L(s) = 1 | + (−1.65 + 0.442i)2-s + (0.744 + 1.56i)3-s + (0.796 − 0.459i)4-s + (−1.92 − 2.25i)6-s + (−0.109 − 0.0293i)7-s + (1.30 − 1.30i)8-s + (−1.89 + 2.32i)9-s + (2.05 − 3.55i)11-s + (1.31 + 0.902i)12-s + (−3.24 − 1.57i)13-s + 0.193·14-s + (−2.49 + 4.32i)16-s + (5.04 + 1.35i)17-s + (2.09 − 4.67i)18-s + (3.97 + 6.88i)19-s + ⋯ |
L(s) = 1 | + (−1.16 + 0.312i)2-s + (0.429 + 0.902i)3-s + (0.398 − 0.229i)4-s + (−0.783 − 0.919i)6-s + (−0.0413 − 0.0110i)7-s + (0.461 − 0.461i)8-s + (−0.630 + 0.776i)9-s + (0.619 − 1.07i)11-s + (0.378 + 0.260i)12-s + (−0.900 − 0.435i)13-s + 0.0517·14-s + (−0.624 + 1.08i)16-s + (1.22 + 0.327i)17-s + (0.493 − 1.10i)18-s + (0.912 + 1.58i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.853 - 0.520i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 975 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.853 - 0.520i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.195382 + 0.695880i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.195382 + 0.695880i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.744 - 1.56i)T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (3.24 + 1.57i)T \) |
good | 2 | \( 1 + (1.65 - 0.442i)T + (1.73 - i)T^{2} \) |
| 7 | \( 1 + (0.109 + 0.0293i)T + (6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (-2.05 + 3.55i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-5.04 - 1.35i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (-3.97 - 6.88i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (6.69 - 1.79i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (2.00 - 3.48i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 6.89iT - 31T^{2} \) |
| 37 | \( 1 + (-1.09 - 4.10i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (1.73 - 3.01i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.88 - 1.30i)T + (37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 + (-0.185 - 0.185i)T + 47iT^{2} \) |
| 53 | \( 1 + (-1.94 - 1.94i)T + 53iT^{2} \) |
| 59 | \( 1 + (0.619 - 0.357i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.04 - 3.53i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.764 - 2.85i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (4.25 + 7.36i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-3.00 - 3.00i)T + 73iT^{2} \) |
| 79 | \( 1 - 4.84iT - 79T^{2} \) |
| 83 | \( 1 + (2.04 - 2.04i)T - 83iT^{2} \) |
| 89 | \( 1 + (-2.79 - 1.61i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (0.144 + 0.0386i)T + (84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.944361334192884592621430646902, −9.691487510442718912168978597615, −8.641306743327460739392704157950, −8.068295654688486528873968935711, −7.47111248812367399469282792319, −6.08582536329852923927008976838, −5.24934066388070520463722847466, −3.89548673453751074256618369953, −3.22562910044153592463397397067, −1.40613104047697674050585987635,
0.50234094667453441025366082788, 1.83394977657436012435952797570, 2.62848603352889275446695120910, 4.21182900394315731339384209409, 5.40179586296891542916898249248, 6.68621975203574060491188758774, 7.54146331096791699612953465835, 7.82304774197597465565491240617, 9.096722847126628861253125125946, 9.492031306630090850628237530584