Properties

Label 2-31e2-1.1-c3-0-104
Degree $2$
Conductor $961$
Sign $-1$
Analytic cond. $56.7008$
Root an. cond. $7.52999$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.02·2-s − 8.82·3-s − 3.90·4-s + 19.4·5-s + 17.8·6-s − 18.7·7-s + 24.0·8-s + 50.8·9-s − 39.4·10-s − 7.50·11-s + 34.4·12-s + 20.1·13-s + 38.0·14-s − 171.·15-s − 17.5·16-s − 73.2·17-s − 102.·18-s − 47.8·19-s − 76.0·20-s + 165.·21-s + 15.1·22-s + 0.911·23-s − 212.·24-s + 254.·25-s − 40.7·26-s − 210.·27-s + 73.2·28-s + ⋯
L(s)  = 1  − 0.715·2-s − 1.69·3-s − 0.487·4-s + 1.74·5-s + 1.21·6-s − 1.01·7-s + 1.06·8-s + 1.88·9-s − 1.24·10-s − 0.205·11-s + 0.828·12-s + 0.429·13-s + 0.725·14-s − 2.95·15-s − 0.274·16-s − 1.04·17-s − 1.34·18-s − 0.577·19-s − 0.850·20-s + 1.72·21-s + 0.147·22-s + 0.00826·23-s − 1.80·24-s + 2.03·25-s − 0.307·26-s − 1.49·27-s + 0.494·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 961 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(961\)    =    \(31^{2}\)
Sign: $-1$
Analytic conductor: \(56.7008\)
Root analytic conductor: \(7.52999\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 961,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad31 \( 1 \)
good2 \( 1 + 2.02T + 8T^{2} \)
3 \( 1 + 8.82T + 27T^{2} \)
5 \( 1 - 19.4T + 125T^{2} \)
7 \( 1 + 18.7T + 343T^{2} \)
11 \( 1 + 7.50T + 1.33e3T^{2} \)
13 \( 1 - 20.1T + 2.19e3T^{2} \)
17 \( 1 + 73.2T + 4.91e3T^{2} \)
19 \( 1 + 47.8T + 6.85e3T^{2} \)
23 \( 1 - 0.911T + 1.21e4T^{2} \)
29 \( 1 + 191.T + 2.43e4T^{2} \)
37 \( 1 - 211.T + 5.06e4T^{2} \)
41 \( 1 - 334.T + 6.89e4T^{2} \)
43 \( 1 + 179.T + 7.95e4T^{2} \)
47 \( 1 - 354.T + 1.03e5T^{2} \)
53 \( 1 - 333.T + 1.48e5T^{2} \)
59 \( 1 - 599.T + 2.05e5T^{2} \)
61 \( 1 + 325.T + 2.26e5T^{2} \)
67 \( 1 - 263.T + 3.00e5T^{2} \)
71 \( 1 + 182.T + 3.57e5T^{2} \)
73 \( 1 + 74.0T + 3.89e5T^{2} \)
79 \( 1 + 794.T + 4.93e5T^{2} \)
83 \( 1 - 19.1T + 5.71e5T^{2} \)
89 \( 1 - 1.44e3T + 7.04e5T^{2} \)
97 \( 1 - 129.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.438602438683719985188535403785, −8.804798385253534560717277435296, −7.27402326183527541417445594958, −6.39813680095447055918942373232, −5.90659872282197938427073434627, −5.13748690419856222930693069535, −4.12555616517325365532450438426, −2.21899976834563412642540241651, −1.03960241309839689996575661042, 0, 1.03960241309839689996575661042, 2.21899976834563412642540241651, 4.12555616517325365532450438426, 5.13748690419856222930693069535, 5.90659872282197938427073434627, 6.39813680095447055918942373232, 7.27402326183527541417445594958, 8.804798385253534560717277435296, 9.438602438683719985188535403785

Graph of the $Z$-function along the critical line