Properties

Label 2-31e2-1.1-c3-0-134
Degree $2$
Conductor $961$
Sign $-1$
Analytic cond. $56.7008$
Root an. cond. $7.52999$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.47·2-s − 0.401·3-s − 5.82·4-s − 11.8·5-s − 0.591·6-s + 11.0·7-s − 20.3·8-s − 26.8·9-s − 17.4·10-s + 32.8·11-s + 2.33·12-s + 87.1·13-s + 16.2·14-s + 4.73·15-s + 16.4·16-s + 33.2·17-s − 39.6·18-s − 6.15·19-s + 68.7·20-s − 4.42·21-s + 48.4·22-s − 151.·23-s + 8.18·24-s + 14.3·25-s + 128.·26-s + 21.5·27-s − 64.1·28-s + ⋯
L(s)  = 1  + 0.521·2-s − 0.0772·3-s − 0.727·4-s − 1.05·5-s − 0.0402·6-s + 0.595·7-s − 0.901·8-s − 0.994·9-s − 0.550·10-s + 0.899·11-s + 0.0561·12-s + 1.86·13-s + 0.310·14-s + 0.0815·15-s + 0.257·16-s + 0.474·17-s − 0.518·18-s − 0.0743·19-s + 0.768·20-s − 0.0459·21-s + 0.469·22-s − 1.37·23-s + 0.0695·24-s + 0.114·25-s + 0.970·26-s + 0.153·27-s − 0.433·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(961\)    =    \(31^{2}\)
Sign: $-1$
Analytic conductor: \(56.7008\)
Root analytic conductor: \(7.52999\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 961,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 \)
good2 \( 1 - 1.47T + 8T^{2} \)
3 \( 1 + 0.401T + 27T^{2} \)
5 \( 1 + 11.8T + 125T^{2} \)
7 \( 1 - 11.0T + 343T^{2} \)
11 \( 1 - 32.8T + 1.33e3T^{2} \)
13 \( 1 - 87.1T + 2.19e3T^{2} \)
17 \( 1 - 33.2T + 4.91e3T^{2} \)
19 \( 1 + 6.15T + 6.85e3T^{2} \)
23 \( 1 + 151.T + 1.21e4T^{2} \)
29 \( 1 - 177.T + 2.43e4T^{2} \)
37 \( 1 + 61.6T + 5.06e4T^{2} \)
41 \( 1 - 141.T + 6.89e4T^{2} \)
43 \( 1 + 281.T + 7.95e4T^{2} \)
47 \( 1 - 79.1T + 1.03e5T^{2} \)
53 \( 1 + 69.5T + 1.48e5T^{2} \)
59 \( 1 + 596.T + 2.05e5T^{2} \)
61 \( 1 - 469.T + 2.26e5T^{2} \)
67 \( 1 + 855.T + 3.00e5T^{2} \)
71 \( 1 + 538.T + 3.57e5T^{2} \)
73 \( 1 + 261.T + 3.89e5T^{2} \)
79 \( 1 + 957.T + 4.93e5T^{2} \)
83 \( 1 - 258.T + 5.71e5T^{2} \)
89 \( 1 + 1.28e3T + 7.04e5T^{2} \)
97 \( 1 - 889.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.861057309202314548859851666029, −8.476438727818810427734661330976, −7.81278487415893119395855652246, −6.32729715759655562962101830168, −5.77937476534862268847629281644, −4.58611018769740684489211544302, −3.87855244353928490627525462843, −3.19353878408329868228081665878, −1.27937355599541663905802925809, 0, 1.27937355599541663905802925809, 3.19353878408329868228081665878, 3.87855244353928490627525462843, 4.58611018769740684489211544302, 5.77937476534862268847629281644, 6.32729715759655562962101830168, 7.81278487415893119395855652246, 8.476438727818810427734661330976, 8.861057309202314548859851666029

Graph of the $Z$-function along the critical line