Properties

Label 961.4.a
Level $961$
Weight $4$
Character orbit 961.a
Rep. character $\chi_{961}(1,\cdot)$
Character field $\Q$
Dimension $218$
Newform subspaces $14$
Sturm bound $330$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 961.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 14 \)
Sturm bound: \(330\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(961))\).

Total New Old
Modular forms 264 247 17
Cusp forms 232 218 14
Eisenstein series 32 29 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(31\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(136\)\(127\)\(9\)\(120\)\(113\)\(7\)\(16\)\(14\)\(2\)
\(-\)\(128\)\(120\)\(8\)\(112\)\(105\)\(7\)\(16\)\(15\)\(1\)

Trace form

\( 218 q + 2 q^{2} - 2 q^{3} + 806 q^{4} + 10 q^{5} - 12 q^{6} + 10 q^{7} - 18 q^{8} + 1744 q^{9} + 96 q^{10} - 62 q^{11} + 110 q^{12} - 36 q^{13} - 60 q^{14} + 156 q^{15} + 2814 q^{16} - 54 q^{17} + 146 q^{18}+ \cdots - 4426 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(961))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 31
961.4.a.a 961.a 1.a $1$ $56.701$ \(\Q\) \(\Q(\sqrt{-31}) \) 961.4.a.a \(1\) \(0\) \(2\) \(16\) $-$ $N(\mathrm{U}(1))$ \(q+q^{2}-7q^{4}+2q^{5}+2^{4}q^{7}-15q^{8}+\cdots\)
961.4.a.b 961.a 1.a $2$ $56.701$ \(\Q(\sqrt{17}) \) None 31.4.a.a \(-5\) \(2\) \(-25\) \(-19\) $-$ $\mathrm{SU}(2)$ \(q+(-2-\beta )q^{2}+(2-2\beta )q^{3}+5\beta q^{4}+\cdots\)
961.4.a.c 961.a 1.a $2$ $56.701$ \(\Q(\sqrt{93}) \) \(\Q(\sqrt{-31}) \) 961.4.a.c \(-1\) \(0\) \(-2\) \(-16\) $-$ $N(\mathrm{U}(1))$ \(q-\beta q^{2}+(15+\beta )q^{4}+(1-4\beta )q^{5}+(-11+\cdots)q^{7}+\cdots\)
961.4.a.d 961.a 1.a $4$ $56.701$ 4.4.27702880.2 None 961.4.a.d \(2\) \(0\) \(-26\) \(-18\) $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2})q^{2}+\beta _{1}q^{3}+(3+\beta _{2})q^{4}+\cdots\)
961.4.a.e 961.a 1.a $5$ $56.701$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 31.4.a.b \(3\) \(-4\) \(15\) \(9\) $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(\beta _{2}-\beta _{3}+\beta _{4})q^{3}+(7+\cdots)q^{4}+\cdots\)
961.4.a.f 961.a 1.a $7$ $56.701$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 31.4.c.a \(-2\) \(-11\) \(5\) \(-31\) $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(-2+\beta _{4})q^{3}+(2+\beta _{2})q^{4}+\cdots\)
961.4.a.g 961.a 1.a $7$ $56.701$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 31.4.c.a \(-2\) \(11\) \(5\) \(-31\) $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(2-\beta _{4})q^{3}+(2+\beta _{2})q^{4}+\cdots\)
961.4.a.h 961.a 1.a $14$ $56.701$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 961.4.a.h \(0\) \(0\) \(-4\) \(-28\) $-$ $\mathrm{SU}(2)$ \(q-\beta _{3}q^{2}+\beta _{6}q^{3}+(2-\beta _{4})q^{4}-\beta _{8}q^{5}+\cdots\)
961.4.a.i 961.a 1.a $14$ $56.701$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 31.4.d.a \(1\) \(-1\) \(0\) \(5\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{8}q^{3}+(4+\beta _{3}+\beta _{4})q^{4}+\cdots\)
961.4.a.j 961.a 1.a $14$ $56.701$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 31.4.d.a \(1\) \(1\) \(0\) \(5\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{8}q^{3}+(4+\beta _{3}+\beta _{4})q^{4}+\cdots\)
961.4.a.k 961.a 1.a $28$ $56.701$ None 961.4.a.k \(-16\) \(0\) \(-40\) \(-56\) $-$ $\mathrm{SU}(2)$
961.4.a.l 961.a 1.a $28$ $56.701$ None 31.4.g.a \(2\) \(-19\) \(0\) \(31\) $-$ $\mathrm{SU}(2)$
961.4.a.m 961.a 1.a $28$ $56.701$ None 31.4.g.a \(2\) \(19\) \(0\) \(31\) $+$ $\mathrm{SU}(2)$
961.4.a.n 961.a 1.a $64$ $56.701$ None 961.4.a.n \(16\) \(0\) \(80\) \(112\) $+$ $\mathrm{SU}(2)$

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(961))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(961)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 2}\)