gp: [N,k,chi] = [961,4,Mod(1,961)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(961, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("961.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [28,2,-19]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(31\)
\( -1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(961))\):
\( T_{2}^{28} - 2 T_{2}^{27} - 162 T_{2}^{26} + 283 T_{2}^{25} + 11617 T_{2}^{24} - 17245 T_{2}^{23} + \cdots - 3201675264 \)
T2^28 - 2*T2^27 - 162*T2^26 + 283*T2^25 + 11617*T2^24 - 17245*T2^23 - 485897*T2^22 + 591243*T2^21 + 13143470*T2^20 - 12474242*T2^19 - 240844284*T2^18 + 165587661*T2^17 + 3043007241*T2^16 - 1337803509*T2^15 - 26458017513*T2^14 + 5668259765*T2^13 + 155258088167*T2^12 - 3354927282*T2^11 - 591778066880*T2^10 - 75120065312*T2^9 + 1379180626576*T2^8 + 306126179072*T2^7 - 1801958215488*T2^6 - 480346820224*T2^5 + 1146143603968*T2^4 + 309530477568*T2^3 - 266373543936*T2^2 - 64980135936*T2 - 3201675264
\( T_{3}^{28} + 19 T_{3}^{27} - 303 T_{3}^{26} - 7289 T_{3}^{25} + 34648 T_{3}^{24} + 1220253 T_{3}^{23} + \cdots + 29\!\cdots\!21 \)
T3^28 + 19*T3^27 - 303*T3^26 - 7289*T3^25 + 34648*T3^24 + 1220253*T3^23 - 1558057*T3^22 - 117836254*T3^21 - 25214541*T3^20 + 7299799538*T3^19 + 6277561148*T3^18 - 304569564246*T3^17 - 318653700447*T3^16 + 8720380356027*T3^15 + 8320555219365*T3^14 - 170916959697591*T3^13 - 119477385994359*T3^12 + 2244928690544076*T3^11 + 829822248644459*T3^10 - 18959633266230868*T3^9 - 613268766191595*T3^8 + 95963065713678677*T3^7 - 26429162636116072*T3^6 - 254518275049310004*T3^5 + 136922693702416858*T3^4 + 255676782479372755*T3^3 - 190963855850009160*T3^2 - 29137232698025408*T3 + 29621622924847921