Properties

Label 2-31e2-1.1-c3-0-121
Degree $2$
Conductor $961$
Sign $-1$
Analytic cond. $56.7008$
Root an. cond. $7.52999$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.0714·2-s − 8.95·3-s − 7.99·4-s + 13.8·5-s + 0.640·6-s + 19.5·7-s + 1.14·8-s + 53.2·9-s − 0.991·10-s − 61.7·11-s + 71.6·12-s − 24.5·13-s − 1.39·14-s − 124.·15-s + 63.8·16-s − 12.3·17-s − 3.80·18-s − 35.5·19-s − 110.·20-s − 175.·21-s + 4.41·22-s − 22.2·23-s − 10.2·24-s + 67.2·25-s + 1.75·26-s − 234.·27-s − 156.·28-s + ⋯
L(s)  = 1  − 0.0252·2-s − 1.72·3-s − 0.999·4-s + 1.24·5-s + 0.0435·6-s + 1.05·7-s + 0.0505·8-s + 1.97·9-s − 0.0313·10-s − 1.69·11-s + 1.72·12-s − 0.524·13-s − 0.0267·14-s − 2.13·15-s + 0.998·16-s − 0.175·17-s − 0.0498·18-s − 0.429·19-s − 1.23·20-s − 1.82·21-s + 0.0427·22-s − 0.201·23-s − 0.0871·24-s + 0.537·25-s + 0.0132·26-s − 1.67·27-s − 1.05·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(961\)    =    \(31^{2}\)
Sign: $-1$
Analytic conductor: \(56.7008\)
Root analytic conductor: \(7.52999\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 961,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 \)
good2 \( 1 + 0.0714T + 8T^{2} \)
3 \( 1 + 8.95T + 27T^{2} \)
5 \( 1 - 13.8T + 125T^{2} \)
7 \( 1 - 19.5T + 343T^{2} \)
11 \( 1 + 61.7T + 1.33e3T^{2} \)
13 \( 1 + 24.5T + 2.19e3T^{2} \)
17 \( 1 + 12.3T + 4.91e3T^{2} \)
19 \( 1 + 35.5T + 6.85e3T^{2} \)
23 \( 1 + 22.2T + 1.21e4T^{2} \)
29 \( 1 - 230.T + 2.43e4T^{2} \)
37 \( 1 - 196.T + 5.06e4T^{2} \)
41 \( 1 + 9.13T + 6.89e4T^{2} \)
43 \( 1 - 450.T + 7.95e4T^{2} \)
47 \( 1 + 115.T + 1.03e5T^{2} \)
53 \( 1 + 252.T + 1.48e5T^{2} \)
59 \( 1 + 413.T + 2.05e5T^{2} \)
61 \( 1 - 493.T + 2.26e5T^{2} \)
67 \( 1 - 611.T + 3.00e5T^{2} \)
71 \( 1 + 392.T + 3.57e5T^{2} \)
73 \( 1 + 358.T + 3.89e5T^{2} \)
79 \( 1 - 274.T + 4.93e5T^{2} \)
83 \( 1 + 723.T + 5.71e5T^{2} \)
89 \( 1 - 702.T + 7.04e5T^{2} \)
97 \( 1 + 969.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.547444147896943110942279469751, −8.344194074312037775737615486846, −7.53732518598332300984033789043, −6.26264766132659538439599194012, −5.58009584730506299339352376999, −4.96219732952841289130761052326, −4.49812992174887101253543120885, −2.40739833051450751391783010658, −1.12773665455817615214291547063, 0, 1.12773665455817615214291547063, 2.40739833051450751391783010658, 4.49812992174887101253543120885, 4.96219732952841289130761052326, 5.58009584730506299339352376999, 6.26264766132659538439599194012, 7.53732518598332300984033789043, 8.344194074312037775737615486846, 9.547444147896943110942279469751

Graph of the $Z$-function along the critical line