Newspace parameters
Level: | \( N \) | \(=\) | \( 975 = 3 \cdot 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 975.bn (of order \(12\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(7.78541419707\) |
Analytic rank: | \(0\) |
Dimension: | \(96\) |
Relative dimension: | \(24\) over \(\Q(\zeta_{12})\) |
Twist minimal: | no (minimal twist has level 195) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
218.1 | −2.61871 | − | 0.701681i | 1.68401 | − | 0.405108i | 4.63323 | + | 2.67499i | 0 | −4.69419 | − | 0.120777i | −1.53607 | + | 0.411589i | −6.42202 | − | 6.42202i | 2.67177 | − | 1.36441i | 0 | ||||
218.2 | −2.27913 | − | 0.610690i | 0.0442801 | + | 1.73148i | 3.08942 | + | 1.78368i | 0 | 0.956480 | − | 3.97331i | 3.71897 | − | 0.996495i | −2.61503 | − | 2.61503i | −2.99608 | + | 0.153341i | 0 | ||||
218.3 | −2.12039 | − | 0.568157i | −1.72421 | + | 0.164580i | 2.44121 | + | 1.40943i | 0 | 3.74952 | + | 0.630650i | 3.37093 | − | 0.903238i | −1.27107 | − | 1.27107i | 2.94583 | − | 0.567543i | 0 | ||||
218.4 | −2.09662 | − | 0.561788i | −0.298187 | − | 1.70619i | 2.34816 | + | 1.35571i | 0 | −0.333332 | + | 3.74475i | 0.403690 | − | 0.108168i | −1.09192 | − | 1.09192i | −2.82217 | + | 1.01753i | 0 | ||||
218.5 | −1.85180 | − | 0.496187i | 1.59450 | + | 0.676428i | 1.45090 | + | 0.837676i | 0 | −2.61706 | − | 2.04378i | −1.97020 | + | 0.527913i | 0.440097 | + | 0.440097i | 2.08489 | + | 2.15713i | 0 | ||||
218.6 | −1.65038 | − | 0.442218i | 0.744530 | − | 1.56387i | 0.796141 | + | 0.459652i | 0 | −1.92033 | + | 2.25172i | −0.109428 | + | 0.0293212i | 1.30565 | + | 1.30565i | −1.89135 | − | 2.32869i | 0 | ||||
218.7 | −1.42342 | − | 0.381405i | −1.13110 | + | 1.31172i | 0.148609 | + | 0.0857994i | 0 | 2.11032 | − | 1.43573i | −3.97287 | + | 1.06453i | 1.90523 | + | 1.90523i | −0.441245 | − | 2.96737i | 0 | ||||
218.8 | −1.05989 | − | 0.283997i | −1.49614 | − | 0.872682i | −0.689337 | − | 0.397989i | 0 | 1.33790 | + | 1.34985i | 0.160495 | − | 0.0430045i | 2.16938 | + | 2.16938i | 1.47685 | + | 2.61130i | 0 | ||||
218.9 | −1.01047 | − | 0.270756i | 0.981641 | + | 1.42702i | −0.784302 | − | 0.452817i | 0 | −0.605549 | − | 1.70775i | −0.396013 | + | 0.106111i | 2.14935 | + | 2.14935i | −1.07276 | + | 2.80164i | 0 | ||||
218.10 | −0.615188 | − | 0.164839i | −0.956716 | + | 1.44385i | −1.38077 | − | 0.797186i | 0 | 0.826563 | − | 0.730534i | 2.17570 | − | 0.582977i | 1.61872 | + | 1.61872i | −1.16939 | − | 2.76270i | 0 | ||||
218.11 | −0.254998 | − | 0.0683265i | −1.56121 | − | 0.750075i | −1.67170 | − | 0.965154i | 0 | 0.346856 | + | 0.297940i | −3.34011 | + | 0.894980i | 0.733676 | + | 0.733676i | 1.87477 | + | 2.34206i | 0 | ||||
218.12 | −0.107570 | − | 0.0288234i | 1.48257 | − | 0.895534i | −1.72131 | − | 0.993799i | 0 | −0.185293 | + | 0.0536002i | 3.86093 | − | 1.03453i | 0.314011 | + | 0.314011i | 1.39604 | − | 2.65539i | 0 | ||||
218.13 | 0.107570 | + | 0.0288234i | −0.836177 | − | 1.51684i | −1.72131 | − | 0.993799i | 0 | −0.0462274 | − | 0.187269i | 3.86093 | − | 1.03453i | −0.314011 | − | 0.314011i | −1.60161 | + | 2.53670i | 0 | ||||
218.14 | 0.254998 | + | 0.0683265i | 1.72709 | + | 0.131022i | −1.67170 | − | 0.965154i | 0 | 0.431452 | + | 0.151416i | −3.34011 | + | 0.894980i | −0.733676 | − | 0.733676i | 2.96567 | + | 0.452574i | 0 | ||||
218.15 | 0.615188 | + | 0.164839i | 0.106617 | + | 1.72877i | −1.38077 | − | 0.797186i | 0 | −0.219379 | + | 1.08109i | 2.17570 | − | 0.582977i | −1.61872 | − | 1.61872i | −2.97727 | + | 0.368632i | 0 | ||||
218.16 | 1.01047 | + | 0.270756i | −1.56363 | + | 0.745014i | −0.784302 | − | 0.452817i | 0 | −1.78173 | + | 0.329454i | −0.396013 | + | 0.106111i | −2.14935 | − | 2.14935i | 1.88991 | − | 2.32986i | 0 | ||||
218.17 | 1.05989 | + | 0.283997i | 1.73203 | − | 0.00769600i | −0.689337 | − | 0.397989i | 0 | 1.83795 | + | 0.483735i | 0.160495 | − | 0.0430045i | −2.16938 | − | 2.16938i | 2.99988 | − | 0.0266595i | 0 | ||||
218.18 | 1.42342 | + | 0.381405i | 0.323695 | + | 1.70154i | 0.148609 | + | 0.0857994i | 0 | −0.188219 | + | 2.54546i | −3.97287 | + | 1.06453i | −1.90523 | − | 1.90523i | −2.79044 | + | 1.10156i | 0 | ||||
218.19 | 1.65038 | + | 0.442218i | 0.137150 | − | 1.72661i | 0.796141 | + | 0.459652i | 0 | 0.989888 | − | 2.78891i | −0.109428 | + | 0.0293212i | −1.30565 | − | 1.30565i | −2.96238 | − | 0.473611i | 0 | ||||
218.20 | 1.85180 | + | 0.496187i | −1.71910 | − | 0.211449i | 1.45090 | + | 0.837676i | 0 | −3.07850 | − | 1.24455i | −1.97020 | + | 0.527913i | −0.440097 | − | 0.440097i | 2.91058 | + | 0.727001i | 0 | ||||
See all 96 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
13.e | even | 6 | 1 | inner |
15.e | even | 4 | 1 | inner |
39.h | odd | 6 | 1 | inner |
65.r | odd | 12 | 1 | inner |
195.bf | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 975.2.bn.d | 96 | |
3.b | odd | 2 | 1 | inner | 975.2.bn.d | 96 | |
5.b | even | 2 | 1 | 195.2.bf.a | ✓ | 96 | |
5.c | odd | 4 | 1 | 195.2.bf.a | ✓ | 96 | |
5.c | odd | 4 | 1 | inner | 975.2.bn.d | 96 | |
13.e | even | 6 | 1 | inner | 975.2.bn.d | 96 | |
15.d | odd | 2 | 1 | 195.2.bf.a | ✓ | 96 | |
15.e | even | 4 | 1 | 195.2.bf.a | ✓ | 96 | |
15.e | even | 4 | 1 | inner | 975.2.bn.d | 96 | |
39.h | odd | 6 | 1 | inner | 975.2.bn.d | 96 | |
65.l | even | 6 | 1 | 195.2.bf.a | ✓ | 96 | |
65.r | odd | 12 | 1 | 195.2.bf.a | ✓ | 96 | |
65.r | odd | 12 | 1 | inner | 975.2.bn.d | 96 | |
195.y | odd | 6 | 1 | 195.2.bf.a | ✓ | 96 | |
195.bf | even | 12 | 1 | 195.2.bf.a | ✓ | 96 | |
195.bf | even | 12 | 1 | inner | 975.2.bn.d | 96 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
195.2.bf.a | ✓ | 96 | 5.b | even | 2 | 1 | |
195.2.bf.a | ✓ | 96 | 5.c | odd | 4 | 1 | |
195.2.bf.a | ✓ | 96 | 15.d | odd | 2 | 1 | |
195.2.bf.a | ✓ | 96 | 15.e | even | 4 | 1 | |
195.2.bf.a | ✓ | 96 | 65.l | even | 6 | 1 | |
195.2.bf.a | ✓ | 96 | 65.r | odd | 12 | 1 | |
195.2.bf.a | ✓ | 96 | 195.y | odd | 6 | 1 | |
195.2.bf.a | ✓ | 96 | 195.bf | even | 12 | 1 | |
975.2.bn.d | 96 | 1.a | even | 1 | 1 | trivial | |
975.2.bn.d | 96 | 3.b | odd | 2 | 1 | inner | |
975.2.bn.d | 96 | 5.c | odd | 4 | 1 | inner | |
975.2.bn.d | 96 | 13.e | even | 6 | 1 | inner | |
975.2.bn.d | 96 | 15.e | even | 4 | 1 | inner | |
975.2.bn.d | 96 | 39.h | odd | 6 | 1 | inner | |
975.2.bn.d | 96 | 65.r | odd | 12 | 1 | inner | |
975.2.bn.d | 96 | 195.bf | even | 12 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(975, [\chi])\):
\( T_{2}^{96} - 160 T_{2}^{92} + 15396 T_{2}^{88} - 955300 T_{2}^{84} + 43571992 T_{2}^{80} - 1488515276 T_{2}^{76} + \cdots + 10000 \)
|
\( T_{7}^{48} - 6 T_{7}^{47} + 18 T_{7}^{46} - 36 T_{7}^{45} - 497 T_{7}^{44} + 2886 T_{7}^{43} + \cdots + 104976 \)
|