Properties

Label 2-31e2-1.1-c3-0-199
Degree $2$
Conductor $961$
Sign $-1$
Analytic cond. $56.7008$
Root an. cond. $7.52999$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.923·2-s + 8.16·3-s − 7.14·4-s + 4.12·5-s + 7.54·6-s + 13.2·7-s − 13.9·8-s + 39.7·9-s + 3.81·10-s − 49.1·11-s − 58.3·12-s − 59.3·13-s + 12.2·14-s + 33.7·15-s + 44.2·16-s − 27.3·17-s + 36.6·18-s − 112.·19-s − 29.5·20-s + 108.·21-s − 45.3·22-s + 114.·23-s − 114.·24-s − 107.·25-s − 54.8·26-s + 103.·27-s − 94.9·28-s + ⋯
L(s)  = 1  + 0.326·2-s + 1.57·3-s − 0.893·4-s + 0.369·5-s + 0.513·6-s + 0.717·7-s − 0.618·8-s + 1.47·9-s + 0.120·10-s − 1.34·11-s − 1.40·12-s − 1.26·13-s + 0.234·14-s + 0.580·15-s + 0.691·16-s − 0.389·17-s + 0.480·18-s − 1.36·19-s − 0.329·20-s + 1.12·21-s − 0.439·22-s + 1.03·23-s − 0.971·24-s − 0.863·25-s − 0.413·26-s + 0.739·27-s − 0.640·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(961\)    =    \(31^{2}\)
Sign: $-1$
Analytic conductor: \(56.7008\)
Root analytic conductor: \(7.52999\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 961,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 \)
good2 \( 1 - 0.923T + 8T^{2} \)
3 \( 1 - 8.16T + 27T^{2} \)
5 \( 1 - 4.12T + 125T^{2} \)
7 \( 1 - 13.2T + 343T^{2} \)
11 \( 1 + 49.1T + 1.33e3T^{2} \)
13 \( 1 + 59.3T + 2.19e3T^{2} \)
17 \( 1 + 27.3T + 4.91e3T^{2} \)
19 \( 1 + 112.T + 6.85e3T^{2} \)
23 \( 1 - 114.T + 1.21e4T^{2} \)
29 \( 1 - 23.8T + 2.43e4T^{2} \)
37 \( 1 + 280.T + 5.06e4T^{2} \)
41 \( 1 + 469.T + 6.89e4T^{2} \)
43 \( 1 + 215.T + 7.95e4T^{2} \)
47 \( 1 - 381.T + 1.03e5T^{2} \)
53 \( 1 + 131.T + 1.48e5T^{2} \)
59 \( 1 - 844.T + 2.05e5T^{2} \)
61 \( 1 - 375.T + 2.26e5T^{2} \)
67 \( 1 - 174.T + 3.00e5T^{2} \)
71 \( 1 - 48.7T + 3.57e5T^{2} \)
73 \( 1 + 515.T + 3.89e5T^{2} \)
79 \( 1 + 53.3T + 4.93e5T^{2} \)
83 \( 1 - 792.T + 5.71e5T^{2} \)
89 \( 1 - 5.42T + 7.04e5T^{2} \)
97 \( 1 + 386.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.026597134659926110430963198812, −8.435769299888706199221158150879, −7.87802356327703792823761199075, −6.89555285532405139425384996376, −5.32001457072717515043230096169, −4.78750166881315354260003852781, −3.74687682886969271624280948022, −2.67784402820759871388445968586, −1.94753780635918798760890864596, 0, 1.94753780635918798760890864596, 2.67784402820759871388445968586, 3.74687682886969271624280948022, 4.78750166881315354260003852781, 5.32001457072717515043230096169, 6.89555285532405139425384996376, 7.87802356327703792823761199075, 8.435769299888706199221158150879, 9.026597134659926110430963198812

Graph of the $Z$-function along the critical line