544 + 7.09456i) q^{33} +8.92135 q^{34} +(-0.435393 + 2.72333i) q^{36} +(4.10339 - 1.09950i) q^{37} +(9.60880 - 9.60880i) q^{38} +(-0.0418074 + 6.24486i) q^{39} +(-1.73822 + 3.01068i) q^{41} +(0.302709 - 0.144115i) q^{42} +(-1.30993 + 4.88872i) q^{43} +3.77737i q^{44} +(10.2563 - 5.92150i) q^{46} +(0.185543 - 0.185543i) q^{47} +(0.684859 - 8.62182i) q^{48} +(6.05106 + 3.49358i) q^{49} +(1.64164 + 8.89356i) q^{51} +(0.240337 + 3.30587i) q^{52} +(-1.94409 + 1.94409i) q^{53} +(-8.87558 + 0.213046i) q^{54} +(-0.181159 + 0.104592i) q^{56} +(11.3470 + 7.81074i) q^{57} +(6.63362 + 1.77747i) q^{58} +(0.619675 - 0.357770i) q^{59} +(2.04160 + 3.53616i) q^{61} +(-11.3788 + 3.04895i) q^{62} +(0.199368 + 0.275247i) q^{63} +1.71922i q^{64} +(-11.9579 + 2.20728i) q^{66} +(2.85424 - 0.764792i) q^{67} +(1.24236 + 4.63654i) q^{68} +(7.79036 + 9.13477i) q^{69} +(-4.25380 - 7.36780i) q^{71} +(5.50991 - 0.571017i) q^{72} +(-3.00868 + 3.00868i) q^{73} +(3.62918 + 6.28592i) q^{74} +(6.33191 + 3.65573i) q^{76} +(0.329156 + 0.329156i) q^{77} +(-10.3249 + 2.69259i) q^{78} -4.84485i q^{79} +(-1.84560 - 8.80873i) q^{81} +(-5.73743 - 1.53734i) q^{82} +(-2.04442 - 2.04442i) q^{83} +(0.117052 + 0.137253i) q^{84} -8.64751 q^{86} +(-0.551270 + 6.94004i) q^{87} +(7.32854 - 1.96368i) q^{88} +(-2.79966 - 1.61638i) q^{89} +(0.309013 + 0.267127i) q^{91} +(4.50574 + 4.50574i) q^{92} +(-5.13330 - 10.7823i) q^{93} +(0.388267 + 0.224166i) q^{94} +(8.24201 - 1.52137i) q^{96} +(-0.0386722 + 0.144327i) q^{97} +(-3.08985 + 11.5315i) q^{98} +(-4.40081 - 11.5145i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 2 q^{3} - 12 q^{6} + 12 q^{7} + 12 q^{12} + 24 q^{13} + 16 q^{16} - 20 q^{22} + 32 q^{27} + 36 q^{28} - 30 q^{33} - 4 q^{36} + 84 q^{37} + 48 q^{42} - 8 q^{43} + 28 q^{48} - 16 q^{51} - 28 q^{52}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.442218 + 1.65038i 0.312695 + 1.16699i 0.926116 + 0.377238i \(0.123126\pi\)
−0.613421 + 0.789756i \(0.710207\pi\)
\(3\) −1.56387 + 0.744530i −0.902898 + 0.429855i
\(4\) −0.796141 + 0.459652i −0.398071 + 0.229826i
\(5\) 0 0
\(6\) −1.92033 2.25172i −0.783970 0.919263i
\(7\) −0.0293212 + 0.109428i −0.0110824 + 0.0413600i −0.971246 0.238080i \(-0.923482\pi\)
0.960163 + 0.279440i \(0.0901487\pi\)
\(8\) 1.30565 + 1.30565i 0.461618 + 0.461618i
\(9\) 1.89135 2.32869i 0.630450 0.776230i
\(10\) 0 0
\(11\) 2.05447 3.55845i 0.619447 1.07291i −0.370139 0.928976i \(-0.620690\pi\)
0.989587 0.143938i \(-0.0459766\pi\)
\(12\) 0.902832 1.31159i 0.260625 0.378622i
\(13\) 1.57162 3.24500i 0.435890 0.900000i
\(14\) −0.193564 −0.0517323
\(15\) 0 0
\(16\) −2.49674 + 4.32449i −0.624186 + 1.08112i
\(17\) 1.35141 5.04353i 0.327765 1.22324i −0.583738 0.811942i \(-0.698411\pi\)
0.911503 0.411293i \(-0.134923\pi\)
\(18\) 4.67961 + 2.09165i 1.10299 + 0.493007i
\(19\) −3.97662 6.88771i −0.912300 1.58015i −0.810807 0.585313i \(-0.800971\pi\)
−0.101493 0.994836i \(-0.532362\pi\)
\(20\) 0 0
\(21\) −0.0356182 0.192962i −0.00777254 0.0421077i
\(22\) 6.78132 + 1.81705i 1.44578 + 0.387396i
\(23\) −1.79398 6.69524i −0.374071 1.39605i −0.854697 0.519127i \(-0.826257\pi\)
0.480625 0.876926i \(-0.340410\pi\)
\(24\) −3.01397 1.06977i −0.615223 0.218365i
\(25\) 0 0
\(26\) 6.05047 + 1.15878i 1.18659 + 0.227255i
\(27\) −1.22403 + 5.04992i −0.235565 + 0.971858i
\(28\) −0.0269551 0.100598i −0.00509404 0.0190112i
\(29\) 2.00973 3.48095i 0.373197 0.646396i −0.616858 0.787074i \(-0.711595\pi\)
0.990055 + 0.140678i \(0.0449282\pi\)
\(30\) 0 0
\(31\) 6.89468i 1.23832i 0.785265 + 0.619160i \(0.212527\pi\)
−0.785265 + 0.619160i \(0.787473\pi\)
\(32\) −4.67403 1.25240i −0.826260 0.221396i
\(33\) −0.563544 + 7.09456i −0.0981004 + 1.23500i
\(34\) 8.92135 1.53000
\(35\) 0 0
\(36\) −0.435393 + 2.72333i −0.0725655 + 0.453888i
\(37\) 4.10339 1.09950i 0.674593 0.180757i 0.0947700 0.995499i \(-0.469788\pi\)
0.579823 + 0.814743i \(0.303122\pi\)
\(38\) 9.60880 9.60880i 1.55875 1.55875i
\(39\) −0.0418074 + 6.24486i −0.00669454 + 0.999978i
\(40\) 0 0
\(41\) −1.73822 + 3.01068i −0.271464 + 0.470189i −0.969237 0.246130i \(-0.920841\pi\)
0.697773 + 0.716319i \(0.254174\pi\)
\(42\) 0.302709 0.144115i 0.0467090 0.0222374i
\(43\) −1.30993 + 4.88872i −0.199762 + 0.745523i 0.791220 + 0.611531i \(0.209446\pi\)
−0.990982 + 0.133991i \(0.957221\pi\)
\(44\) 3.77737i 0.569461i
\(45\) 0 0
\(46\) 10.2563 5.92150i 1.51222 0.873078i
\(47\) 0.185543 0.185543i 0.0270642 0.0270642i −0.693445 0.720509i \(-0.743908\pi\)
0.720509 + 0.693445i \(0.243908\pi\)
\(48\) 0.684859 8.62182i 0.0988509 1.24445i
\(49\) 6.05106 + 3.49358i 0.864438 + 0.499083i
\(50\) 0 0
\(51\) 1.64164 + 8.89356i 0.229875 + 1.24535i
\(52\) 0.240337 + 3.30587i 0.0333287 + 0.458442i
\(53\) −1.94409 + 1.94409i −0.267042 + 0.267042i −0.827907 0.560865i \(-0.810469\pi\)
0.560865 + 0.827907i \(0.310469\pi\)
\(54\) −8.87558 + 0.213046i −1.20781 + 0.0289919i
\(55\) 0 0
\(56\) −0.181159 + 0.104592i −0.0242084 + 0.0139767i
\(57\) 11.3470 + 7.81074i 1.50295 + 1.03456i
\(58\) 6.63362 + 1.77747i 0.871037 + 0.233394i
\(59\) 0.619675 0.357770i 0.0806749 0.0465777i −0.459120 0.888374i \(-0.651835\pi\)
0.539795 + 0.841797i \(0.318502\pi\)
\(60\) 0 0
\(61\) 2.04160 + 3.53616i 0.261400 + 0.452758i 0.966614 0.256236i \(-0.0824825\pi\)
−0.705214 + 0.708994i \(0.749149\pi\)
\(62\) −11.3788 + 3.04895i −1.44511 + 0.387217i
\(63\) 0.199368 + 0.275247i 0.0251180 + 0.0346779i
\(64\) 1.71922i 0.214903i
\(65\) 0 0
\(66\) −11.9579 + 2.20728i −1.47192 + 0.271697i
\(67\) 2.85424 0.764792i 0.348701 0.0934343i −0.0802172 0.996777i \(-0.525561\pi\)
0.428919 + 0.903343i \(0.358895\pi\)
\(68\) 1.24236 + 4.63654i 0.150658 + 0.562263i
\(69\) 7.79036 + 9.13477i 0.937849 + 1.09970i
\(70\) 0 0
\(71\) −4.25380 7.36780i −0.504833 0.874397i −0.999984 0.00558990i \(-0.998221\pi\)
0.495151 0.868807i \(-0.335113\pi\)
\(72\) 5.50991 0.571017i 0.649349 0.0672949i
\(73\) −3.00868 + 3.00868i −0.352139 + 0.352139i −0.860905 0.508766i \(-0.830102\pi\)
0.508766 + 0.860905i \(0.330102\pi\)
\(74\) 3.62918 + 6.28592i 0.421884 + 0.730724i
\(75\) 0 0
\(76\) 6.33191 + 3.65573i 0.726319 + 0.419341i
\(77\) 0.329156 + 0.329156i 0.0375108 + 0.0375108i
\(78\) −10.3249 + 2.69259i −1.16906 + 0.304876i
\(79\) 4.84485i 0.545088i −0.962143 0.272544i \(-0.912135\pi\)
0.962143 0.272544i \(-0.0878650\pi\)
\(80\) 0 0
\(81\) −1.84560 8.80873i −0.205066 0.978748i
\(82\) −5.73743 1.53734i −0.633593 0.169771i
\(83\) −2.04442 2.04442i −0.224405 0.224405i 0.585946 0.810350i \(-0.300723\pi\)
−0.810350 + 0.585946i \(0.800723\pi\)
\(84\) 0.117052 + 0.137253i 0.0127715 + 0.0149755i
\(85\) 0 0
\(86\) −8.64751 −0.932485
\(87\) −0.551270 + 6.94004i −0.0591023 + 0.744050i
\(88\) 7.32854 1.96368i 0.781225 0.209329i
\(89\) −2.79966 1.61638i −0.296763 0.171336i 0.344225 0.938887i \(-0.388142\pi\)
−0.640988 + 0.767551i \(0.721475\pi\)
\(90\) 0 0
\(91\) 0.309013 + 0.267127i 0.0323933 + 0.0280025i
\(92\) 4.50574 + 4.50574i 0.469756 + 0.469756i
\(93\) −5.13330 10.7823i −0.532298 1.11808i
\(94\) 0.388267 + 0.224166i 0.0400466 + 0.0231209i
\(95\) 0 0
\(96\) 8.24201 1.52137i 0.841196 0.155274i
\(97\) −0.0386722 + 0.144327i −0.00392657 + 0.0146542i −0.967861 0.251485i \(-0.919081\pi\)
0.963935 + 0.266139i \(0.0857479\pi\)
\(98\) −3.08985 + 11.5315i −0.312122 + 1.16485i
\(99\) −4.40081 11.5145i −0.442298 1.15725i
\(100\) 0 0
\(101\) −10.5103 6.06812i −1.04581 0.603800i −0.124339 0.992240i \(-0.539681\pi\)
−0.921474 + 0.388440i \(0.873014\pi\)
\(102\) −13.9518 + 6.64221i −1.38143 + 0.657677i
\(103\) −0.528320 0.528320i −0.0520569 0.0520569i 0.680599 0.732656i \(-0.261720\pi\)
−0.732656 + 0.680599i \(0.761720\pi\)
\(104\) 6.28884 2.18485i 0.616671 0.214242i
\(105\) 0 0
\(106\) −4.06820 2.34878i −0.395139 0.228133i
\(107\) 1.59525 0.427445i 0.154218 0.0413227i −0.180884 0.983504i \(-0.557896\pi\)
0.335102 + 0.942182i \(0.391229\pi\)
\(108\) −1.34671 4.58308i −0.129587 0.441007i
\(109\) 0.638870 0.0611926 0.0305963 0.999532i \(-0.490259\pi\)
0.0305963 + 0.999532i \(0.490259\pi\)
\(110\) 0 0
\(111\) −5.59853 + 4.77457i −0.531389 + 0.453182i
\(112\) −0.400014 0.400014i −0.0377977 0.0377977i
\(113\) 7.64451 + 2.04834i 0.719135 + 0.192692i 0.599786 0.800161i \(-0.295253\pi\)
0.119349 + 0.992852i \(0.461919\pi\)
\(114\) −7.87282 + 22.1809i −0.737357 + 2.07743i
\(115\) 0 0
\(116\) 3.69510i 0.343082i
\(117\) −4.58411 9.79724i −0.423801 0.905755i
\(118\) 0.864487 + 0.864487i 0.0795825 + 0.0795825i
\(119\) 0.512280 + 0.295765i 0.0469606 + 0.0271127i
\(120\) 0 0
\(121\) −2.94173 5.09522i −0.267430 0.463202i
\(122\) −4.93316 + 4.93316i −0.446628 + 0.446628i
\(123\) 0.476794 6.00245i 0.0429911 0.541223i
\(124\) −3.16915 5.48913i −0.284598 0.492939i
\(125\) 0 0
\(126\) −0.366098 + 0.450752i −0.0326146 + 0.0401561i
\(127\) 3.29674 + 12.3036i 0.292539 + 1.09177i 0.943152 + 0.332361i \(0.107845\pi\)
−0.650614 + 0.759409i \(0.725488\pi\)
\(128\) −12.1854 + 3.26508i −1.07705 + 0.288595i
\(129\) −1.59125 8.62058i −0.140102 0.759000i
\(130\) 0 0
\(131\) 12.9569i 1.13205i 0.824390 + 0.566023i \(0.191519\pi\)
−0.824390 + 0.566023i \(0.808481\pi\)
\(132\) −2.81237 5.90731i −0.244785 0.514165i
\(133\) 0.870310 0.233199i 0.0754655 0.0202209i
\(134\) 2.52439 + 4.37238i 0.218074 + 0.377716i
\(135\) 0 0
\(136\) 8.34958 4.82063i 0.715970 0.413366i
\(137\) 12.0355 + 3.22490i 1.02826 + 0.275522i 0.733241 0.679969i \(-0.238007\pi\)
0.295021 + 0.955491i \(0.404673\pi\)
\(138\) −11.6308 + 16.8966i −0.990079 + 1.43833i
\(139\) −3.31851 + 1.91594i −0.281472 + 0.162508i −0.634090 0.773260i \(-0.718625\pi\)
0.352618 + 0.935767i \(0.385292\pi\)
\(140\) 0 0
\(141\) −0.152022 + 0.428307i −0.0128026 + 0.0360699i
\(142\) 10.2785 10.2785i 0.862557 0.862557i
\(143\) −8.31831 12.2593i −0.695612 1.02517i
\(144\) 5.34818 + 13.9933i 0.445682 + 1.16610i
\(145\) 0 0
\(146\) −6.29594 3.63496i −0.521056 0.300832i
\(147\) −12.0641 0.958292i −0.995032 0.0790386i
\(148\) −2.76149 + 2.76149i −0.226993 + 0.226993i
\(149\) 10.3032 5.94857i 0.844073 0.487326i −0.0145735 0.999894i \(-0.504639\pi\)
0.858647 + 0.512568i \(0.171306\pi\)
\(150\) 0 0
\(151\) 11.1014i 0.903416i 0.892166 + 0.451708i \(0.149185\pi\)
−0.892166 + 0.451708i \(0.850815\pi\)
\(152\) 3.80088 14.1851i 0.308292 1.15056i
\(153\) −9.18883 12.6861i −0.742873 1.02561i
\(154\) −0.397673 + 0.688790i −0.0320454 + 0.0555043i
\(155\) 0 0
\(156\) −2.83718 4.99100i −0.227156 0.399600i
\(157\) −5.53986 + 5.53986i −0.442129 + 0.442129i −0.892727 0.450598i \(-0.851211\pi\)
0.450598 + 0.892727i \(0.351211\pi\)
\(158\) 7.99583 2.14248i 0.636114 0.170446i
\(159\) 1.59286 4.48774i 0.126322 0.355901i
\(160\) 0 0
\(161\) 0.785250 0.0618864
\(162\) 13.7216 6.94131i 1.07807 0.545361i
\(163\) −11.8393 3.17233i −0.927326 0.248476i −0.236612 0.971604i \(-0.576037\pi\)
−0.690714 + 0.723128i \(0.742704\pi\)
\(164\) 3.19590i 0.249558i
\(165\) 0 0
\(166\) 2.46999 4.27815i 0.191708 0.332049i
\(167\) −2.30903 8.61742i −0.178678 0.666836i −0.995896 0.0905069i \(-0.971151\pi\)
0.817218 0.576329i \(-0.195515\pi\)
\(168\) 0.205436 0.298446i 0.0158497 0.0230256i
\(169\) −8.06000 10.1998i −0.620000 0.784602i
\(170\) 0 0
\(171\) −23.5605 3.76674i −1.80172 0.288050i
\(172\) −1.20422 4.49422i −0.0918211 0.342681i
\(173\) 8.49801 + 2.27704i 0.646092 + 0.173120i 0.566961 0.823744i \(-0.308119\pi\)
0.0791307 + 0.996864i \(0.474786\pi\)
\(174\) −11.6975 + 2.15920i −0.886783 + 0.163689i
\(175\) 0 0
\(176\) 10.2590 + 17.7691i 0.773301 + 1.33940i
\(177\) −0.702718 + 1.02087i −0.0528196 + 0.0767334i
\(178\) 1.42959 5.33529i 0.107152 0.399897i
\(179\) 9.95273 17.2386i 0.743902 1.28848i −0.206804 0.978382i \(-0.566306\pi\)
0.950706 0.310094i \(-0.100360\pi\)
\(180\) 0 0
\(181\) 7.45086 0.553818 0.276909 0.960896i \(-0.410690\pi\)
0.276909 + 0.960896i \(0.410690\pi\)
\(182\) −0.304210 + 0.628116i −0.0225496 + 0.0465590i
\(183\) −5.82556 4.01004i −0.430638 0.296430i
\(184\) 6.39934 11.0840i 0.471766 0.817122i
\(185\) 0 0
\(186\) 15.5249 13.2400i 1.13834 0.970805i
\(187\) −15.1707 15.1707i −1.10939 1.10939i
\(188\) −0.0624332 + 0.233004i −0.00455341 + 0.0169935i
\(189\) −0.516714 0.282014i −0.0375854 0.0205135i
\(190\) 0 0
\(191\) 19.8776 11.4763i 1.43829 0.830399i 0.440562 0.897722i \(-0.354779\pi\)
0.997731 + 0.0673227i \(0.0214457\pi\)
\(192\) −1.28001 2.68863i −0.0923770 0.194035i
\(193\) 5.67196 + 21.1680i 0.408276 + 1.52371i 0.797932 + 0.602748i \(0.205928\pi\)
−0.389655 + 0.920961i \(0.627406\pi\)
\(194\) −0.255295 −0.0183291
\(195\) 0 0
\(196\) −6.42333 −0.458810
\(197\) 2.25019 + 8.39781i 0.160319 + 0.598319i 0.998591 + 0.0530668i \(0.0168996\pi\)
−0.838272 + 0.545253i \(0.816434\pi\)
\(198\) 17.0572 12.3549i 1.21220 0.878026i
\(199\) −17.5413 + 10.1275i −1.24347 + 0.717919i −0.969799 0.243904i \(-0.921572\pi\)
−0.273673 + 0.961823i \(0.588239\pi\)
\(200\) 0 0
\(201\) −3.89424 + 3.32110i −0.274679 + 0.234253i
\(202\) 5.36686 20.0294i 0.377611 1.40926i
\(203\) 0.321987 + 0.321987i 0.0225990 + 0.0225990i
\(204\) −5.39492 6.32595i −0.377720 0.442905i
\(205\) 0 0
\(206\) 0.638295 1.10556i 0.0444721 0.0770280i
\(207\) −18.9842 8.48540i −1.31949 0.589776i
\(208\) 10.1090 + 14.8984i 0.700934 + 1.03302i
\(209\) −32.6795 −2.26049
\(210\) 0 0
\(211\) 3.64767 6.31794i 0.251116 0.434945i −0.712718 0.701451i \(-0.752536\pi\)
0.963833 + 0.266506i \(0.0858692\pi\)
\(212\) 0.654166 2.44138i 0.0449283 0.167675i
\(213\) 12.1379 + 8.35516i 0.831677 + 0.572486i
\(214\) 1.41089 + 2.44374i 0.0964466 + 0.167050i
\(215\) 0 0
\(216\) −8.19162 + 4.99529i −0.557369 + 0.339886i
\(217\) −0.754473 0.202160i −0.0512169 0.0137235i
\(218\) 0.282519 + 1.05438i 0.0191346 + 0.0714114i
\(219\) 2.46511 6.94521i 0.166577 0.469314i
\(220\) 0 0
\(221\) −14.2423 12.3118i −0.958043 0.828184i
\(222\) −10.3556 7.12830i −0.695023 0.478420i
\(223\) 3.14269 + 11.7287i 0.210450 + 0.785411i 0.987719 + 0.156242i \(0.0499381\pi\)
−0.777268 + 0.629169i \(0.783395\pi\)
\(224\) 0.274097 0.474749i 0.0183139 0.0317205i
\(225\) 0 0
\(226\) 13.5221i 0.899479i
\(227\) −13.3950 3.58919i −0.889061 0.238223i −0.214748 0.976669i \(-0.568893\pi\)
−0.674312 + 0.738446i \(0.735560\pi\)
\(228\) −12.6240 1.00277i −0.836048 0.0664100i
\(229\) 8.51901 0.562952 0.281476 0.959568i \(-0.409176\pi\)
0.281476 + 0.959568i \(0.409176\pi\)
\(230\) 0 0
\(231\) −0.759822 0.269689i −0.0499926 0.0177442i
\(232\) 7.16892 1.92091i 0.470663 0.126114i
\(233\) 8.61258 8.61258i 0.564229 0.564229i −0.366277 0.930506i \(-0.619368\pi\)
0.930506 + 0.366277i \(0.119368\pi\)
\(234\) 14.1420 11.8980i 0.924490 0.777798i
\(235\) 0 0
\(236\) −0.328899 + 0.569670i −0.0214095 + 0.0370824i
\(237\) 3.60714 + 7.57669i 0.234309 + 0.492159i
\(238\) −0.261585 + 0.976248i −0.0169560 + 0.0632807i
\(239\) 11.5531i 0.747310i 0.927568 + 0.373655i \(0.121896\pi\)
−0.927568 + 0.373655i \(0.878104\pi\)
\(240\) 0 0
\(241\) 12.0934 6.98212i 0.779004 0.449758i −0.0570731 0.998370i \(-0.518177\pi\)
0.836077 + 0.548612i \(0.184843\pi\)
\(242\) 7.10816 7.10816i 0.456930 0.456930i
\(243\) 9.44464 + 12.4016i 0.605874 + 0.795561i
\(244\) −3.25080 1.87685i −0.208111 0.120153i
\(245\) 0 0
\(246\) 10.1172 1.86750i 0.645047 0.119067i
\(247\) −28.6004 + 2.07924i −1.81980 + 0.132299i
\(248\) −9.00206 + 9.00206i −0.571631 + 0.571631i
\(249\) 4.71934 + 1.67507i 0.299076 + 0.106153i
\(250\) 0 0
\(251\) 14.9246 8.61672i 0.942032 0.543882i 0.0514354 0.998676i \(-0.483620\pi\)
0.890597 + 0.454794i \(0.150287\pi\)
\(252\) −0.285243 0.127496i −0.0179686 0.00803147i
\(253\) −27.5104 7.37138i −1.72956 0.463435i
\(254\) −18.8477 + 10.8818i −1.18261 + 0.682782i
\(255\) 0 0
\(256\) −9.05800 15.6889i −0.566125 0.980557i
\(257\) −0.404361 + 0.108348i −0.0252233 + 0.00675857i −0.271409 0.962464i \(-0.587489\pi\)
0.246185 + 0.969223i \(0.420823\pi\)
\(258\) 13.5235 6.43833i 0.841939 0.400833i
\(259\) 0.481265i 0.0299044i
\(260\) 0 0
\(261\) −4.30496 11.2637i −0.266470 0.697207i
\(262\) −21.3837 + 5.72975i −1.32109 + 0.353985i
\(263\) 3.38670 + 12.6393i 0.208833 + 0.779374i 0.988247 + 0.152865i \(0.0488501\pi\)
−0.779414 + 0.626509i \(0.784483\pi\)
\(264\) −9.99883 + 8.52725i −0.615386 + 0.524816i
\(265\) 0 0
\(266\) 0.769733 + 1.33322i 0.0471953 + 0.0817447i
\(267\) 5.58173 + 0.443375i 0.341597 + 0.0271341i
\(268\) −1.92084 + 1.92084i −0.117334 + 0.117334i
\(269\) 0.403612 + 0.699076i 0.0246086 + 0.0426234i 0.878067 0.478537i \(-0.158833\pi\)
−0.853459 + 0.521160i \(0.825499\pi\)
\(270\) 0 0
\(271\) −9.22378 5.32535i −0.560305 0.323492i 0.192963 0.981206i \(-0.438190\pi\)
−0.753268 + 0.657714i \(0.771524\pi\)
\(272\) 18.4366 + 18.4366i 1.11788 + 1.11788i
\(273\) −0.682138 0.187682i −0.0412849 0.0113590i
\(274\) 21.2892i 1.28613i
\(275\) 0 0
\(276\) −10.4010 3.69171i −0.626069 0.222215i
\(277\) 27.5691 + 7.38713i 1.65647 + 0.443849i 0.961414 0.275107i \(-0.0887134\pi\)
0.695055 + 0.718957i \(0.255380\pi\)
\(278\) −4.62953 4.62953i −0.277661 0.277661i
\(279\) 16.0556 + 13.0402i 0.961222 + 0.780699i
\(280\) 0 0
\(281\) 13.4870 0.804568 0.402284 0.915515i \(-0.368216\pi\)
0.402284 + 0.915515i \(0.368216\pi\)
\(282\) −0.774095 0.0614889i −0.0460967 0.00366161i
\(283\) 1.10046 0.294869i 0.0654158 0.0175281i −0.225963 0.974136i \(-0.572553\pi\)
0.291379 + 0.956608i \(0.405886\pi\)
\(284\) 6.77325 + 3.91054i 0.401918 + 0.232048i
\(285\) 0 0
\(286\) 16.5540 19.1496i 0.978858 1.13234i
\(287\) −0.278487 0.278487i −0.0164386 0.0164386i
\(288\) −11.7567 + 8.51564i −0.692769 + 0.501789i
\(289\) −8.88844 5.13174i −0.522850 0.301867i
\(290\) 0 0
\(291\) −0.0469775 0.254500i −0.00275387 0.0149191i
\(292\) 1.01239 3.77827i 0.0592454 0.221107i
\(293\) −1.95360 + 7.29093i −0.114130 + 0.425941i −0.999220 0.0394794i \(-0.987430\pi\)
0.885090 + 0.465420i \(0.154097\pi\)
\(294\) −3.75342 20.3341i −0.218904 1.18591i
\(295\) 0 0
\(296\) 6.79317 + 3.92204i 0.394845 + 0.227964i
\(297\) 15.4552 + 14.7306i 0.896800 + 0.854757i
\(298\) 14.3737 + 14.3737i 0.832644 + 0.832644i
\(299\) −24.5455 4.70092i −1.41950 0.271861i
\(300\) 0 0
\(301\) −0.496555 0.286686i −0.0286210 0.0165243i
\(302\) −18.3214 + 4.90922i −1.05428 + 0.282494i
\(303\) 20.9546 + 1.66449i 1.20381 + 0.0956224i
\(304\) 39.7144 2.27778
\(305\) 0 0
\(306\) 16.8734 20.7751i 0.964587 1.18763i
\(307\) −5.28300 5.28300i −0.301517 0.301517i 0.540090 0.841607i \(-0.318390\pi\)
−0.841607 + 0.540090i \(0.818390\pi\)
\(308\) −0.413352 0.110757i −0.0235529 0.00631098i
\(309\) 1.21957 + 0.432871i 0.0693790 + 0.0246252i
\(310\) 0 0
\(311\) 2.37607i 0.134735i 0.997728 + 0.0673674i \(0.0214599\pi\)
−0.997728 + 0.0673674i \(0.978540\pi\)
\(312\) −8.20821 + 8.09904i −0.464698 + 0.458518i
\(313\) −20.5099 20.5099i −1.15929 1.15929i −0.984629 0.174659i \(-0.944118\pi\)
−0.174659 0.984629i \(-0.555882\pi\)
\(314\) −11.5927 6.69304i −0.654213 0.377710i
\(315\) 0 0
\(316\) 2.22694 + 3.85718i 0.125275 + 0.216983i
\(317\) 23.9045 23.9045i 1.34261 1.34261i 0.449162 0.893450i \(-0.351723\pi\)
0.893450 0.449162i \(-0.148277\pi\)
\(318\) 8.11085 + 0.644271i 0.454834 + 0.0361289i
\(319\) −8.25787 14.3030i −0.462352 0.800817i
\(320\) 0 0
\(321\) −2.17651 + 1.85618i −0.121481 + 0.103602i
\(322\) 0.347251 + 1.29596i 0.0193516 + 0.0722210i
\(323\) −40.1124 + 10.7481i −2.23191 + 0.598040i
\(324\) 5.51831 + 6.16466i 0.306573 + 0.342481i
\(325\) 0 0
\(326\) 20.9422i 1.15988i
\(327\) −0.999106 + 0.475658i −0.0552507 + 0.0263039i
\(328\) −6.20041 + 1.66140i −0.342361 + 0.0917352i
\(329\) 0.0148633 + 0.0257440i 0.000819441 + 0.00141931i
\(330\) 0 0
\(331\) 12.0767 6.97251i 0.663798 0.383244i −0.129925 0.991524i \(-0.541474\pi\)
0.793722 + 0.608280i \(0.208140\pi\)
\(332\) 2.56737 + 0.687925i 0.140903 + 0.0377548i
\(333\) 5.20054 11.6351i 0.284988 0.637597i
\(334\) 13.2009 7.62155i 0.722322 0.417033i
\(335\) 0 0
\(336\) 0.923390 + 0.327745i 0.0503750 + 0.0178800i
\(337\) 2.58183 2.58183i 0.140641 0.140641i −0.633281 0.773922i \(-0.718292\pi\)
0.773922 + 0.633281i \(0.218292\pi\)
\(338\) 13.2693 17.8126i 0.721754 0.968877i
\(339\) −13.4800 + 2.48824i −0.732135 + 0.135143i
\(340\) 0 0
\(341\) 24.5344 + 14.1649i 1.32861 + 0.767074i
\(342\) −4.20233 40.5495i −0.227236 2.19267i
\(343\) −1.12047 + 1.12047i −0.0604997 + 0.0604997i
\(344\) −8.09329 + 4.67266i −0.436361 + 0.251933i
\(345\) 0 0
\(346\) 15.0319i 0.808119i
\(347\) −4.13034 + 15.4146i −0.221728 + 0.827500i 0.761961 + 0.647623i \(0.224237\pi\)
−0.983689 + 0.179877i \(0.942430\pi\)
\(348\) −2.75112 5.77864i −0.147475 0.309768i
\(349\) 2.98342 5.16743i 0.159699 0.276606i −0.775061 0.631886i \(-0.782281\pi\)
0.934760 + 0.355280i \(0.115614\pi\)
\(350\) 0 0
\(351\) 14.4633 + 11.9086i 0.771992 + 0.635632i
\(352\) −14.0593 + 14.0593i −0.749363 + 0.749363i
\(353\) −12.0317 + 3.22389i −0.640383 + 0.171590i −0.564377 0.825517i \(-0.690884\pi\)
−0.0760061 + 0.997107i \(0.524217\pi\)
\(354\) −1.99558 0.708304i −0.106064 0.0376459i
\(355\) 0 0
\(356\) 2.97190 0.157510
\(357\) −1.02134 0.0811285i −0.0540552 0.00429378i
\(358\) 32.8515 + 8.80254i 1.73626 + 0.465229i
\(359\) 29.8863i 1.57734i 0.614816 + 0.788671i \(0.289230\pi\)
−0.614816 + 0.788671i \(0.710770\pi\)
\(360\) 0 0
\(361\) −22.1271 + 38.3252i −1.16458 + 2.01712i
\(362\) 3.29490 + 12.2967i 0.173176 + 0.646302i
\(363\) 8.39402 + 5.77804i 0.440572 + 0.303268i
\(364\) −0.368803 0.0706327i −0.0193305 0.00370216i
\(365\) 0 0
\(366\) 4.04191 11.3877i 0.211274 0.595244i
\(367\) 3.47695 + 12.9762i 0.181496 + 0.677351i 0.995354 + 0.0962869i \(0.0306966\pi\)
−0.813858 + 0.581064i \(0.802637\pi\)
\(368\) 33.4326 + 8.95823i 1.74279 + 0.466980i
\(369\) 3.72337 + 9.74201i 0.193831 + 0.507149i
\(370\) 0 0
\(371\) −0.155736 0.269742i −0.00808539 0.0140043i
\(372\) 9.04296 + 6.22474i 0.468855 + 0.322738i
\(373\) 5.16696 19.2834i 0.267535 0.998455i −0.693145 0.720798i \(-0.743776\pi\)
0.960680 0.277657i \(-0.0895578\pi\)
\(374\) 18.3287 31.7462i 0.947753 1.64156i
\(375\) 0 0
\(376\) 0.484510 0.0249867
\(377\) −8.13714 11.9923i −0.419084 0.617635i
\(378\) 0.236929 0.977486i 0.0121863 0.0502764i
\(379\) −16.7541 + 29.0190i −0.860601 + 1.49061i 0.0107483 + 0.999942i \(0.496579\pi\)
−0.871350 + 0.490663i \(0.836755\pi\)
\(380\) 0 0
\(381\) −14.3161 16.7867i −0.733435 0.860007i
\(382\) 27.7305 + 27.7305i 1.41882 + 1.41882i
\(383\) −0.699279 + 2.60975i −0.0357315 + 0.133352i −0.981488 0.191526i \(-0.938656\pi\)
0.945756 + 0.324878i \(0.105323\pi\)
\(384\) 16.6254 14.1786i 0.848412 0.723547i
\(385\) 0 0
\(386\) −32.4270 + 18.7218i −1.65049 + 0.952912i
\(387\) 8.90678 + 12.2967i 0.452757 + 0.625076i
\(388\) −0.0355516 0.132680i −0.00180486 0.00673582i
\(389\) 38.6182 1.95802 0.979011 0.203807i \(-0.0653316\pi\)
0.979011 + 0.203807i \(0.0653316\pi\)
\(390\) 0 0
\(391\) −36.1920 −1.83031
\(392\) 3.33918 + 12.4620i 0.168654 + 0.629426i
\(393\) −9.64677 20.2628i −0.486615 1.02212i
\(394\) −12.8645 + 7.42732i −0.648104 + 0.374183i
\(395\) 0 0
\(396\) 8.79634 + 7.14433i 0.442033 + 0.359016i
\(397\) 2.93908 10.9688i 0.147508 0.550509i −0.852122 0.523342i \(-0.824685\pi\)
0.999631 0.0271666i \(-0.00864845\pi\)
\(398\) −24.4713 24.4713i −1.22663 1.22663i
\(399\) −1.18742 + 1.01266i −0.0594456 + 0.0506966i
\(400\) 0 0
\(401\) −15.5856 + 26.9950i −0.778307 + 1.34807i 0.154611 + 0.987975i \(0.450588\pi\)
−0.932917 + 0.360091i \(0.882746\pi\)
\(402\) −7.20318 4.95832i −0.359262 0.247299i
\(403\) 22.3732 + 10.8358i 1.11449 + 0.539771i
\(404\) 11.1569 0.555076
\(405\) 0 0
\(406\) −0.389012 + 0.673788i −0.0193063 + 0.0334395i
\(407\) 4.51779 16.8606i 0.223938 0.835749i
\(408\) −9.46851 + 13.7553i −0.468761 + 0.680990i
\(409\) −5.22725 9.05386i −0.258471 0.447685i 0.707362 0.706852i \(-0.249885\pi\)
−0.965832 + 0.259167i \(0.916552\pi\)
\(410\) 0 0
\(411\) −21.2229 + 3.91748i −1.04685 + 0.193235i
\(412\) 0.663461 + 0.177774i 0.0326864 + 0.00875828i
\(413\) 0.0209805 + 0.0783003i 0.00103238 + 0.00385290i
\(414\) 5.60898 35.0835i 0.275666 1.72426i
\(415\) 0 0
\(416\) −11.4099 + 13.1989i −0.559414 + 0.647130i
\(417\) 3.76322 5.46700i 0.184286 0.267720i
\(418\) −14.4514 53.9335i −0.706843 2.63797i
\(419\) −10.9200 + 18.9139i −0.533476 + 0.924007i 0.465760 + 0.884911i \(0.345781\pi\)
−0.999235 + 0.0390956i \(0.987552\pi\)
\(420\) 0 0
\(421\) 11.3030i 0.550876i −0.961319 0.275438i \(-0.911177\pi\)
0.961319 0.275438i \(-0.0888229\pi\)
\(422\) 12.0401 + 3.22612i 0.586101 + 0.157045i
\(423\) −0.0811457 0.782999i −0.00394544 0.0380707i
\(424\) −5.07663 −0.246543
\(425\) 0 0
\(426\) −8.42157 + 23.7270i −0.408027 + 1.14957i
\(427\) −0.446818 + 0.119724i −0.0216230 + 0.00579387i
\(428\) −1.07357 + 1.07357i −0.0518927 + 0.0518927i
\(429\) 22.1361 + 12.9787i 1.06874 + 0.626616i
\(430\) 0 0
\(431\) −1.35987 + 2.35537i −0.0655028 + 0.113454i −0.896917 0.442199i \(-0.854198\pi\)
0.831414 + 0.555653i \(0.187532\pi\)
\(432\) −18.7822 17.9017i −0.903661 0.861295i
\(433\) 3.66753 13.6874i 0.176250 0.657775i −0.820085 0.572242i \(-0.806074\pi\)
0.996335 0.0855335i \(-0.0272595\pi\)
\(434\) 1.33456i 0.0640611i
\(435\) 0 0
\(436\) −0.508630 + 0.293658i −0.0243590 + 0.0140637i
\(437\) −38.9809 + 38.9809i −1.86471 + 1.86471i
\(438\) 12.5523 + 0.997073i 0.599774 + 0.0476420i
\(439\) 8.10140 + 4.67735i 0.386659 + 0.223237i 0.680711 0.732552i \(-0.261671\pi\)
−0.294053 + 0.955789i \(0.595004\pi\)
\(440\) 0 0
\(441\) 19.5801 7.48347i 0.932388 0.356356i
\(442\) 14.0210 28.9497i 0.666910 1.37700i
\(443\) −5.74199 + 5.74199i −0.272810 + 0.272810i −0.830230 0.557420i \(-0.811791\pi\)
0.557420 + 0.830230i \(0.311791\pi\)
\(444\) 2.26258 6.37461i 0.107377 0.302525i
\(445\) 0 0
\(446\) −17.9670 + 10.3733i −0.850763 + 0.491188i
\(447\) −11.6840 + 16.9738i −0.552633 + 0.802835i
\(448\) −0.188132 0.0504097i −0.00888838 0.00238163i
\(449\) −23.4891 + 13.5614i −1.10852 + 0.640004i −0.938446 0.345427i \(-0.887734\pi\)
−0.170074 + 0.985431i \(0.554401\pi\)
\(450\) 0 0
\(451\) 7.14224 + 12.3707i 0.336315 + 0.582515i
\(452\) −7.02763 + 1.88305i −0.330552 + 0.0885711i
\(453\) −8.26530 17.3610i −0.388338 0.815693i
\(454\) 23.6941i 1.11202i
\(455\) 0 0
\(456\) 4.61715 + 25.0134i 0.216218 + 1.17136i
\(457\) −12.9168 + 3.46105i −0.604224 + 0.161901i −0.547946 0.836514i \(-0.684590\pi\)
−0.0562781 + 0.998415i \(0.517923\pi\)
\(458\) 3.76726 + 14.0596i 0.176032 + 0.656962i
\(459\) 23.8153 + 12.9980i 1.11160 + 0.606693i
\(460\) 0 0
\(461\) 17.1508 + 29.7061i 0.798792 + 1.38355i 0.920403 + 0.390971i \(0.127861\pi\)
−0.121611 + 0.992578i \(0.538806\pi\)
\(462\) 0.109082 1.37325i 0.00507496 0.0638896i
\(463\) −19.4344 + 19.4344i −0.903191 + 0.903191i −0.995711 0.0925195i \(-0.970508\pi\)
0.0925195 + 0.995711i \(0.470508\pi\)
\(464\) 10.0356 + 17.3821i 0.465889 + 0.806943i
\(465\) 0 0
\(466\) 18.0226 + 10.4054i 0.834883 + 0.482020i
\(467\) −19.6345 19.6345i −0.908575 0.908575i 0.0875827 0.996157i \(-0.472086\pi\)
−0.996157 + 0.0875827i \(0.972086\pi\)
\(468\) 8.15292 + 5.69289i 0.376869 + 0.263154i
\(469\) 0.334760i 0.0154578i
\(470\) 0 0
\(471\) 4.53900 12.7882i 0.209146 0.589249i
\(472\) 1.27621 + 0.341958i 0.0587421 + 0.0157399i
\(473\) 14.7051 + 14.7051i 0.676140 + 0.676140i
\(474\) −10.9093 + 9.30368i −0.501079 + 0.427332i
\(475\) 0 0
\(476\) −0.543796 −0.0249248
\(477\) 0.850233 + 8.20415i 0.0389295 + 0.375642i
\(478\) −19.0670 + 5.10900i −0.872107 + 0.233680i
\(479\) 1.49161 + 0.861181i 0.0681534 + 0.0393484i 0.533689 0.845681i \(-0.320805\pi\)
−0.465536 + 0.885029i \(0.654138\pi\)
\(480\) 0 0
\(481\) 2.88111 15.0435i 0.131367 0.685924i
\(482\) 16.8711 + 16.8711i 0.768456 + 0.768456i
\(483\) −1.22803 + 0.584643i −0.0558771 + 0.0266022i
\(484\) 4.68406 + 2.70434i 0.212912 + 0.122925i
\(485\) 0 0
\(486\) −16.2907 + 21.0714i −0.738961 + 0.955819i
\(487\) 5.38812 20.1087i 0.244159 0.911213i −0.729645 0.683826i \(-0.760315\pi\)
0.973804 0.227388i \(-0.0730184\pi\)
\(488\) −1.95137 + 7.28262i −0.0883344 + 0.329669i
\(489\) 20.8770 3.85362i 0.944089 0.174267i
\(490\) 0 0
\(491\) −19.5711 11.2994i −0.883233 0.509935i −0.0115102 0.999934i \(-0.503664\pi\)
−0.871723 + 0.489999i \(0.836997\pi\)
\(492\) 2.37945 + 4.99796i 0.107274 + 0.225325i
\(493\) −14.8403 14.8403i −0.668374 0.668374i
\(494\) −16.0791 46.2819i −0.723434 2.08232i
\(495\) 0 0
\(496\) −29.8159 17.2142i −1.33878 0.772942i
\(497\) 0.930972 0.249453i 0.0417598 0.0111895i
\(498\) −0.677520 + 8.52943i −0.0303604 + 0.382213i
\(499\) −35.8828 −1.60634 −0.803168 0.595753i \(-0.796854\pi\)
−0.803168 + 0.595753i \(0.796854\pi\)
\(500\) 0 0
\(501\) 10.0269 + 11.7573i 0.447971 + 0.525279i
\(502\) 20.8208 + 20.8208i 0.929276 + 0.929276i
\(503\) −31.9352 8.55700i −1.42392 0.381538i −0.537047 0.843553i \(-0.680460\pi\)
−0.886872 + 0.462015i \(0.847127\pi\)
\(504\) −0.0990719 + 0.619683i −0.00441302 + 0.0276029i
\(505\) 0 0
\(506\) 48.6623i 2.16330i
\(507\) 20.1988 + 9.95022i 0.897062 + 0.441905i
\(508\) −8.28006 8.28006i −0.367368 0.367368i
\(509\) 5.25012 + 3.03116i 0.232707 + 0.134354i 0.611820 0.790997i \(-0.290438\pi\)
−0.379113 + 0.925350i \(0.623771\pi\)
\(510\) 0 0
\(511\) −0.241016 0.417452i −0.0106619 0.0184670i
\(512\) 4.04633 4.04633i 0.178824 0.178824i
\(513\) 39.6500 11.6509i 1.75059 0.514398i
\(514\) −0.357631 0.619435i −0.0157744 0.0273221i
\(515\) 0 0
\(516\) 5.22933 + 6.13178i 0.230208 + 0.269936i
\(517\) −0.279053 1.04144i −0.0122727 0.0458025i
\(518\) −0.794270 + 0.212824i −0.0348982 + 0.00935095i
\(519\) −14.9851 + 2.76605i −0.657772 + 0.121416i
\(520\) 0 0
\(521\) 23.5394i 1.03128i −0.856805 0.515640i \(-0.827554\pi\)
0.856805 0.515640i \(-0.172446\pi\)
\(522\) 16.6857 12.0858i 0.730312 0.528982i
\(523\) 30.6087 8.20158i 1.33843 0.358630i 0.482575 0.875854i \(-0.339701\pi\)
0.855850 + 0.517225i \(0.173035\pi\)
\(524\) −5.95565 10.3155i −0.260174 0.450634i
\(525\) 0 0
\(526\) −19.3620 + 11.1787i −0.844224 + 0.487413i
\(527\) 34.7735 + 9.31753i 1.51476 + 0.405878i
\(528\) −29.2733 20.1503i −1.27396 0.876931i
\(529\) −21.6892 + 12.5223i −0.943010 + 0.544447i
\(530\) 0 0
\(531\) 0.338887 2.11970i 0.0147065 0.0919871i
\(532\) −0.585699 + 0.585699i −0.0253933 + 0.0253933i
\(533\) 7.03782 + 10.3722i 0.304842 + 0.449268i
\(534\) 1.73660 + 9.40804i 0.0751502 + 0.407126i
\(535\) 0 0
\(536\) 4.72521 + 2.72810i 0.204098 + 0.117836i
\(537\) −2.73004 + 34.3690i −0.117810 + 1.48313i
\(538\) −0.975256 + 0.975256i −0.0420463 + 0.0420463i
\(539\) 24.8635 14.3550i 1.07095 0.618312i
\(540\) 0 0
\(541\) 26.7974i 1.15211i 0.817411 + 0.576055i \(0.195409\pi\)
−0.817411 + 0.576055i \(0.804591\pi\)
\(542\) 4.70993 17.5777i 0.202309 0.755027i
\(543\) −11.6521 + 5.54739i −0.500041 + 0.238061i
\(544\) −12.6331 + 21.8811i −0.541638 + 0.938145i
\(545\) 0 0
\(546\) 0.00809242 1.20878i 0.000346324 0.0517311i
\(547\) −6.51421 + 6.51421i −0.278528 + 0.278528i −0.832521 0.553993i \(-0.813103\pi\)
0.553993 + 0.832521i \(0.313103\pi\)
\(548\) −11.0643 + 2.96467i −0.472643 + 0.126644i
\(549\) 12.0960 + 1.93385i 0.516244 + 0.0825347i
\(550\) 0 0
\(551\) −31.9677 −1.36187
\(552\) −1.75534 + 22.0984i −0.0747124 + 0.940569i
\(553\) 0.530163 + 0.142057i 0.0225448 + 0.00604087i
\(554\) 48.7662i 2.07188i
\(555\) 0 0
\(556\) 1.76133 3.05072i 0.0746971 0.129379i
\(557\) −6.08328 22.7031i −0.257757 0.961962i −0.966536 0.256531i \(-0.917420\pi\)
0.708779 0.705431i \(-0.249246\pi\)
\(558\) −14.4213 + 32.2644i −0.610501 + 1.36586i
\(559\) 13.8052 + 11.9339i 0.583896 + 0.504752i
\(560\) 0 0
\(561\) 35.0200 + 12.4299i 1.47855 + 0.524791i
\(562\) 5.96419 + 22.2587i 0.251584 + 0.938926i
\(563\) 35.8569 + 9.60782i 1.51119 + 0.404921i 0.916829 0.399279i \(-0.130740\pi\)
0.594358 + 0.804201i \(0.297406\pi\)
\(564\) −0.0758413 0.410870i −0.00319350 0.0173007i
\(565\) 0 0
\(566\) 0.973289 + 1.68579i 0.0409104 + 0.0708589i
\(567\) 1.01804 + 0.0563221i 0.0427537 + 0.00236531i
\(568\) 4.06580 15.1738i 0.170597 0.636678i
\(569\) 6.61515 11.4578i 0.277322 0.480335i −0.693397 0.720556i \(-0.743887\pi\)
0.970718 + 0.240221i \(0.0772199\pi\)
\(570\) 0 0
\(571\) 16.3611 0.684690 0.342345 0.939574i \(-0.388779\pi\)
0.342345 + 0.939574i \(0.388779\pi\)
\(572\) 12.2576 + 5.93661i 0.512515 + 0.248222i
\(573\) −22.5414 + 32.7469i −0.941681 + 1.36802i
\(574\) 0.336457 0.582760i 0.0140434 0.0243240i
\(575\) 0 0
\(576\) 4.00354 + 3.25165i 0.166814 + 0.135485i
\(577\) 1.55067 + 1.55067i 0.0645553 + 0.0645553i 0.738647 0.674092i \(-0.235465\pi\)
−0.674092 + 0.738647i \(0.735465\pi\)
\(578\) 4.53869 16.9386i 0.188785 0.704554i
\(579\) −24.6304 28.8810i −1.02361 1.20025i
\(580\) 0 0
\(581\) 0.283663 0.163773i 0.0117683 0.00679444i
\(582\) 0.399247 0.190075i 0.0165493 0.00787886i
\(583\) 2.92388 + 10.9121i 0.121095 + 0.451931i
\(584\) −7.85658 −0.325107
\(585\) 0 0
\(586\) −12.8967 −0.532758
\(587\) 5.23017 + 19.5193i 0.215872 + 0.805646i 0.985858 + 0.167585i \(0.0535967\pi\)
−0.769986 + 0.638061i \(0.779737\pi\)
\(588\) 10.0452 4.78237i 0.414258 0.197221i
\(589\) 47.4885 27.4175i 1.95673 1.12972i
\(590\) 0 0
\(591\) −9.77142 11.4577i −0.401942 0.471307i
\(592\) −5.49034 + 20.4902i −0.225651 + 0.842143i
\(593\) −3.08282 3.08282i −0.126596 0.126596i 0.640970 0.767566i \(-0.278532\pi\)
−0.767566 + 0.640970i \(0.778532\pi\)
\(594\) −17.4765 + 32.0210i −0.717071 + 1.31384i
\(595\) 0 0
\(596\) −5.46855 + 9.47180i −0.224000 + 0.387980i
\(597\) 19.8921 28.8981i 0.814128 1.18272i
\(598\) −3.09615 42.5882i −0.126611 1.74156i
\(599\) 17.9813 0.734698 0.367349 0.930083i \(-0.380266\pi\)
0.367349 + 0.930083i \(0.380266\pi\)
\(600\) 0 0
\(601\) −4.18909 + 7.25572i −0.170877 + 0.295967i −0.938727 0.344663i \(-0.887993\pi\)
0.767850 + 0.640630i \(0.221327\pi\)
\(602\) 0.253555 0.946282i 0.0103341 0.0385676i
\(603\) 3.61741 8.09314i 0.147312 0.329578i
\(604\) −5.10277 8.83825i −0.207629 0.359623i
\(605\) 0 0
\(606\) 6.51944 + 35.3190i 0.264834 + 1.43474i
\(607\) −17.1283 4.58950i −0.695214 0.186282i −0.106128 0.994352i \(-0.533845\pi\)
−0.589086 + 0.808070i \(0.700512\pi\)
\(608\) 9.96067 + 37.1737i 0.403958 + 1.50759i
\(609\) −0.743273 0.263815i −0.0301189 0.0106903i
\(610\) 0 0
\(611\) −0.310483 0.893690i −0.0125608 0.0361548i
\(612\) 13.1468 + 5.87625i 0.531428 + 0.237533i
\(613\) 9.88511 + 36.8917i 0.399256 + 1.49004i 0.814409 + 0.580291i \(0.197061\pi\)
−0.415153 + 0.909752i \(0.636272\pi\)
\(614\) 6.38272 11.0552i 0.257585 0.446151i
\(615\) 0 0
\(616\) 0.859527i 0.0346313i
\(617\) −27.1576 7.27686i −1.09332 0.292955i −0.333281 0.942828i \(-0.608156\pi\)
−0.760043 + 0.649872i \(0.774822\pi\)
\(618\) −0.175085 + 2.20418i −0.00704295 + 0.0886650i
\(619\) 34.9871 1.40625 0.703125 0.711066i \(-0.251787\pi\)
0.703125 + 0.711066i \(0.251787\pi\)
\(620\) 0 0
\(621\) 36.0063 0.864283i 1.44488 0.0346825i
\(622\) −3.92142 + 1.05074i −0.157235 + 0.0421309i
\(623\) 0.258967 0.258967i 0.0103753 0.0103753i
\(624\) −26.9014 15.7726i −1.07692 0.631410i
\(625\) 0 0
\(626\) 24.7792 42.9189i 0.990378 1.71538i
\(627\) 51.1063 24.3309i 2.04099 0.971681i
\(628\) 1.86410 6.95692i 0.0743857 0.277611i
\(629\) 22.1814i 0.884431i
\(630\) 0 0
\(631\) −10.8292 + 6.25222i −0.431102 + 0.248897i −0.699816 0.714323i \(-0.746735\pi\)
0.268714 + 0.963220i \(0.413401\pi\)
\(632\) 6.32569 6.32569i 0.251623 0.251623i
\(633\) −1.00056 + 12.5962i −0.0397686 + 0.500654i
\(634\) 50.0225 + 28.8805i 1.98665 + 1.14699i
\(635\) 0 0
\(636\) 0.794654 + 4.30503i 0.0315101 + 0.170706i
\(637\) 20.8467 14.1451i 0.825974 0.560449i
\(638\) 19.9537 19.9537i 0.789973 0.789973i
\(639\) −25.2027 4.02929i −0.997005 0.159396i
\(640\) 0 0
\(641\) −3.54806 + 2.04848i −0.140140 + 0.0809099i −0.568431 0.822731i \(-0.692449\pi\)
0.428291 + 0.903641i \(0.359116\pi\)
\(642\) −4.02588 2.77122i −0.158889 0.109371i
\(643\) 40.3600 + 10.8144i 1.59164 + 0.426479i 0.942505 0.334192i \(-0.108464\pi\)
0.649137 + 0.760672i \(0.275130\pi\)
\(644\) −0.625170 + 0.360942i −0.0246351 + 0.0142231i
\(645\) 0 0
\(646\) −35.4768 61.4477i −1.39582 2.41763i
\(647\) 6.30036 1.68818i 0.247693 0.0663691i −0.132836 0.991138i \(-0.542409\pi\)
0.380529 + 0.924769i \(0.375742\pi\)
\(648\) 9.09144 13.9109i 0.357146 0.546470i
\(649\) 2.94012i 0.115410i
\(650\) 0 0
\(651\) 1.33041 0.245576i 0.0521428 0.00962489i
\(652\) 10.8839 2.91634i 0.426247 0.114213i
\(653\) −11.9894 44.7451i −0.469182 1.75101i −0.642637 0.766171i \(-0.722160\pi\)
0.173454 0.984842i \(-0.444507\pi\)
\(654\) −1.22684 1.43856i −0.0479731 0.0562521i
\(655\) 0 0
\(656\) −8.67976 15.0338i −0.338888 0.586971i
\(657\) 1.31582 + 12.6967i 0.0513350 + 0.495347i
\(658\) −0.0359145 + 0.0359145i −0.00140009 + 0.00140009i
\(659\) −12.0799 20.9230i −0.470566 0.815045i 0.528867 0.848705i \(-0.322617\pi\)
−0.999433 + 0.0336601i \(0.989284\pi\)
\(660\) 0 0
\(661\) 35.3712 + 20.4215i 1.37578 + 0.794306i 0.991648 0.128973i \(-0.0411680\pi\)
0.384130 + 0.923279i \(0.374501\pi\)
\(662\) 16.8478 + 16.8478i 0.654809 + 0.654809i
\(663\) 31.4396 + 8.65022i 1.22101 + 0.335947i
\(664\) 5.33862i 0.207178i
\(665\) 0 0
\(666\) 21.5020 + 3.43764i 0.833186 + 0.133206i
\(667\) −26.9112 7.21084i −1.04201 0.279205i
\(668\) 5.79933 + 5.79933i 0.224383 + 0.224383i
\(669\) −13.6471 16.0023i −0.527628 0.618683i
\(670\) 0 0
\(671\) 16.7777 0.647694
\(672\) −0.0751849 + 0.946517i −0.00290032 + 0.0365127i
\(673\) −11.9542 + 3.20311i −0.460799 + 0.123471i −0.481748 0.876310i \(-0.659998\pi\)
0.0209488 + 0.999781i \(0.493331\pi\)
\(674\) 5.40272 + 3.11926i 0.208105 + 0.120150i
\(675\) 0 0
\(676\) 11.1053 + 4.41570i 0.427126 + 0.169834i
\(677\) −17.7462 17.7462i −0.682043 0.682043i 0.278418 0.960460i \(-0.410190\pi\)
−0.960460 + 0.278418i \(0.910190\pi\)
\(678\) −10.0676 21.1468i −0.386645 0.812138i
\(679\) −0.0146595 0.00846367i −0.000562580 0.000324806i
\(680\) 0 0
\(681\) 23.6203 4.36001i 0.905132 0.167076i
\(682\) −12.5280 + 46.7550i −0.479721 + 1.79034i
\(683\) 5.71276 21.3203i 0.218593 0.815798i −0.766278 0.642509i \(-0.777894\pi\)
0.984871 0.173290i \(-0.0554397\pi\)
\(684\) 20.4889 7.83079i 0.783413 0.299418i
\(685\) 0 0
\(686\) −2.34469 1.35371i −0.0895208 0.0516848i
\(687\) −13.3226 + 6.34267i −0.508289 + 0.241988i
\(688\) −17.8706 17.8706i −0.681312 0.681312i
\(689\) 3.25319 + 9.36396i 0.123937 + 0.356738i
\(690\) 0 0
\(691\) −7.86173 4.53897i −0.299074 0.172671i 0.342953 0.939353i \(-0.388573\pi\)
−0.642027 + 0.766682i \(0.721906\pi\)
\(692\) −7.81226 + 2.09329i −0.296978 + 0.0795749i
\(693\) 1.38905 0.143953i 0.0527657 0.00546834i
\(694\) −27.2665 −1.03502
\(695\) 0 0
\(696\) −9.78106 + 8.34152i −0.370750 + 0.316185i
\(697\) 12.8354 + 12.8354i 0.486176 + 0.486176i
\(698\) 9.84754 + 2.63864i 0.372735 + 0.0998740i
\(699\) −7.05659 + 19.8812i −0.266905 + 0.751977i
\(700\) 0 0
\(701\) 31.3445i 1.18386i −0.805988 0.591932i \(-0.798365\pi\)
0.805988 0.591932i \(-0.201635\pi\)
\(702\) −13.2577 + 29.1360i −0.500380 + 1.09967i
\(703\) −23.8907 23.8907i −0.901053 0.901053i
\(704\) 6.11777 + 3.53210i 0.230572 + 0.133121i
\(705\) 0 0
\(706\) −10.6413 18.4312i −0.400489 0.693667i
\(707\) 0.972198 0.972198i 0.0365633 0.0365633i
\(708\) 0.0902174 1.13576i 0.00339058 0.0426846i
\(709\) 16.2682 + 28.1774i 0.610967 + 1.05823i 0.991078 + 0.133285i \(0.0425524\pi\)
−0.380111 + 0.924941i \(0.624114\pi\)
\(710\) 0 0
\(711\) −11.2821 9.16330i −0.423114 0.343650i
\(712\) −1.54495 5.76582i −0.0578993 0.216083i
\(713\) 46.1615 12.3689i 1.72876 0.463220i
\(714\) −0.317763 1.72148i −0.0118920 0.0644247i
\(715\) 0 0
\(716\) 18.2992i 0.683873i
\(717\) −8.60166 18.0676i −0.321235 0.674745i
\(718\) −49.3238 + 13.2163i −1.84075 + 0.493227i
\(719\) −14.5548 25.2096i −0.542802 0.940160i −0.998742 0.0501495i \(-0.984030\pi\)
0.455940 0.890010i \(-0.349303\pi\)
\(720\) 0 0
\(721\) 0.0733041 0.0423222i 0.00272999 0.00157616i
\(722\) −73.0360 19.5699i −2.71812 0.728318i
\(723\) −13.7140 + 19.9230i −0.510030 + 0.740944i
\(724\) −5.93194 + 3.42480i −0.220459 + 0.127282i
\(725\) 0 0
\(726\) −5.82396 + 16.4084i −0.216148 + 0.608975i
\(727\) −12.8617 + 12.8617i −0.477014 + 0.477014i −0.904175 0.427161i \(-0.859514\pi\)
0.427161 + 0.904175i \(0.359514\pi\)
\(728\) 0.0546877 + 0.752239i 0.00202686 + 0.0278798i
\(729\) −24.0035 12.3626i −0.889018 0.457873i
\(730\) 0 0
\(731\) 22.8861 + 13.2133i 0.846475 + 0.488712i
\(732\) 6.48119 + 0.514822i 0.239552 + 0.0190284i
\(733\) 9.86693 9.86693i 0.364443 0.364443i −0.501003 0.865446i \(-0.667035\pi\)
0.865446 + 0.501003i \(0.167035\pi\)
\(734\) −19.8780 + 11.4766i −0.733711 + 0.423608i
\(735\) 0 0
\(736\) 33.5405i 1.23632i
\(737\) 3.14249 11.7279i 0.115755 0.432004i
\(738\) −14.4315 + 10.4531i −0.531230 + 0.384782i
\(739\) −12.6022 + 21.8276i −0.463578 + 0.802941i −0.999136 0.0415576i \(-0.986768\pi\)
0.535558 + 0.844498i \(0.320101\pi\)
\(740\) 0 0
\(741\) 43.1790 24.5455i 1.58622 0.901701i
\(742\) 0.376307 0.376307i 0.0138147 0.0138147i
\(743\) 36.3190 9.73165i 1.33242 0.357020i 0.478801 0.877924i \(-0.341072\pi\)
0.853615 + 0.520904i \(0.174405\pi\)
\(744\) 7.37570 20.7803i 0.270406 0.761843i
\(745\) 0 0
\(746\) 34.1098 1.24885
\(747\) −8.62754 + 0.894111i −0.315665 + 0.0327138i
\(748\) 19.0513 + 5.10478i 0.696584 + 0.186649i
\(749\) 0.187098i 0.00683642i
\(750\) 0 0
\(751\) 14.1002 24.4223i 0.514524 0.891182i −0.485334 0.874329i \(-0.661302\pi\)
0.999858 0.0168530i \(-0.00536474\pi\)
\(752\) 0.339125 + 1.26563i 0.0123666 + 0.0461529i
\(753\) −16.9246 + 24.5872i −0.616768 + 0.896007i
\(754\) 16.1934 18.7326i 0.589730 0.682200i
\(755\) 0 0
\(756\) 0.541006 0.0129861i 0.0196762 0.000472300i
\(757\) −7.80797 29.1397i −0.283785 1.05910i −0.949722 0.313093i \(-0.898635\pi\)
0.665937 0.746008i \(-0.268032\pi\)
\(758\) −55.3013 14.8179i −2.00863 0.538211i
\(759\) 48.5108 8.95446i 1.76083 0.325026i
\(760\) 0 0
\(761\) 14.3226 + 24.8075i 0.519195 + 0.899272i 0.999751 + 0.0223082i \(0.00710150\pi\)
−0.480556 + 0.876964i \(0.659565\pi\)
\(762\) 21.3735 31.0503i 0.774282 1.12483i
\(763\) −0.0187324 + 0.0699104i −0.000678160 + 0.00253093i
\(764\) −10.5503 + 18.2736i −0.381695 + 0.661115i
\(765\) 0 0
\(766\) −4.61630 −0.166794
\(767\) −0.187066 2.57312i −0.00675455 0.0929101i
\(768\) 25.8464 + 17.7914i 0.932650 + 0.641992i
\(769\) −26.5529 + 45.9910i −0.957522 + 1.65848i −0.229035 + 0.973418i \(0.573557\pi\)
−0.728488 + 0.685059i \(0.759776\pi\)
\(770\) 0 0
\(771\) 0.551697 0.470501i 0.0198689 0.0169447i
\(772\) −14.2456 14.2456i −0.512711 0.512711i
\(773\) −9.14659 + 34.1355i −0.328980 + 1.22777i 0.581270 + 0.813711i \(0.302556\pi\)
−0.910250 + 0.414059i \(0.864111\pi\)
\(774\) −16.3555 + 20.1374i −0.587885 + 0.723823i
\(775\) 0 0
\(776\) −0.238933 + 0.137948i −0.00857720 + 0.00495205i
\(777\) −0.358317 0.752634i −0.0128545 0.0270006i
\(778\) 17.0777 + 63.7347i 0.612264 + 2.28500i
\(779\) 27.6489 0.990626
\(780\) 0 0
\(781\) −34.9573 −1.25087
\(782\) −16.0047 59.7305i −0.572329 2.13596i
\(783\) 15.1186 + 14.4098i 0.540293 + 0.514963i
\(784\) −30.2159 + 17.4452i −1.07914 + 0.623042i
\(785\) 0 0
\(786\) 29.1753 24.8814i 1.04065 0.887489i
\(787\) −4.96521 + 18.5304i −0.176991 + 0.660539i 0.819213 + 0.573489i \(0.194410\pi\)
−0.996204 + 0.0870495i \(0.972256\pi\)
\(788\) −5.65154 5.65154i −0.201328 0.201328i
\(789\) −14.7067 17.2447i −0.523572 0.613928i
\(790\) 0 0
\(791\) −0.448293 + 0.776465i −0.0159394 + 0.0276079i
\(792\) 9.28803 20.7799i 0.330036 0.738382i
\(793\) 14.6834 1.06748i 0.521424 0.0379075i
\(794\) 19.4024 0.688566
\(795\) 0 0
\(796\) 9.31025 16.1258i 0.329993 0.571565i
\(797\) −4.06620 + 15.1753i −0.144032 + 0.537535i 0.855764 + 0.517366i \(0.173087\pi\)
−0.999797 + 0.0201695i \(0.993579\pi\)
\(798\) −2.19638 1.51188i −0.0777509 0.0535200i
\(799\) −0.685047 1.18654i −0.0242352 0.0419766i
\(800\) 0 0
\(801\) −9.05919 + 3.46239i −0.320091 + 0.122338i
\(802\) −51.4442 13.7844i −1.81656 0.486745i
\(803\) 4.52499 + 16.8875i 0.159683 + 0.595946i
\(804\) 1.57381 4.43406i 0.0555041 0.156377i
\(805\) 0 0
\(806\) −7.98939 + 41.7160i −0.281414 + 1.46938i
\(807\) −1.15168 0.792760i −0.0405410 0.0279065i
\(808\) −5.79994 21.6457i −0.204041 0.761492i
\(809\) −9.50547 + 16.4640i −0.334195 + 0.578842i −0.983330 0.181831i \(-0.941798\pi\)
0.649135 + 0.760673i \(0.275131\pi\)
\(810\) 0 0
\(811\) 18.8816i 0.663023i −0.943451 0.331512i \(-0.892441\pi\)
0.943451 0.331512i \(-0.107559\pi\)
\(812\) −0.404349 0.108345i −0.0141899 0.00380216i
\(813\) 18.3896 + 1.46075i 0.644953 + 0.0512307i
\(814\) 29.8242 1.04534
\(815\) 0 0
\(816\) −42.5589 15.1057i −1.48986 0.528806i
\(817\) 38.8812 10.4182i 1.36028 0.364486i
\(818\) 12.6307 12.6307i 0.441623 0.441623i
\(819\) 1.20651 0.214364i 0.0421588 0.00749047i
\(820\) 0 0
\(821\) −0.931007 + 1.61255i −0.0324924 + 0.0562784i −0.881814 0.471597i \(-0.843678\pi\)
0.849322 + 0.527875i \(0.177011\pi\)
\(822\) −15.8505 33.2935i −0.552849 1.16124i
\(823\) −5.74475 + 21.4397i −0.200249 + 0.747341i 0.790596 + 0.612338i \(0.209771\pi\)
−0.990845 + 0.135003i \(0.956896\pi\)
\(824\) 1.37961i 0.0480608i
\(825\) 0 0
\(826\) −0.119947 + 0.0692515i −0.00417349 + 0.00240957i
\(827\) −5.90430 + 5.90430i −0.205313 + 0.205313i −0.802272 0.596959i \(-0.796375\pi\)
0.596959 + 0.802272i \(0.296375\pi\)
\(828\) 19.0144 1.97055i 0.660797 0.0684813i
\(829\) −27.7895 16.0443i −0.965168 0.557240i −0.0674084 0.997725i \(-0.521473\pi\)
−0.897760 + 0.440485i \(0.854806\pi\)
\(830\) 0 0
\(831\) −48.6143 + 8.97358i −1.68641 + 0.311290i
\(832\) 5.57887 + 2.70197i 0.193412 + 0.0936739i
\(833\) 25.7974 25.7974i 0.893829 0.893829i
\(834\) 10.6868 + 3.79313i 0.370053 + 0.131345i
\(835\) 0 0
\(836\) 26.0175 15.0212i 0.899833 0.519519i
\(837\) −34.8176 8.43932i −1.20347 0.291706i
\(838\) −36.0442 9.65801i −1.24513 0.333630i
\(839\) 6.21211 3.58656i 0.214466 0.123822i −0.388919 0.921272i \(-0.627152\pi\)
0.603385 + 0.797450i \(0.293818\pi\)
\(840\) 0 0
\(841\) 6.42199 + 11.1232i 0.221448 + 0.383559i
\(842\) 18.6543 4.99840i 0.642869 0.172256i
\(843\) −21.0919 + 10.0415i −0.726443 + 0.345847i
\(844\) 6.70663i 0.230852i
\(845\) 0 0
\(846\) 1.25636 0.480177i 0.0431946 0.0165088i
\(847\) 0.643817 0.172510i 0.0221218 0.00592752i
\(848\) −3.55330 13.2611i −0.122021 0.455388i
\(849\) −1.50144 + 1.28046i −0.0515293 + 0.0439454i
\(850\) 0 0
\(851\) −14.7228 25.5007i −0.504692 0.874152i
\(852\) −13.5040 1.07266i −0.462638 0.0367488i
\(853\) 26.8806 26.8806i 0.920373 0.920373i −0.0766825 0.997056i \(-0.524433\pi\)
0.997056 + 0.0766825i \(0.0244328\pi\)
\(854\) −0.395181 0.684474i −0.0135228 0.0234222i
\(855\) 0 0
\(856\) 2.64094 + 1.52474i 0.0902653 + 0.0521147i
\(857\) 31.5042 + 31.5042i 1.07616 + 1.07616i 0.996850 + 0.0793118i \(0.0252723\pi\)
0.0793118 + 0.996850i \(0.474728\pi\)
\(858\) −11.6307 + 42.2724i −0.397066 + 1.44316i
\(859\) 29.9066i 1.02040i −0.860055 0.510201i \(-0.829571\pi\)
0.860055 0.510201i \(-0.170429\pi\)
\(860\) 0 0
\(861\) 0.642858 + 0.228174i 0.0219085 + 0.00777615i
\(862\) −4.48861 1.20272i −0.152883 0.0409648i
\(863\) −9.69182 9.69182i −0.329913 0.329913i 0.522640 0.852553i \(-0.324947\pi\)
−0.852553 + 0.522640i \(0.824947\pi\)
\(864\) 12.0457 22.0705i 0.409804 0.750854i
\(865\) 0 0
\(866\) 24.2113 0.822732
\(867\) 17.7211 + 1.40764i 0.601839 + 0.0478060i
\(868\) 0.693590 0.185847i 0.0235420 0.00630806i
\(869\) −17.2402 9.95361i −0.584832 0.337653i
\(870\) 0 0
\(871\) 2.00405 10.4640i 0.0679045 0.354558i
\(872\) 0.834142 + 0.834142i 0.0282476 + 0.0282476i
\(873\) 0.262950 + 0.363028i 0.00889949 + 0.0122866i
\(874\) −81.5712 47.0952i −2.75919 1.59302i
\(875\) 0 0
\(876\) 1.22981 + 6.66246i 0.0415513 + 0.225104i
\(877\) 9.13551 34.0942i 0.308484 1.15128i −0.621420 0.783478i \(-0.713444\pi\)
0.929904 0.367801i \(-0.119889\pi\)
\(878\) −4.13681 + 15.4388i −0.139610 + 0.521033i
\(879\) −2.37315 12.8565i −0.0800445 0.433640i
\(880\) 0 0
\(881\) 0.0237715 + 0.0137245i 0.000800881 + 0.000462389i 0.500400 0.865794i \(-0.333186\pi\)
−0.499600 + 0.866257i \(0.666519\pi\)
\(882\) 21.0092 + 29.0053i 0.707418 + 0.976660i
\(883\) 12.5285 + 12.5285i 0.421617 + 0.421617i 0.885760 0.464143i \(-0.153638\pi\)
−0.464143 + 0.885760i \(0.653638\pi\)
\(884\) 16.9981 + 3.25545i 0.571707 + 0.109492i
\(885\) 0 0
\(886\) −12.0157 6.93725i −0.403674 0.233061i
\(887\) 2.92906 0.784839i 0.0983482 0.0263523i −0.209309 0.977849i \(-0.567122\pi\)
0.307658 + 0.951497i \(0.400455\pi\)
\(888\) −13.5437 1.07582i −0.454496 0.0361021i
\(889\) −1.44303 −0.0483976
\(890\) 0 0
\(891\) −35.1372 11.5298i −1.17714 0.386264i
\(892\) −7.89315 7.89315i −0.264282 0.264282i
\(893\) −2.01580 0.540132i −0.0674562 0.0180748i
\(894\) −33.1801 11.7768i −1.10971 0.393876i
\(895\) 0 0
\(896\) 1.42917i 0.0477451i
\(897\) 41.8858 10.9233i 1.39853 0.364717i
\(898\) −32.7688 32.7688i −1.09351 1.09351i
\(899\) 24.0000 + 13.8564i 0.800446 + 0.462138i
\(900\) 0 0
\(901\) 7.17782 + 12.4324i 0.239128 + 0.414182i
\(902\) −17.2580 + 17.2580i −0.574627 + 0.574627i
\(903\) 0.989992 + 0.0786383i 0.0329449 + 0.00261692i
\(904\) 7.30666 + 12.6555i 0.243016 + 0.420916i
\(905\) 0 0
\(906\) 24.9972 21.3182i 0.830477 0.708251i
\(907\) −4.50525 16.8138i −0.149594 0.558294i −0.999508 0.0313715i \(-0.990012\pi\)
0.849913 0.526922i \(-0.176654\pi\)
\(908\) 12.3141 3.29956i 0.408659 0.109500i
\(909\) −34.0094 + 12.9983i −1.12802 + 0.431126i
\(910\) 0 0
\(911\) 4.78351i 0.158485i 0.996855 + 0.0792423i \(0.0252501\pi\)
−0.996855 + 0.0792423i \(0.974750\pi\)
\(912\) −62.1080 + 29.5686i −2.05660 + 0.979114i
\(913\) −11.4752 + 3.07477i −0.379774 + 0.101760i
\(914\) −11.4241 19.7871i −0.377876 0.654500i
\(915\) 0 0
\(916\) −6.78234 + 3.91578i −0.224095 + 0.129381i
\(917\) −1.41785 0.379911i −0.0468214 0.0125458i
\(918\) −10.9200 + 45.0521i −0.360415 + 1.48694i
\(919\) −20.5581 + 11.8693i −0.678151 + 0.391530i −0.799158 0.601121i \(-0.794721\pi\)
0.121007 + 0.992652i \(0.461388\pi\)
\(920\) 0 0
\(921\) 12.1953 + 4.32855i 0.401848 + 0.142631i
\(922\) −41.4418 + 41.4418i −1.36481 + 1.36481i
\(923\) −30.5938 + 2.22417i −1.00701 + 0.0732094i
\(924\) 0.728888 0.134543i 0.0239787 0.00442616i
\(925\) 0 0
\(926\) −40.6683 23.4798i −1.33644 0.771595i
\(927\) −2.22953 + 0.231056i −0.0732274 + 0.00758888i
\(928\) −13.7531 + 13.7531i −0.451467 + 0.451467i
\(929\) −27.3742 + 15.8045i −0.898117 + 0.518528i −0.876589 0.481240i \(-0.840186\pi\)
−0.0215282 + 0.999768i \(0.506853\pi\)
\(930\) 0 0
\(931\) 55.5706i 1.82125i
\(932\) −2.89804 + 10.8156i −0.0949283 + 0.354277i
\(933\) −1.76906 3.71586i −0.0579164 0.121652i
\(934\) 23.7216 41.0870i 0.776194 1.34441i
\(935\) 0 0
\(936\) 6.80655 18.7771i 0.222479 0.613747i
\(937\) 12.6526 12.6526i 0.413344 0.413344i −0.469558 0.882902i \(-0.655587\pi\)
0.882902 + 0.469558i \(0.155587\pi\)
\(938\) −0.552480 + 0.148037i −0.0180391 + 0.00483357i
\(939\) 47.3449 + 16.8045i 1.54504 + 0.548393i
\(940\) 0 0
\(941\) −49.4334 −1.61148 −0.805741 0.592268i \(-0.798233\pi\)
−0.805741 + 0.592268i \(0.798233\pi\)
\(942\) 23.1126 + 1.83591i 0.753048 + 0.0598171i
\(943\) 23.2755 + 6.23666i 0.757956 + 0.203094i
\(944\) 3.57304i 0.116293i
\(945\) 0 0
\(946\) −17.7661 + 30.7718i −0.577625 + 1.00048i
\(947\) −6.33163 23.6300i −0.205750 0.767871i −0.989220 0.146440i \(-0.953218\pi\)
0.783469 0.621431i \(-0.213448\pi\)
\(948\) −6.35443 4.37408i −0.206382 0.142064i
\(949\) 5.03464 + 14.4916i 0.163431 + 0.470419i
\(950\) 0 0
\(951\) −19.5858 + 55.1811i −0.635114 + 1.78937i
\(952\) 0.282693 + 1.05503i 0.00916215 + 0.0341936i
\(953\) −41.7321 11.1821i −1.35184 0.362223i −0.491024 0.871146i \(-0.663377\pi\)
−0.860812 + 0.508923i \(0.830044\pi\)
\(954\) −13.1640 + 5.03122i −0.426199 + 0.162892i
\(955\) 0 0
\(956\) −5.31043 9.19793i −0.171751 0.297482i
\(957\) 23.5632 + 16.2198i 0.761691 + 0.524312i
\(958\) −0.761659 + 2.84255i −0.0246081 + 0.0918386i
\(959\) −0.705791 + 1.22247i −0.0227912 + 0.0394755i
\(960\) 0 0
\(961\) −16.5366 −0.533437
\(962\) 26.1015 1.89758i 0.841546 0.0611803i
\(963\) 2.02178 4.52328i 0.0651510 0.145761i
\(964\) −6.41870 + 11.1175i −0.206732 + 0.358071i
\(965\) 0 0
\(966\) −1.50794 1.76817i −0.0485170 0.0568898i
\(967\) −4.55251 4.55251i −0.146399 0.146399i 0.630108 0.776507i \(-0.283010\pi\)
−0.776507 + 0.630108i \(0.783010\pi\)
\(968\) 2.81172 10.4935i 0.0903721 0.337273i
\(969\) 54.7281 46.6735i 1.75812 1.49937i
\(970\) 0 0
\(971\) 51.2257 29.5752i 1.64391 0.949113i 0.664488 0.747299i \(-0.268650\pi\)
0.979424 0.201814i \(-0.0646838\pi\)
\(972\) −13.2197 5.53215i −0.424021 0.177444i
\(973\) −0.112355 0.419316i −0.00360195 0.0134427i
\(974\) 35.5697 1.13973
\(975\) 0 0
\(976\) −20.3894 −0.652649
\(977\) 14.9944 + 55.9598i 0.479713 + 1.79031i 0.602772 + 0.797914i \(0.294063\pi\)
−0.123059 + 0.992399i \(0.539270\pi\)
\(978\) 15.5921 + 32.7508i 0.498580 + 1.04725i
\(979\) −11.5036 + 6.64164i −0.367658 + 0.212268i
\(980\) 0 0
\(981\) 1.20833 1.48773i 0.0385789 0.0474995i
\(982\) 9.99359 37.2966i 0.318908 1.19018i
\(983\) 17.2893 + 17.2893i 0.551443 + 0.551443i 0.926857 0.375414i \(-0.122500\pi\)
−0.375414 + 0.926857i \(0.622500\pi\)
\(984\) 8.45965 7.21460i 0.269684 0.229993i
\(985\) 0 0
\(986\) 17.9295 31.0548i 0.570991 0.988985i
\(987\) −0.0424114 0.0291940i −0.00134997 0.000929254i
\(988\) 21.8142 14.8016i 0.694002 0.470901i
\(989\) 35.0811 1.11551
\(990\) 0 0
\(991\) 6.95908 12.0535i 0.221063 0.382892i −0.734068 0.679076i \(-0.762381\pi\)
0.955131 + 0.296184i \(0.0957142\pi\)
\(992\) 8.63491 32.2259i 0.274159 1.02317i
\(993\) −13.6952 + 19.8956i −0.434602 + 0.631367i
\(994\) 0.823384 + 1.42614i 0.0261162 + 0.0452345i
\(995\) 0 0
\(996\) −4.52721 + 0.835664i −0.143450 + 0.0264790i
\(997\) −46.6520 12.5004i −1.47748 0.395891i −0.571994 0.820258i \(-0.693830\pi\)
−0.905490 + 0.424367i \(0.860497\pi\)
\(998\) −15.8680 59.2202i −0.502293 1.87458i
\(999\) 0.529703 + 22.0676i 0.0167591 + 0.698189i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bn.d.368.19 96
3.2 odd 2 inner 975.2.bn.d.368.6 96
5.2 odd 4 inner 975.2.bn.d.407.6 96
5.3 odd 4 195.2.bf.a.17.19 yes 96
5.4 even 2 195.2.bf.a.173.6 yes 96
13.10 even 6 inner 975.2.bn.d.218.19 96
15.2 even 4 inner 975.2.bn.d.407.19 96
15.8 even 4 195.2.bf.a.17.6 96
15.14 odd 2 195.2.bf.a.173.19 yes 96
39.23 odd 6 inner 975.2.bn.d.218.6 96
65.23 odd 12 195.2.bf.a.62.19 yes 96
65.49 even 6 195.2.bf.a.23.6 yes 96
65.62 odd 12 inner 975.2.bn.d.257.6 96
195.23 even 12 195.2.bf.a.62.6 yes 96
195.62 even 12 inner 975.2.bn.d.257.19 96
195.179 odd 6 195.2.bf.a.23.19 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bf.a.17.6 96 15.8 even 4
195.2.bf.a.17.19 yes 96 5.3 odd 4
195.2.bf.a.23.6 yes 96 65.49 even 6
195.2.bf.a.23.19 yes 96 195.179 odd 6
195.2.bf.a.62.6 yes 96 195.23 even 12
195.2.bf.a.62.19 yes 96 65.23 odd 12
195.2.bf.a.173.6 yes 96 5.4 even 2
195.2.bf.a.173.19 yes 96 15.14 odd 2
975.2.bn.d.218.6 96 39.23 odd 6 inner
975.2.bn.d.218.19 96 13.10 even 6 inner
975.2.bn.d.257.6 96 65.62 odd 12 inner
975.2.bn.d.257.19 96 195.62 even 12 inner
975.2.bn.d.368.6 96 3.2 odd 2 inner
975.2.bn.d.368.19 96 1.1 even 1 trivial
975.2.bn.d.407.6 96 5.2 odd 4 inner
975.2.bn.d.407.19 96 15.2 even 4 inner