Defining parameters
Level: | \( N \) | \(=\) | \( 961 = 31^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 961.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 14 \) | ||
Sturm bound: | \(330\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(961))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 264 | 247 | 17 |
Cusp forms | 232 | 218 | 14 |
Eisenstein series | 32 | 29 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(31\) | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||
\(+\) | \(136\) | \(127\) | \(9\) | \(120\) | \(113\) | \(7\) | \(16\) | \(14\) | \(2\) | |||
\(-\) | \(128\) | \(120\) | \(8\) | \(112\) | \(105\) | \(7\) | \(16\) | \(15\) | \(1\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(961))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(961))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(961)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 2}\)