Properties

Label 961.2.g.c.732.1
Level $961$
Weight $2$
Character 961.732
Analytic conductor $7.674$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-6,1,6,6,-2,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{15})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 732.1
Root \(0.669131 - 0.743145i\) of defining polynomial
Character \(\chi\) \(=\) 961.732
Dual form 961.2.g.c.235.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.30902 - 0.951057i) q^{2} +(0.913545 + 0.406737i) q^{3} +(0.190983 + 0.587785i) q^{4} +(0.190983 - 0.330792i) q^{5} +(-0.809017 - 1.40126i) q^{6} +(2.00739 - 2.22943i) q^{7} +(-0.690983 + 2.12663i) q^{8} +(-1.33826 - 1.48629i) q^{9} +(-0.564602 + 0.251377i) q^{10} +(-5.12165 - 1.08864i) q^{11} +(-0.0646021 + 0.614648i) q^{12} +(-0.193806 - 1.84395i) q^{13} +(-4.74803 + 1.00922i) q^{14} +(0.309017 - 0.224514i) q^{15} +(3.92705 - 2.85317i) q^{16} +(-4.14350 + 0.880728i) q^{17} +(0.338261 + 3.21834i) q^{18} +(-0.522642 + 4.97261i) q^{19} +(0.230909 + 0.0490813i) q^{20} +(2.74064 - 1.22021i) q^{21} +(5.66897 + 6.29602i) q^{22} +(-1.07295 + 3.30220i) q^{23} +(-1.49622 + 1.66172i) q^{24} +(2.42705 + 4.20378i) q^{25} +(-1.50000 + 2.59808i) q^{26} +(-1.54508 - 4.75528i) q^{27} +(1.69381 + 0.754131i) q^{28} +(-5.16312 - 3.75123i) q^{29} -0.618034 q^{30} -3.38197 q^{32} +(-4.23607 - 3.07768i) q^{33} +(6.26153 + 2.78781i) q^{34} +(-0.354102 - 1.08981i) q^{35} +(0.618034 - 1.07047i) q^{36} +(-2.11803 - 3.66854i) q^{37} +(5.41338 - 6.01217i) q^{38} +(0.572949 - 1.76336i) q^{39} +(0.571506 + 0.634721i) q^{40} +(-2.25841 + 1.00551i) q^{41} +(-4.74803 - 1.00922i) q^{42} +(-0.248983 + 2.36892i) q^{43} +(-0.338261 - 3.21834i) q^{44} +(-0.747238 + 0.158830i) q^{45} +(4.54508 - 3.30220i) q^{46} +(4.54508 - 3.30220i) q^{47} +(4.74803 - 1.00922i) q^{48} +(-0.209057 - 1.98904i) q^{49} +(0.820977 - 7.81108i) q^{50} +(-4.14350 - 0.880728i) q^{51} +(1.04683 - 0.466079i) q^{52} +(-0.473881 - 0.526298i) q^{53} +(-2.50000 + 7.69421i) q^{54} +(-1.33826 + 1.48629i) q^{55} +(3.35410 + 5.80948i) q^{56} +(-2.50000 + 4.33013i) q^{57} +(3.19098 + 9.82084i) q^{58} +(0.482228 + 0.214702i) q^{59} +(0.190983 + 0.138757i) q^{60} -10.9443 q^{61} -6.00000 q^{63} +(-3.42705 - 2.48990i) q^{64} +(-0.646976 - 0.288052i) q^{65} +(2.61803 + 8.05748i) q^{66} +(-0.118034 + 0.204441i) q^{67} +(-1.30902 - 2.26728i) q^{68} +(-2.32331 + 2.58030i) q^{69} +(-0.572949 + 1.76336i) q^{70} +(-7.42077 - 8.24160i) q^{71} +(4.08550 - 1.81898i) q^{72} +(11.3096 + 2.40394i) q^{73} +(-0.716449 + 6.81655i) q^{74} +(0.507392 + 4.82751i) q^{75} +(-3.02264 + 0.642482i) q^{76} +(-12.7082 + 9.23305i) q^{77} +(-2.42705 + 1.76336i) q^{78} +(-0.193806 - 1.84395i) q^{80} +(-0.104528 + 0.994522i) q^{81} +(3.91259 + 0.831647i) q^{82} +(-6.47719 + 2.88383i) q^{83} +(1.24064 + 1.37787i) q^{84} +(-0.500000 + 1.53884i) q^{85} +(2.57890 - 2.86416i) q^{86} +(-3.19098 - 5.52694i) q^{87} +(5.85410 - 10.1396i) q^{88} +(2.66312 + 8.19624i) q^{89} +(1.12920 + 0.502754i) q^{90} +(-4.50000 - 3.26944i) q^{91} -2.14590 q^{92} -9.09017 q^{94} +(1.54508 + 1.12257i) q^{95} +(-3.08958 - 1.37557i) q^{96} +(-5.78115 - 17.7926i) q^{97} +(-1.61803 + 2.80252i) q^{98} +(5.23607 + 9.06914i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{2} + q^{3} + 6 q^{4} + 6 q^{5} - 2 q^{6} + 3 q^{7} - 10 q^{8} - 2 q^{9} - 2 q^{10} - 2 q^{11} + 2 q^{12} + 6 q^{13} - 6 q^{14} - 2 q^{15} + 18 q^{16} - 3 q^{17} - 6 q^{18} + 5 q^{19} + 7 q^{20}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30902 0.951057i −0.925615 0.672499i 0.0193004 0.999814i \(-0.493856\pi\)
−0.944915 + 0.327315i \(0.893856\pi\)
\(3\) 0.913545 + 0.406737i 0.527436 + 0.234830i 0.653139 0.757238i \(-0.273452\pi\)
−0.125703 + 0.992068i \(0.540119\pi\)
\(4\) 0.190983 + 0.587785i 0.0954915 + 0.293893i
\(5\) 0.190983 0.330792i 0.0854102 0.147935i −0.820156 0.572140i \(-0.806113\pi\)
0.905566 + 0.424206i \(0.139447\pi\)
\(6\) −0.809017 1.40126i −0.330280 0.572061i
\(7\) 2.00739 2.22943i 0.758723 0.842647i −0.232807 0.972523i \(-0.574791\pi\)
0.991530 + 0.129876i \(0.0414579\pi\)
\(8\) −0.690983 + 2.12663i −0.244299 + 0.751876i
\(9\) −1.33826 1.48629i −0.446087 0.495430i
\(10\) −0.564602 + 0.251377i −0.178543 + 0.0794924i
\(11\) −5.12165 1.08864i −1.54423 0.328237i −0.644476 0.764625i \(-0.722924\pi\)
−0.899759 + 0.436387i \(0.856258\pi\)
\(12\) −0.0646021 + 0.614648i −0.0186490 + 0.177434i
\(13\) −0.193806 1.84395i −0.0537522 0.511418i −0.987962 0.154695i \(-0.950561\pi\)
0.934210 0.356723i \(-0.116106\pi\)
\(14\) −4.74803 + 1.00922i −1.26896 + 0.269727i
\(15\) 0.309017 0.224514i 0.0797878 0.0579693i
\(16\) 3.92705 2.85317i 0.981763 0.713292i
\(17\) −4.14350 + 0.880728i −1.00495 + 0.213608i −0.680855 0.732418i \(-0.738392\pi\)
−0.324091 + 0.946026i \(0.605058\pi\)
\(18\) 0.338261 + 3.21834i 0.0797289 + 0.758570i
\(19\) −0.522642 + 4.97261i −0.119902 + 1.14079i 0.754739 + 0.656025i \(0.227763\pi\)
−0.874642 + 0.484770i \(0.838903\pi\)
\(20\) 0.230909 + 0.0490813i 0.0516329 + 0.0109749i
\(21\) 2.74064 1.22021i 0.598056 0.266272i
\(22\) 5.66897 + 6.29602i 1.20863 + 1.34232i
\(23\) −1.07295 + 3.30220i −0.223725 + 0.688556i 0.774693 + 0.632337i \(0.217904\pi\)
−0.998418 + 0.0562184i \(0.982096\pi\)
\(24\) −1.49622 + 1.66172i −0.305415 + 0.339198i
\(25\) 2.42705 + 4.20378i 0.485410 + 0.840755i
\(26\) −1.50000 + 2.59808i −0.294174 + 0.509525i
\(27\) −1.54508 4.75528i −0.297352 0.915155i
\(28\) 1.69381 + 0.754131i 0.320099 + 0.142517i
\(29\) −5.16312 3.75123i −0.958767 0.696585i −0.00590304 0.999983i \(-0.501879\pi\)
−0.952864 + 0.303397i \(0.901879\pi\)
\(30\) −0.618034 −0.112837
\(31\) 0 0
\(32\) −3.38197 −0.597853
\(33\) −4.23607 3.07768i −0.737405 0.535756i
\(34\) 6.26153 + 2.78781i 1.07384 + 0.478106i
\(35\) −0.354102 1.08981i −0.0598542 0.184212i
\(36\) 0.618034 1.07047i 0.103006 0.178411i
\(37\) −2.11803 3.66854i −0.348203 0.603105i 0.637728 0.770262i \(-0.279875\pi\)
−0.985930 + 0.167157i \(0.946541\pi\)
\(38\) 5.41338 6.01217i 0.878166 0.975302i
\(39\) 0.572949 1.76336i 0.0917453 0.282363i
\(40\) 0.571506 + 0.634721i 0.0903630 + 0.100358i
\(41\) −2.25841 + 1.00551i −0.352704 + 0.157034i −0.575438 0.817845i \(-0.695168\pi\)
0.222734 + 0.974879i \(0.428502\pi\)
\(42\) −4.74803 1.00922i −0.732637 0.155727i
\(43\) −0.248983 + 2.36892i −0.0379696 + 0.361257i 0.958996 + 0.283418i \(0.0914685\pi\)
−0.996966 + 0.0778383i \(0.975198\pi\)
\(44\) −0.338261 3.21834i −0.0509948 0.485183i
\(45\) −0.747238 + 0.158830i −0.111392 + 0.0236770i
\(46\) 4.54508 3.30220i 0.670136 0.486882i
\(47\) 4.54508 3.30220i 0.662969 0.481675i −0.204695 0.978826i \(-0.565620\pi\)
0.867664 + 0.497151i \(0.165620\pi\)
\(48\) 4.74803 1.00922i 0.685319 0.145669i
\(49\) −0.209057 1.98904i −0.0298653 0.284149i
\(50\) 0.820977 7.81108i 0.116104 1.10465i
\(51\) −4.14350 0.880728i −0.580206 0.123327i
\(52\) 1.04683 0.466079i 0.145169 0.0646335i
\(53\) −0.473881 0.526298i −0.0650926 0.0722926i 0.709719 0.704485i \(-0.248822\pi\)
−0.774812 + 0.632192i \(0.782155\pi\)
\(54\) −2.50000 + 7.69421i −0.340207 + 1.04705i
\(55\) −1.33826 + 1.48629i −0.180451 + 0.200411i
\(56\) 3.35410 + 5.80948i 0.448211 + 0.776324i
\(57\) −2.50000 + 4.33013i −0.331133 + 0.573539i
\(58\) 3.19098 + 9.82084i 0.418997 + 1.28954i
\(59\) 0.482228 + 0.214702i 0.0627807 + 0.0279518i 0.437887 0.899030i \(-0.355727\pi\)
−0.375106 + 0.926982i \(0.622394\pi\)
\(60\) 0.190983 + 0.138757i 0.0246558 + 0.0179135i
\(61\) −10.9443 −1.40127 −0.700635 0.713520i \(-0.747100\pi\)
−0.700635 + 0.713520i \(0.747100\pi\)
\(62\) 0 0
\(63\) −6.00000 −0.755929
\(64\) −3.42705 2.48990i −0.428381 0.311237i
\(65\) −0.646976 0.288052i −0.0802476 0.0357285i
\(66\) 2.61803 + 8.05748i 0.322258 + 0.991807i
\(67\) −0.118034 + 0.204441i −0.0144201 + 0.0249764i −0.873145 0.487460i \(-0.837924\pi\)
0.858725 + 0.512436i \(0.171257\pi\)
\(68\) −1.30902 2.26728i −0.158742 0.274949i
\(69\) −2.32331 + 2.58030i −0.279694 + 0.310632i
\(70\) −0.572949 + 1.76336i −0.0684805 + 0.210761i
\(71\) −7.42077 8.24160i −0.880684 0.978098i 0.119207 0.992869i \(-0.461965\pi\)
−0.999891 + 0.0147711i \(0.995298\pi\)
\(72\) 4.08550 1.81898i 0.481481 0.214369i
\(73\) 11.3096 + 2.40394i 1.32369 + 0.281360i 0.814936 0.579550i \(-0.196772\pi\)
0.508757 + 0.860910i \(0.330105\pi\)
\(74\) −0.716449 + 6.81655i −0.0832855 + 0.792408i
\(75\) 0.507392 + 4.82751i 0.0585886 + 0.557433i
\(76\) −3.02264 + 0.642482i −0.346721 + 0.0736978i
\(77\) −12.7082 + 9.23305i −1.44823 + 1.05220i
\(78\) −2.42705 + 1.76336i −0.274809 + 0.199661i
\(79\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(80\) −0.193806 1.84395i −0.0216682 0.206159i
\(81\) −0.104528 + 0.994522i −0.0116143 + 0.110502i
\(82\) 3.91259 + 0.831647i 0.432073 + 0.0918400i
\(83\) −6.47719 + 2.88383i −0.710964 + 0.316542i −0.730162 0.683274i \(-0.760555\pi\)
0.0191978 + 0.999816i \(0.493889\pi\)
\(84\) 1.24064 + 1.37787i 0.135365 + 0.150338i
\(85\) −0.500000 + 1.53884i −0.0542326 + 0.166911i
\(86\) 2.57890 2.86416i 0.278090 0.308850i
\(87\) −3.19098 5.52694i −0.342109 0.592551i
\(88\) 5.85410 10.1396i 0.624049 1.08089i
\(89\) 2.66312 + 8.19624i 0.282290 + 0.868799i 0.987198 + 0.159500i \(0.0509884\pi\)
−0.704908 + 0.709299i \(0.749012\pi\)
\(90\) 1.12920 + 0.502754i 0.119029 + 0.0529949i
\(91\) −4.50000 3.26944i −0.471728 0.342731i
\(92\) −2.14590 −0.223725
\(93\) 0 0
\(94\) −9.09017 −0.937579
\(95\) 1.54508 + 1.12257i 0.158522 + 0.115173i
\(96\) −3.08958 1.37557i −0.315329 0.140393i
\(97\) −5.78115 17.7926i −0.586987 1.80656i −0.591140 0.806569i \(-0.701322\pi\)
0.00415240 0.999991i \(-0.498678\pi\)
\(98\) −1.61803 + 2.80252i −0.163446 + 0.283097i
\(99\) 5.23607 + 9.06914i 0.526245 + 0.911482i
\(100\) −2.00739 + 2.22943i −0.200739 + 0.222943i
\(101\) 2.85410 8.78402i 0.283994 0.874043i −0.702705 0.711482i \(-0.748024\pi\)
0.986698 0.162561i \(-0.0519755\pi\)
\(102\) 4.58629 + 5.09359i 0.454110 + 0.504341i
\(103\) −6.26153 + 2.78781i −0.616967 + 0.274692i −0.691329 0.722540i \(-0.742975\pi\)
0.0743621 + 0.997231i \(0.476308\pi\)
\(104\) 4.05530 + 0.861981i 0.397655 + 0.0845242i
\(105\) 0.119779 1.13962i 0.0116892 0.111216i
\(106\) 0.119779 + 1.13962i 0.0116340 + 0.110690i
\(107\) 9.86968 2.09786i 0.954138 0.202808i 0.295563 0.955323i \(-0.404493\pi\)
0.658575 + 0.752515i \(0.271160\pi\)
\(108\) 2.50000 1.81636i 0.240563 0.174779i
\(109\) −14.8992 + 10.8249i −1.42708 + 1.03684i −0.436533 + 0.899688i \(0.643794\pi\)
−0.990551 + 0.137148i \(0.956206\pi\)
\(110\) 3.16535 0.672816i 0.301804 0.0641505i
\(111\) −0.442790 4.21286i −0.0420277 0.399867i
\(112\) 1.52218 14.4825i 0.143832 1.36847i
\(113\) −4.74803 1.00922i −0.446657 0.0949399i −0.0209084 0.999781i \(-0.506656\pi\)
−0.425749 + 0.904842i \(0.639989\pi\)
\(114\) 7.39074 3.29057i 0.692206 0.308190i
\(115\) 0.887426 + 0.985587i 0.0827529 + 0.0919064i
\(116\) 1.21885 3.75123i 0.113167 0.348293i
\(117\) −2.48127 + 2.75573i −0.229394 + 0.254768i
\(118\) −0.427051 0.739674i −0.0393132 0.0680925i
\(119\) −6.35410 + 11.0056i −0.582480 + 1.00888i
\(120\) 0.263932 + 0.812299i 0.0240936 + 0.0741524i
\(121\) 14.9971 + 6.67715i 1.36338 + 0.607014i
\(122\) 14.3262 + 10.4086i 1.29704 + 0.942352i
\(123\) −2.47214 −0.222905
\(124\) 0 0
\(125\) 3.76393 0.336656
\(126\) 7.85410 + 5.70634i 0.699699 + 0.508361i
\(127\) −5.26561 2.34440i −0.467248 0.208032i 0.159588 0.987184i \(-0.448984\pi\)
−0.626835 + 0.779152i \(0.715650\pi\)
\(128\) 4.20820 + 12.9515i 0.371956 + 1.14476i
\(129\) −1.19098 + 2.06284i −0.104860 + 0.181623i
\(130\) 0.572949 + 0.992377i 0.0502510 + 0.0870372i
\(131\) −7.42077 + 8.24160i −0.648356 + 0.720072i −0.974284 0.225322i \(-0.927656\pi\)
0.325928 + 0.945394i \(0.394323\pi\)
\(132\) 1.00000 3.07768i 0.0870388 0.267878i
\(133\) 10.0370 + 11.1472i 0.870315 + 0.966582i
\(134\) 0.348943 0.155360i 0.0301441 0.0134210i
\(135\) −1.86810 0.397076i −0.160780 0.0341749i
\(136\) 0.990108 9.42025i 0.0849010 0.807779i
\(137\) 0.258409 + 2.45859i 0.0220773 + 0.210052i 0.999999 + 0.00108194i \(0.000344392\pi\)
−0.977922 + 0.208970i \(0.932989\pi\)
\(138\) 5.49527 1.16805i 0.467788 0.0994314i
\(139\) −0.690983 + 0.502029i −0.0586084 + 0.0425815i −0.616704 0.787195i \(-0.711532\pi\)
0.558095 + 0.829777i \(0.311532\pi\)
\(140\) 0.572949 0.416272i 0.0484230 0.0351814i
\(141\) 5.49527 1.16805i 0.462785 0.0983680i
\(142\) 1.87569 + 17.8460i 0.157404 + 1.49760i
\(143\) −1.01478 + 9.65502i −0.0848605 + 0.807393i
\(144\) −9.49606 2.01845i −0.791338 0.168204i
\(145\) −2.22694 + 0.991500i −0.184938 + 0.0823396i
\(146\) −12.5182 13.9029i −1.03602 1.15061i
\(147\) 0.618034 1.90211i 0.0509746 0.156884i
\(148\) 1.75181 1.94558i 0.143998 0.159926i
\(149\) −6.01722 10.4221i −0.492950 0.853814i 0.507017 0.861936i \(-0.330748\pi\)
−0.999967 + 0.00812166i \(0.997415\pi\)
\(150\) 3.92705 6.80185i 0.320642 0.555369i
\(151\) −5.71885 17.6008i −0.465393 1.43233i −0.858487 0.512835i \(-0.828595\pi\)
0.393094 0.919498i \(-0.371405\pi\)
\(152\) −10.2137 4.54745i −0.828444 0.368847i
\(153\) 6.85410 + 4.97980i 0.554121 + 0.402593i
\(154\) 25.4164 2.04811
\(155\) 0 0
\(156\) 1.14590 0.0917453
\(157\) 3.00000 + 2.17963i 0.239426 + 0.173953i 0.701028 0.713134i \(-0.252725\pi\)
−0.461601 + 0.887087i \(0.652725\pi\)
\(158\) 0 0
\(159\) −0.218847 0.673542i −0.0173557 0.0534154i
\(160\) −0.645898 + 1.11873i −0.0510627 + 0.0884432i
\(161\) 5.20820 + 9.02087i 0.410464 + 0.710944i
\(162\) 1.08268 1.20243i 0.0850631 0.0944721i
\(163\) 0.218847 0.673542i 0.0171414 0.0527559i −0.942120 0.335276i \(-0.891170\pi\)
0.959261 + 0.282520i \(0.0911704\pi\)
\(164\) −1.02234 1.13542i −0.0798314 0.0886617i
\(165\) −1.82709 + 0.813473i −0.142239 + 0.0633288i
\(166\) 11.2214 + 2.38519i 0.870953 + 0.185127i
\(167\) −0.497966 + 4.73783i −0.0385338 + 0.366625i 0.958215 + 0.286050i \(0.0923423\pi\)
−0.996749 + 0.0805749i \(0.974324\pi\)
\(168\) 0.701198 + 6.67146i 0.0540986 + 0.514714i
\(169\) 9.35335 1.98812i 0.719488 0.152932i
\(170\) 2.11803 1.53884i 0.162446 0.118024i
\(171\) 8.09017 5.87785i 0.618671 0.449491i
\(172\) −1.43997 + 0.306074i −0.109796 + 0.0233379i
\(173\) −1.26377 12.0239i −0.0960824 0.914163i −0.931302 0.364247i \(-0.881326\pi\)
0.835220 0.549916i \(-0.185340\pi\)
\(174\) −1.07939 + 10.2697i −0.0818280 + 0.778542i
\(175\) 14.2441 + 3.02767i 1.07675 + 0.228871i
\(176\) −23.2190 + 10.3378i −1.75020 + 0.779240i
\(177\) 0.353210 + 0.392279i 0.0265489 + 0.0294855i
\(178\) 4.30902 13.2618i 0.322974 0.994013i
\(179\) 3.21074 3.56589i 0.239982 0.266527i −0.611108 0.791548i \(-0.709276\pi\)
0.851089 + 0.525021i \(0.175942\pi\)
\(180\) −0.236068 0.408882i −0.0175955 0.0304762i
\(181\) 8.50000 14.7224i 0.631800 1.09431i −0.355383 0.934721i \(-0.615650\pi\)
0.987184 0.159589i \(-0.0510169\pi\)
\(182\) 2.78115 + 8.55951i 0.206153 + 0.634473i
\(183\) −9.99809 4.45144i −0.739080 0.329060i
\(184\) −6.28115 4.56352i −0.463053 0.336428i
\(185\) −1.61803 −0.118960
\(186\) 0 0
\(187\) 22.1803 1.62199
\(188\) 2.80902 + 2.04087i 0.204869 + 0.148846i
\(189\) −13.7032 6.10105i −0.996760 0.443786i
\(190\) −0.954915 2.93893i −0.0692768 0.213212i
\(191\) 2.45492 4.25204i 0.177631 0.307667i −0.763437 0.645882i \(-0.776490\pi\)
0.941069 + 0.338215i \(0.109823\pi\)
\(192\) −2.11803 3.66854i −0.152856 0.264754i
\(193\) −3.09007 + 3.43187i −0.222428 + 0.247031i −0.844022 0.536308i \(-0.819819\pi\)
0.621594 + 0.783339i \(0.286485\pi\)
\(194\) −9.35410 + 28.7890i −0.671585 + 2.06693i
\(195\) −0.473881 0.526298i −0.0339353 0.0376890i
\(196\) 1.12920 0.502754i 0.0806574 0.0359110i
\(197\) −10.1888 2.16569i −0.725921 0.154299i −0.169893 0.985463i \(-0.554342\pi\)
−0.556028 + 0.831163i \(0.687675\pi\)
\(198\) 1.77116 16.8514i 0.125871 1.19758i
\(199\) −1.38937 13.2190i −0.0984899 0.937069i −0.926485 0.376333i \(-0.877185\pi\)
0.827995 0.560736i \(-0.189482\pi\)
\(200\) −10.6169 + 2.25669i −0.750729 + 0.159572i
\(201\) −0.190983 + 0.138757i −0.0134709 + 0.00978718i
\(202\) −12.0902 + 8.78402i −0.850661 + 0.618042i
\(203\) −18.7275 + 3.98066i −1.31441 + 0.279387i
\(204\) −0.273659 2.60369i −0.0191600 0.182295i
\(205\) −0.0987033 + 0.939099i −0.00689374 + 0.0655895i
\(206\) 10.8478 + 2.30578i 0.755804 + 0.160651i
\(207\) 6.34391 2.82449i 0.440932 0.196316i
\(208\) −6.02218 6.68830i −0.417563 0.463750i
\(209\) 8.09017 24.8990i 0.559609 1.72230i
\(210\) −1.24064 + 1.37787i −0.0856120 + 0.0950818i
\(211\) 4.00000 + 6.92820i 0.275371 + 0.476957i 0.970229 0.242190i \(-0.0778659\pi\)
−0.694857 + 0.719148i \(0.744533\pi\)
\(212\) 0.218847 0.379054i 0.0150305 0.0260336i
\(213\) −3.42705 10.5474i −0.234818 0.722694i
\(214\) −14.9148 6.64048i −1.01955 0.453934i
\(215\) 0.736068 + 0.534785i 0.0501994 + 0.0364720i
\(216\) 11.1803 0.760726
\(217\) 0 0
\(218\) 29.7984 2.01820
\(219\) 9.35410 + 6.79615i 0.632092 + 0.459241i
\(220\) −1.12920 0.502754i −0.0761309 0.0338957i
\(221\) 2.42705 + 7.46969i 0.163261 + 0.502466i
\(222\) −3.42705 + 5.93583i −0.230009 + 0.398387i
\(223\) −6.35410 11.0056i −0.425502 0.736991i 0.570965 0.820974i \(-0.306569\pi\)
−0.996467 + 0.0839830i \(0.973236\pi\)
\(224\) −6.78893 + 7.53987i −0.453605 + 0.503779i
\(225\) 3.00000 9.23305i 0.200000 0.615537i
\(226\) 5.25542 + 5.83674i 0.349585 + 0.388254i
\(227\) 19.8629 8.84353i 1.31835 0.586966i 0.377566 0.925983i \(-0.376761\pi\)
0.940780 + 0.339017i \(0.110094\pi\)
\(228\) −3.02264 0.642482i −0.200179 0.0425494i
\(229\) −0.288910 + 2.74879i −0.0190917 + 0.181645i −0.999912 0.0132691i \(-0.995776\pi\)
0.980820 + 0.194914i \(0.0624429\pi\)
\(230\) −0.224307 2.13414i −0.0147904 0.140721i
\(231\) −15.3649 + 3.26592i −1.01094 + 0.214882i
\(232\) 11.5451 8.38800i 0.757972 0.550699i
\(233\) 4.69098 3.40820i 0.307317 0.223279i −0.423428 0.905930i \(-0.639173\pi\)
0.730744 + 0.682651i \(0.239173\pi\)
\(234\) 5.86889 1.24747i 0.383661 0.0815497i
\(235\) −0.224307 2.13414i −0.0146322 0.139216i
\(236\) −0.0341011 + 0.324451i −0.00221980 + 0.0211199i
\(237\) 0 0
\(238\) 18.7846 8.36344i 1.21762 0.542122i
\(239\) −8.97733 9.97033i −0.580695 0.644927i 0.379191 0.925319i \(-0.376202\pi\)
−0.959886 + 0.280391i \(0.909536\pi\)
\(240\) 0.572949 1.76336i 0.0369837 0.113824i
\(241\) 11.6911 12.9843i 0.753093 0.836394i −0.237763 0.971323i \(-0.576414\pi\)
0.990855 + 0.134929i \(0.0430807\pi\)
\(242\) −13.2812 23.0036i −0.853745 1.47873i
\(243\) −8.00000 + 13.8564i −0.513200 + 0.888889i
\(244\) −2.09017 6.43288i −0.133809 0.411823i
\(245\) −0.697887 0.310719i −0.0445863 0.0198511i
\(246\) 3.23607 + 2.35114i 0.206324 + 0.149903i
\(247\) 9.27051 0.589868
\(248\) 0 0
\(249\) −7.09017 −0.449321
\(250\) −4.92705 3.57971i −0.311614 0.226401i
\(251\) 15.4794 + 6.89186i 0.977049 + 0.435010i 0.832219 0.554447i \(-0.187070\pi\)
0.144829 + 0.989457i \(0.453737\pi\)
\(252\) −1.14590 3.52671i −0.0721848 0.222162i
\(253\) 9.09017 15.7446i 0.571494 0.989857i
\(254\) 4.66312 + 8.07676i 0.292590 + 0.506781i
\(255\) −1.08268 + 1.20243i −0.0677998 + 0.0752993i
\(256\) 4.19098 12.8985i 0.261936 0.806157i
\(257\) −17.0069 18.8881i −1.06086 1.17821i −0.983445 0.181207i \(-0.942000\pi\)
−0.0774160 0.996999i \(-0.524667\pi\)
\(258\) 3.52090 1.56760i 0.219201 0.0975948i
\(259\) −12.4305 2.64218i −0.772394 0.164177i
\(260\) 0.0457515 0.435296i 0.00283739 0.0269959i
\(261\) 1.33419 + 12.6940i 0.0825845 + 0.785739i
\(262\) 17.5521 3.73082i 1.08438 0.230491i
\(263\) 11.1631 8.11048i 0.688347 0.500114i −0.187769 0.982213i \(-0.560126\pi\)
0.876116 + 0.482100i \(0.160126\pi\)
\(264\) 9.47214 6.88191i 0.582970 0.423552i
\(265\) −0.264599 + 0.0562422i −0.0162542 + 0.00345493i
\(266\) −2.53696 24.1376i −0.155551 1.47997i
\(267\) −0.900830 + 8.57082i −0.0551299 + 0.524526i
\(268\) −0.142710 0.0303339i −0.00871739 0.00185294i
\(269\) 3.30524 1.47159i 0.201524 0.0897242i −0.303493 0.952834i \(-0.598153\pi\)
0.505017 + 0.863109i \(0.331486\pi\)
\(270\) 2.06773 + 2.29644i 0.125838 + 0.139757i
\(271\) 3.26393 10.0453i 0.198270 0.610212i −0.801653 0.597790i \(-0.796046\pi\)
0.999923 0.0124220i \(-0.00395415\pi\)
\(272\) −13.7589 + 15.2808i −0.834254 + 0.926533i
\(273\) −2.78115 4.81710i −0.168323 0.291544i
\(274\) 2.00000 3.46410i 0.120824 0.209274i
\(275\) −7.85410 24.1724i −0.473620 1.45765i
\(276\) −1.96038 0.872815i −0.118001 0.0525373i
\(277\) −1.88197 1.36733i −0.113076 0.0821548i 0.529810 0.848116i \(-0.322263\pi\)
−0.642886 + 0.765962i \(0.722263\pi\)
\(278\) 1.38197 0.0828848
\(279\) 0 0
\(280\) 2.56231 0.153127
\(281\) 8.11803 + 5.89810i 0.484281 + 0.351851i 0.802981 0.596005i \(-0.203246\pi\)
−0.318700 + 0.947856i \(0.603246\pi\)
\(282\) −8.30428 3.69731i −0.494513 0.220171i
\(283\) −4.19098 12.8985i −0.249128 0.766737i −0.994930 0.100570i \(-0.967933\pi\)
0.745802 0.666168i \(-0.232067\pi\)
\(284\) 3.42705 5.93583i 0.203358 0.352226i
\(285\) 0.954915 + 1.65396i 0.0565643 + 0.0979722i
\(286\) 10.5108 11.6735i 0.621519 0.690267i
\(287\) −2.29180 + 7.05342i −0.135280 + 0.416350i
\(288\) 4.52595 + 5.02658i 0.266694 + 0.296194i
\(289\) 0.862635 0.384070i 0.0507433 0.0225924i
\(290\) 3.85808 + 0.820060i 0.226554 + 0.0481556i
\(291\) 1.95554 18.6057i 0.114636 1.09069i
\(292\) 0.746950 + 7.10675i 0.0437119 + 0.415891i
\(293\) 3.68168 0.782565i 0.215086 0.0457180i −0.0991082 0.995077i \(-0.531599\pi\)
0.314194 + 0.949359i \(0.398266\pi\)
\(294\) −2.61803 + 1.90211i −0.152687 + 0.110933i
\(295\) 0.163119 0.118513i 0.00949715 0.00690009i
\(296\) 9.26515 1.96937i 0.538526 0.114467i
\(297\) 2.73659 + 26.0369i 0.158793 + 1.51082i
\(298\) −2.03539 + 19.3655i −0.117907 + 1.12181i
\(299\) 6.29702 + 1.33847i 0.364166 + 0.0774058i
\(300\) −2.74064 + 1.22021i −0.158231 + 0.0704489i
\(301\) 4.78154 + 5.31044i 0.275603 + 0.306089i
\(302\) −9.25329 + 28.4787i −0.532467 + 1.63876i
\(303\) 6.18014 6.86374i 0.355040 0.394311i
\(304\) 12.1353 + 21.0189i 0.696005 + 1.20552i
\(305\) −2.09017 + 3.62028i −0.119683 + 0.207297i
\(306\) −4.23607 13.0373i −0.242160 0.745292i
\(307\) −4.65010 2.07036i −0.265395 0.118162i 0.269725 0.962937i \(-0.413067\pi\)
−0.535121 + 0.844776i \(0.679734\pi\)
\(308\) −7.85410 5.70634i −0.447529 0.325149i
\(309\) −6.85410 −0.389916
\(310\) 0 0
\(311\) 7.52786 0.426866 0.213433 0.976958i \(-0.431535\pi\)
0.213433 + 0.976958i \(0.431535\pi\)
\(312\) 3.35410 + 2.43690i 0.189889 + 0.137962i
\(313\) 2.95630 + 1.31623i 0.167100 + 0.0743976i 0.488582 0.872518i \(-0.337514\pi\)
−0.321482 + 0.946916i \(0.604181\pi\)
\(314\) −1.85410 5.70634i −0.104633 0.322027i
\(315\) −1.14590 + 1.98475i −0.0645640 + 0.111828i
\(316\) 0 0
\(317\) −6.61673 + 7.34862i −0.371632 + 0.412740i −0.899732 0.436443i \(-0.856238\pi\)
0.528100 + 0.849182i \(0.322905\pi\)
\(318\) −0.354102 + 1.08981i −0.0198571 + 0.0611137i
\(319\) 22.3599 + 24.8332i 1.25192 + 1.39039i
\(320\) −1.47815 + 0.658114i −0.0826310 + 0.0367897i
\(321\) 9.86968 + 2.09786i 0.550872 + 0.117091i
\(322\) 1.76173 16.7618i 0.0981776 0.934097i
\(323\) −2.21395 21.0643i −0.123187 1.17205i
\(324\) −0.604528 + 0.128496i −0.0335849 + 0.00713869i
\(325\) 7.28115 5.29007i 0.403886 0.293440i
\(326\) −0.927051 + 0.673542i −0.0513446 + 0.0373040i
\(327\) −18.0140 + 3.82899i −0.996175 + 0.211743i
\(328\) −0.577819 5.49758i −0.0319047 0.303553i
\(329\) 1.76173 16.7618i 0.0971275 0.924106i
\(330\) 3.16535 + 0.672816i 0.174247 + 0.0370373i
\(331\) 20.3451 9.05823i 1.11827 0.497885i 0.237479 0.971393i \(-0.423679\pi\)
0.880790 + 0.473507i \(0.157012\pi\)
\(332\) −2.93211 3.25644i −0.160920 0.178720i
\(333\) −2.61803 + 8.05748i −0.143467 + 0.441547i
\(334\) 5.15780 5.72831i 0.282222 0.313439i
\(335\) 0.0450850 + 0.0780895i 0.00246326 + 0.00426648i
\(336\) 7.28115 12.6113i 0.397219 0.688004i
\(337\) 8.64590 + 26.6093i 0.470972 + 1.44950i 0.851314 + 0.524657i \(0.175806\pi\)
−0.380342 + 0.924846i \(0.624194\pi\)
\(338\) −14.1345 6.29308i −0.768815 0.342299i
\(339\) −3.92705 2.85317i −0.213288 0.154963i
\(340\) −1.00000 −0.0542326
\(341\) 0 0
\(342\) −16.1803 −0.874933
\(343\) 12.1353 + 8.81678i 0.655242 + 0.476061i
\(344\) −4.86576 2.16638i −0.262344 0.116803i
\(345\) 0.409830 + 1.26133i 0.0220645 + 0.0679076i
\(346\) −9.78115 + 16.9415i −0.525838 + 0.910778i
\(347\) −16.0623 27.8207i −0.862270 1.49350i −0.869733 0.493523i \(-0.835709\pi\)
0.00746305 0.999972i \(-0.497624\pi\)
\(348\) 2.63923 2.93117i 0.141478 0.157127i
\(349\) −1.01722 + 3.13068i −0.0544506 + 0.167582i −0.974584 0.224025i \(-0.928080\pi\)
0.920133 + 0.391606i \(0.128080\pi\)
\(350\) −15.7663 17.5102i −0.842742 0.935960i
\(351\) −8.46903 + 3.77066i −0.452043 + 0.201263i
\(352\) 17.3212 + 3.68174i 0.923225 + 0.196238i
\(353\) −3.61857 + 34.4284i −0.192597 + 1.83244i 0.290504 + 0.956874i \(0.406177\pi\)
−0.483101 + 0.875565i \(0.660490\pi\)
\(354\) −0.0892780 0.849423i −0.00474507 0.0451463i
\(355\) −4.14350 + 0.880728i −0.219914 + 0.0467442i
\(356\) −4.30902 + 3.13068i −0.228377 + 0.165926i
\(357\) −10.2812 + 7.46969i −0.544136 + 0.395338i
\(358\) −7.59427 + 1.61421i −0.401370 + 0.0853138i
\(359\) 1.01118 + 9.62077i 0.0533682 + 0.507765i 0.988254 + 0.152817i \(0.0488346\pi\)
−0.934886 + 0.354947i \(0.884499\pi\)
\(360\) 0.178556 1.69885i 0.00941072 0.0895371i
\(361\) −5.86889 1.24747i −0.308889 0.0656563i
\(362\) −25.1285 + 11.1879i −1.32073 + 0.588025i
\(363\) 10.9847 + 12.1998i 0.576548 + 0.640322i
\(364\) 1.06231 3.26944i 0.0556800 0.171365i
\(365\) 2.95515 3.28203i 0.154680 0.171789i
\(366\) 8.85410 + 15.3358i 0.462811 + 0.801613i
\(367\) −1.36475 + 2.36381i −0.0712391 + 0.123390i −0.899445 0.437035i \(-0.856029\pi\)
0.828206 + 0.560425i \(0.189362\pi\)
\(368\) 5.20820 + 16.0292i 0.271496 + 0.835580i
\(369\) 4.51682 + 2.01102i 0.235136 + 0.104689i
\(370\) 2.11803 + 1.53884i 0.110111 + 0.0800006i
\(371\) −2.12461 −0.110304
\(372\) 0 0
\(373\) −31.6525 −1.63890 −0.819452 0.573148i \(-0.805722\pi\)
−0.819452 + 0.573148i \(0.805722\pi\)
\(374\) −29.0344 21.0948i −1.50134 1.09078i
\(375\) 3.43852 + 1.53093i 0.177565 + 0.0790568i
\(376\) 3.88197 + 11.9475i 0.200197 + 0.616143i
\(377\) −5.91641 + 10.2475i −0.304711 + 0.527774i
\(378\) 12.1353 + 21.0189i 0.624170 + 1.08109i
\(379\) 5.63168 6.25461i 0.289280 0.321278i −0.580935 0.813950i \(-0.697313\pi\)
0.870215 + 0.492672i \(0.163980\pi\)
\(380\) −0.364745 + 1.12257i −0.0187110 + 0.0575866i
\(381\) −3.85682 4.28344i −0.197591 0.219447i
\(382\) −7.25745 + 3.23123i −0.371324 + 0.165324i
\(383\) −9.92419 2.10945i −0.507102 0.107788i −0.0527459 0.998608i \(-0.516797\pi\)
−0.454356 + 0.890820i \(0.650131\pi\)
\(384\) −1.42347 + 13.5434i −0.0726413 + 0.691135i
\(385\) 0.627171 + 5.96713i 0.0319636 + 0.304113i
\(386\) 7.30885 1.55354i 0.372011 0.0790733i
\(387\) 3.85410 2.80017i 0.195915 0.142341i
\(388\) 9.35410 6.79615i 0.474883 0.345022i
\(389\) 28.4337 6.04376i 1.44164 0.306431i 0.580279 0.814418i \(-0.302944\pi\)
0.861365 + 0.507987i \(0.169610\pi\)
\(390\) 0.119779 + 1.13962i 0.00606524 + 0.0577069i
\(391\) 1.53743 14.6276i 0.0777510 0.739751i
\(392\) 4.37441 + 0.929809i 0.220941 + 0.0469625i
\(393\) −10.1314 + 4.51078i −0.511060 + 0.227539i
\(394\) 11.2776 + 12.5250i 0.568157 + 0.631002i
\(395\) 0 0
\(396\) −4.33070 + 4.80973i −0.217626 + 0.241698i
\(397\) −14.8541 25.7281i −0.745506 1.29125i −0.949958 0.312378i \(-0.898875\pi\)
0.204452 0.978877i \(-0.434459\pi\)
\(398\) −10.7533 + 18.6252i −0.539014 + 0.933599i
\(399\) 4.63525 + 14.2658i 0.232053 + 0.714186i
\(400\) 21.5252 + 9.58365i 1.07626 + 0.479183i
\(401\) 19.2812 + 14.0086i 0.962855 + 0.699555i 0.953812 0.300404i \(-0.0971215\pi\)
0.00904282 + 0.999959i \(0.497122\pi\)
\(402\) 0.381966 0.0190507
\(403\) 0 0
\(404\) 5.70820 0.283994
\(405\) 0.309017 + 0.224514i 0.0153552 + 0.0111562i
\(406\) 28.3005 + 12.6002i 1.40453 + 0.625336i
\(407\) 6.85410 + 21.0948i 0.339745 + 1.04563i
\(408\) 4.73607 8.20311i 0.234470 0.406114i
\(409\) 8.09017 + 14.0126i 0.400033 + 0.692878i 0.993729 0.111811i \(-0.0356653\pi\)
−0.593696 + 0.804689i \(0.702332\pi\)
\(410\) 1.02234 1.13542i 0.0504898 0.0560746i
\(411\) −0.763932 + 2.35114i −0.0376820 + 0.115973i
\(412\) −2.83448 3.14801i −0.139645 0.155091i
\(413\) 1.44668 0.644105i 0.0711866 0.0316943i
\(414\) −10.9905 2.33611i −0.540155 0.114814i
\(415\) −0.283084 + 2.69337i −0.0138961 + 0.132212i
\(416\) 0.655447 + 6.23616i 0.0321359 + 0.305753i
\(417\) −0.835438 + 0.177578i −0.0409116 + 0.00869602i
\(418\) −34.2705 + 24.8990i −1.67623 + 1.21785i
\(419\) 3.61803 2.62866i 0.176753 0.128418i −0.495891 0.868385i \(-0.665159\pi\)
0.672644 + 0.739966i \(0.265159\pi\)
\(420\) 0.692728 0.147244i 0.0338017 0.00718477i
\(421\) −2.01072 19.1307i −0.0979963 0.932373i −0.927488 0.373853i \(-0.878036\pi\)
0.829491 0.558519i \(-0.188630\pi\)
\(422\) 1.35304 12.8734i 0.0658652 0.626665i
\(423\) −10.9905 2.33611i −0.534378 0.113586i
\(424\) 1.44668 0.644105i 0.0702572 0.0312805i
\(425\) −13.7589 15.2808i −0.667403 0.741226i
\(426\) −5.54508 + 17.0660i −0.268660 + 0.826851i
\(427\) −21.9694 + 24.3995i −1.06318 + 1.18078i
\(428\) 3.11803 + 5.40059i 0.150716 + 0.261048i
\(429\) −4.85410 + 8.40755i −0.234358 + 0.405920i
\(430\) −0.454915 1.40008i −0.0219380 0.0675181i
\(431\) 22.6230 + 10.0724i 1.08971 + 0.485170i 0.871332 0.490694i \(-0.163257\pi\)
0.218378 + 0.975864i \(0.429923\pi\)
\(432\) −19.6353 14.2658i −0.944702 0.686366i
\(433\) −27.4164 −1.31755 −0.658774 0.752341i \(-0.728925\pi\)
−0.658774 + 0.752341i \(0.728925\pi\)
\(434\) 0 0
\(435\) −2.43769 −0.116878
\(436\) −9.20820 6.69015i −0.440993 0.320400i
\(437\) −15.8598 7.06122i −0.758676 0.337784i
\(438\) −5.78115 17.7926i −0.276234 0.850161i
\(439\) 5.91641 10.2475i 0.282375 0.489087i −0.689594 0.724196i \(-0.742211\pi\)
0.971969 + 0.235108i \(0.0755445\pi\)
\(440\) −2.23607 3.87298i −0.106600 0.184637i
\(441\) −2.67652 + 2.97258i −0.127453 + 0.141551i
\(442\) 3.92705 12.0862i 0.186791 0.574883i
\(443\) −0.585749 0.650540i −0.0278298 0.0309081i 0.729069 0.684440i \(-0.239953\pi\)
−0.756899 + 0.653532i \(0.773287\pi\)
\(444\) 2.39169 1.06485i 0.113505 0.0505356i
\(445\) 3.21986 + 0.684403i 0.152636 + 0.0324438i
\(446\) −2.14935 + 20.4497i −0.101774 + 0.968320i
\(447\) −1.25794 11.9685i −0.0594986 0.566091i
\(448\) −12.4305 + 2.64218i −0.587286 + 0.124831i
\(449\) −27.5623 + 20.0252i −1.30075 + 0.945047i −0.999963 0.00864558i \(-0.997248\pi\)
−0.300783 + 0.953693i \(0.597248\pi\)
\(450\) −12.7082 + 9.23305i −0.599070 + 0.435250i
\(451\) 12.6614 2.69127i 0.596202 0.126727i
\(452\) −0.313585 2.98357i −0.0147498 0.140335i
\(453\) 1.93446 18.4052i 0.0908891 0.864752i
\(454\) −34.4116 7.31440i −1.61501 0.343282i
\(455\) −1.94093 + 0.864157i −0.0909922 + 0.0405123i
\(456\) −7.48111 8.30861i −0.350335 0.389086i
\(457\) −8.26393 + 25.4338i −0.386570 + 1.18974i 0.548764 + 0.835977i \(0.315098\pi\)
−0.935335 + 0.353764i \(0.884902\pi\)
\(458\) 2.99244 3.32344i 0.139828 0.155294i
\(459\) 10.5902 + 18.3427i 0.494307 + 0.856164i
\(460\) −0.409830 + 0.709846i −0.0191084 + 0.0330968i
\(461\) 9.80902 + 30.1891i 0.456851 + 1.40604i 0.868948 + 0.494904i \(0.164797\pi\)
−0.412096 + 0.911140i \(0.635203\pi\)
\(462\) 23.2190 + 10.3378i 1.08025 + 0.480957i
\(463\) 7.38197 + 5.36331i 0.343069 + 0.249254i 0.745956 0.665996i \(-0.231993\pi\)
−0.402887 + 0.915250i \(0.631993\pi\)
\(464\) −30.9787 −1.43815
\(465\) 0 0
\(466\) −9.38197 −0.434611
\(467\) −31.3713 22.7926i −1.45169 1.05472i −0.985432 0.170068i \(-0.945601\pi\)
−0.466259 0.884648i \(-0.654399\pi\)
\(468\) −2.09366 0.932157i −0.0967795 0.0430890i
\(469\) 0.218847 + 0.673542i 0.0101054 + 0.0311013i
\(470\) −1.73607 + 3.00696i −0.0800788 + 0.138701i
\(471\) 1.85410 + 3.21140i 0.0854325 + 0.147973i
\(472\) −0.789802 + 0.877163i −0.0363536 + 0.0403747i
\(473\) 3.85410 11.8617i 0.177212 0.545402i
\(474\) 0 0
\(475\) −22.1722 + 9.87171i −1.01733 + 0.452945i
\(476\) −7.68247 1.63296i −0.352125 0.0748466i
\(477\) −0.148055 + 1.40865i −0.00677897 + 0.0644976i
\(478\) 2.26913 + 21.5893i 0.103787 + 0.987471i
\(479\) −8.74882 + 1.85962i −0.399744 + 0.0849681i −0.403397 0.915025i \(-0.632171\pi\)
0.00365302 + 0.999993i \(0.498837\pi\)
\(480\) −1.04508 + 0.759299i −0.0477014 + 0.0346571i
\(481\) −6.35410 + 4.61653i −0.289722 + 0.210495i
\(482\) −27.6527 + 5.87777i −1.25955 + 0.267725i
\(483\) 1.08881 + 10.3593i 0.0495426 + 0.471367i
\(484\) −1.06054 + 10.0903i −0.0482061 + 0.458651i
\(485\) −6.98974 1.48572i −0.317388 0.0674629i
\(486\) 23.6504 10.5298i 1.07280 0.477642i
\(487\) 28.0520 + 31.1548i 1.27116 + 1.41176i 0.867950 + 0.496651i \(0.165437\pi\)
0.403205 + 0.915110i \(0.367896\pi\)
\(488\) 7.56231 23.2744i 0.342330 1.05358i
\(489\) 0.473881 0.526298i 0.0214296 0.0238000i
\(490\) 0.618034 + 1.07047i 0.0279199 + 0.0483587i
\(491\) 10.7984 18.7033i 0.487324 0.844070i −0.512570 0.858645i \(-0.671306\pi\)
0.999894 + 0.0145759i \(0.00463981\pi\)
\(492\) −0.472136 1.45309i −0.0212855 0.0655101i
\(493\) 24.6972 + 10.9959i 1.11231 + 0.495230i
\(494\) −12.1353 8.81678i −0.545991 0.396686i
\(495\) 4.00000 0.179787
\(496\) 0 0
\(497\) −33.2705 −1.49239
\(498\) 9.28115 + 6.74315i 0.415898 + 0.302168i
\(499\) −9.91572 4.41476i −0.443888 0.197632i 0.172606 0.984991i \(-0.444781\pi\)
−0.616495 + 0.787359i \(0.711448\pi\)
\(500\) 0.718847 + 2.21238i 0.0321478 + 0.0989408i
\(501\) −2.38197 + 4.12569i −0.106418 + 0.184322i
\(502\) −13.7082 23.7433i −0.611827 1.05972i
\(503\) 13.2850 14.7545i 0.592348 0.657869i −0.370209 0.928949i \(-0.620714\pi\)
0.962557 + 0.271079i \(0.0873805\pi\)
\(504\) 4.14590 12.7598i 0.184673 0.568365i
\(505\) −2.36060 2.62171i −0.105045 0.116665i
\(506\) −26.8732 + 11.9647i −1.19466 + 0.531897i
\(507\) 9.35335 + 1.98812i 0.415397 + 0.0882953i
\(508\) 0.372362 3.54279i 0.0165209 0.157186i
\(509\) −1.36830 13.0185i −0.0606486 0.577033i −0.982076 0.188483i \(-0.939643\pi\)
0.921428 0.388550i \(-0.127024\pi\)
\(510\) 2.56082 0.544320i 0.113395 0.0241029i
\(511\) 28.0623 20.3885i 1.24140 0.901932i
\(512\) 4.28115 3.11044i 0.189202 0.137463i
\(513\) 24.4537 5.19779i 1.07966 0.229488i
\(514\) 4.29869 + 40.8993i 0.189607 + 1.80399i
\(515\) −0.273659 + 2.60369i −0.0120589 + 0.114732i
\(516\) −1.43997 0.306074i −0.0633910 0.0134742i
\(517\) −26.8732 + 11.9647i −1.18188 + 0.526208i
\(518\) 13.7589 + 15.2808i 0.604530 + 0.671399i
\(519\) 3.73607 11.4984i 0.163995 0.504725i
\(520\) 1.05963 1.17684i 0.0464678 0.0516078i
\(521\) 13.5344 + 23.4423i 0.592955 + 1.02703i 0.993832 + 0.110896i \(0.0353720\pi\)
−0.400877 + 0.916132i \(0.631295\pi\)
\(522\) 10.3262 17.8856i 0.451967 0.782830i
\(523\) 1.89261 + 5.82485i 0.0827580 + 0.254703i 0.983870 0.178883i \(-0.0572482\pi\)
−0.901112 + 0.433586i \(0.857248\pi\)
\(524\) −6.26153 2.78781i −0.273536 0.121786i
\(525\) 11.7812 + 8.55951i 0.514172 + 0.373568i
\(526\) −22.3262 −0.973470
\(527\) 0 0
\(528\) −25.4164 −1.10611
\(529\) 8.85410 + 6.43288i 0.384961 + 0.279691i
\(530\) 0.399853 + 0.178026i 0.0173685 + 0.00773297i
\(531\) −0.326238 1.00406i −0.0141575 0.0435724i
\(532\) −4.63525 + 8.02850i −0.200964 + 0.348079i
\(533\) 2.29180 + 3.96951i 0.0992687 + 0.171938i
\(534\) 9.33054 10.3626i 0.403772 0.448434i
\(535\) 1.19098 3.66547i 0.0514907 0.158472i
\(536\) −0.353210 0.392279i −0.0152563 0.0169439i
\(537\) 4.38353 1.95167i 0.189163 0.0842210i
\(538\) −5.72618 1.21714i −0.246873 0.0524745i
\(539\) −1.09464 + 10.4148i −0.0471493 + 0.448596i
\(540\) −0.123379 1.17387i −0.00530939 0.0505155i
\(541\) −21.5192 + 4.57406i −0.925185 + 0.196654i −0.645784 0.763520i \(-0.723469\pi\)
−0.279401 + 0.960175i \(0.590136\pi\)
\(542\) −13.8262 + 10.0453i −0.593888 + 0.431485i
\(543\) 13.7533 9.99235i 0.590210 0.428813i
\(544\) 14.0132 2.97859i 0.600810 0.127706i
\(545\) 0.735299 + 6.99591i 0.0314968 + 0.299672i
\(546\) −0.940756 + 8.95070i −0.0402606 + 0.383054i
\(547\) 10.0669 + 2.13978i 0.430429 + 0.0914906i 0.418031 0.908433i \(-0.362720\pi\)
0.0123979 + 0.999923i \(0.496054\pi\)
\(548\) −1.39577 + 0.621438i −0.0596245 + 0.0265465i
\(549\) 14.6463 + 16.2664i 0.625089 + 0.694231i
\(550\) −12.7082 + 39.1118i −0.541880 + 1.66773i
\(551\) 21.3518 23.7136i 0.909619 1.01023i
\(552\) −3.88197 6.72376i −0.165227 0.286182i
\(553\) 0 0
\(554\) 1.16312 + 3.57971i 0.0494162 + 0.152087i
\(555\) −1.47815 0.658114i −0.0627439 0.0279354i
\(556\) −0.427051 0.310271i −0.0181110 0.0131584i
\(557\) −0.111456 −0.00472255 −0.00236127 0.999997i \(-0.500752\pi\)
−0.00236127 + 0.999997i \(0.500752\pi\)
\(558\) 0 0
\(559\) 4.41641 0.186794
\(560\) −4.50000 3.26944i −0.190160 0.138159i
\(561\) 20.2627 + 9.02156i 0.855494 + 0.380890i
\(562\) −5.01722 15.4414i −0.211639 0.651357i
\(563\) −5.78115 + 10.0133i −0.243647 + 0.422008i −0.961750 0.273928i \(-0.911677\pi\)
0.718104 + 0.695936i \(0.245010\pi\)
\(564\) 1.73607 + 3.00696i 0.0731016 + 0.126616i
\(565\) −1.24064 + 1.37787i −0.0521940 + 0.0579673i
\(566\) −6.78115 + 20.8702i −0.285033 + 0.877242i
\(567\) 2.00739 + 2.22943i 0.0843025 + 0.0936274i
\(568\) 22.6544 10.0864i 0.950559 0.423216i
\(569\) 23.9374 + 5.08804i 1.00351 + 0.213302i 0.680227 0.733002i \(-0.261881\pi\)
0.323280 + 0.946304i \(0.395215\pi\)
\(570\) 0.323011 3.07324i 0.0135294 0.128724i
\(571\) 0.731699 + 6.96165i 0.0306207 + 0.291336i 0.999106 + 0.0422669i \(0.0134580\pi\)
−0.968486 + 0.249069i \(0.919875\pi\)
\(572\) −5.86889 + 1.24747i −0.245390 + 0.0521593i
\(573\) 3.97214 2.88593i 0.165938 0.120561i
\(574\) 9.70820 7.05342i 0.405213 0.294404i
\(575\) −16.4858 + 3.50416i −0.687505 + 0.146134i
\(576\) 0.885579 + 8.42572i 0.0368991 + 0.351072i
\(577\) 0.834003 7.93501i 0.0347200 0.330339i −0.963350 0.268246i \(-0.913556\pi\)
0.998070 0.0620925i \(-0.0197774\pi\)
\(578\) −1.49448 0.317661i −0.0621620 0.0132129i
\(579\) −4.21878 + 1.87832i −0.175327 + 0.0780605i
\(580\) −1.00810 1.11961i −0.0418590 0.0464891i
\(581\) −6.57295 + 20.2295i −0.272692 + 0.839259i
\(582\) −20.2549 + 22.4954i −0.839594 + 0.932463i
\(583\) 1.85410 + 3.21140i 0.0767891 + 0.133003i
\(584\) −12.9271 + 22.3903i −0.534925 + 0.926518i
\(585\) 0.437694 + 1.34708i 0.0180964 + 0.0556951i
\(586\) −5.56365 2.47710i −0.229832 0.102328i
\(587\) −32.3713 23.5191i −1.33611 0.970739i −0.999577 0.0290662i \(-0.990747\pi\)
−0.336530 0.941673i \(-0.609253\pi\)
\(588\) 1.23607 0.0509746
\(589\) 0 0
\(590\) −0.326238 −0.0134310
\(591\) −8.42705 6.12261i −0.346643 0.251851i
\(592\) −18.7846 8.36344i −0.772042 0.343735i
\(593\) 12.9443 + 39.8384i 0.531558 + 1.63597i 0.750972 + 0.660334i \(0.229585\pi\)
−0.219414 + 0.975632i \(0.570415\pi\)
\(594\) 21.1803 36.6854i 0.869040 1.50522i
\(595\) 2.42705 + 4.20378i 0.0994994 + 0.172338i
\(596\) 4.97679 5.52728i 0.203857 0.226406i
\(597\) 4.10739 12.6412i 0.168104 0.517372i
\(598\) −6.96994 7.74090i −0.285022 0.316549i
\(599\) 4.75192 2.11569i 0.194158 0.0864448i −0.307354 0.951595i \(-0.599444\pi\)
0.501513 + 0.865150i \(0.332777\pi\)
\(600\) −10.6169 2.25669i −0.433434 0.0921292i
\(601\) 2.29963 21.8795i 0.0938037 0.892483i −0.841885 0.539657i \(-0.818554\pi\)
0.935689 0.352826i \(-0.114779\pi\)
\(602\) −1.20859 11.4990i −0.0492585 0.468663i
\(603\) 0.461819 0.0981626i 0.0188067 0.00399749i
\(604\) 9.25329 6.72291i 0.376511 0.273551i
\(605\) 5.07295 3.68571i 0.206245 0.149846i
\(606\) −14.6177 + 3.10709i −0.593804 + 0.126217i
\(607\) −0.148055 1.40865i −0.00600936 0.0571753i 0.991106 0.133073i \(-0.0424844\pi\)
−0.997116 + 0.0758976i \(0.975818\pi\)
\(608\) 1.76756 16.8172i 0.0716840 0.682027i
\(609\) −18.7275 3.98066i −0.758877 0.161304i
\(610\) 6.17916 2.75114i 0.250187 0.111390i
\(611\) −6.96994 7.74090i −0.281973 0.313163i
\(612\) −1.61803 + 4.97980i −0.0654051 + 0.201296i
\(613\) −28.7353 + 31.9138i −1.16061 + 1.28899i −0.210315 + 0.977634i \(0.567449\pi\)
−0.950294 + 0.311353i \(0.899218\pi\)
\(614\) 4.11803 + 7.13264i 0.166190 + 0.287850i
\(615\) −0.472136 + 0.817763i −0.0190384 + 0.0329754i
\(616\) −10.8541 33.4055i −0.437324 1.34595i
\(617\) −8.91980 3.97135i −0.359097 0.159880i 0.219255 0.975668i \(-0.429637\pi\)
−0.578352 + 0.815787i \(0.696304\pi\)
\(618\) 8.97214 + 6.51864i 0.360912 + 0.262218i
\(619\) 40.0000 1.60774 0.803868 0.594808i \(-0.202772\pi\)
0.803868 + 0.594808i \(0.202772\pi\)
\(620\) 0 0
\(621\) 17.3607 0.696660
\(622\) −9.85410 7.15942i −0.395113 0.287067i
\(623\) 23.6189 + 10.5158i 0.946271 + 0.421307i
\(624\) −2.78115 8.55951i −0.111335 0.342655i
\(625\) −11.4164 + 19.7738i −0.456656 + 0.790952i
\(626\) −2.61803 4.53457i −0.104638 0.181238i
\(627\) 17.5181 19.4558i 0.699604 0.776989i
\(628\) −0.708204 + 2.17963i −0.0282604 + 0.0869766i
\(629\) 12.0071 + 13.3352i 0.478753 + 0.531709i
\(630\) 3.38761 1.50826i 0.134966 0.0600906i
\(631\) −41.3468 8.78853i −1.64599 0.349866i −0.710631 0.703565i \(-0.751590\pi\)
−0.935359 + 0.353699i \(0.884924\pi\)
\(632\) 0 0
\(633\) 0.836228 + 7.95618i 0.0332371 + 0.316230i
\(634\) 15.6504 3.32659i 0.621555 0.132116i
\(635\) −1.78115 + 1.29408i −0.0706829 + 0.0513541i
\(636\) 0.354102 0.257270i 0.0140411 0.0102014i
\(637\) −3.62717 + 0.770979i −0.143714 + 0.0305473i
\(638\) −5.65174 53.7727i −0.223754 2.12888i
\(639\) −2.31848 + 22.0588i −0.0917175 + 0.872634i
\(640\) 5.08796 + 1.08148i 0.201119 + 0.0427492i
\(641\) 27.3240 12.1654i 1.07923 0.480505i 0.211419 0.977395i \(-0.432191\pi\)
0.867813 + 0.496890i \(0.165525\pi\)
\(642\) −10.9244 12.1328i −0.431151 0.478842i
\(643\) −4.59017 + 14.1271i −0.181019 + 0.557118i −0.999857 0.0169060i \(-0.994618\pi\)
0.818838 + 0.574024i \(0.194618\pi\)
\(644\) −4.30766 + 4.78414i −0.169746 + 0.188521i
\(645\) 0.454915 + 0.787936i 0.0179123 + 0.0310249i
\(646\) −17.1353 + 29.6791i −0.674178 + 1.16771i
\(647\) −1.81966 5.60034i −0.0715382 0.220172i 0.908895 0.417026i \(-0.136928\pi\)
−0.980433 + 0.196854i \(0.936928\pi\)
\(648\) −2.04275 0.909491i −0.0802468 0.0357282i
\(649\) −2.23607 1.62460i −0.0877733 0.0637711i
\(650\) −14.5623 −0.571181
\(651\) 0 0
\(652\) 0.437694 0.0171414
\(653\) −6.75329 4.90655i −0.264277 0.192008i 0.447754 0.894157i \(-0.352224\pi\)
−0.712030 + 0.702149i \(0.752224\pi\)
\(654\) 27.2222 + 12.1201i 1.06447 + 0.473933i
\(655\) 1.30902 + 4.02874i 0.0511475 + 0.157416i
\(656\) −6.00000 + 10.3923i −0.234261 + 0.405751i
\(657\) −11.5623 20.0265i −0.451089 0.781308i
\(658\) −18.2475 + 20.2659i −0.711363 + 0.790049i
\(659\) −11.6459 + 35.8424i −0.453660 + 1.39622i 0.419042 + 0.907967i \(0.362366\pi\)
−0.872701 + 0.488254i \(0.837634\pi\)
\(660\) −0.827091 0.918578i −0.0321945 0.0357556i
\(661\) −13.1386 + 5.84967i −0.511032 + 0.227526i −0.646019 0.763321i \(-0.723567\pi\)
0.134987 + 0.990847i \(0.456901\pi\)
\(662\) −35.2470 7.49198i −1.36991 0.291184i
\(663\) −0.820977 + 7.81108i −0.0318841 + 0.303357i
\(664\) −1.65720 15.7673i −0.0643120 0.611888i
\(665\) 5.60429 1.19123i 0.217325 0.0461938i
\(666\) 11.0902 8.05748i 0.429735 0.312221i
\(667\) 17.9271 13.0248i 0.694138 0.504321i
\(668\) −2.87993 + 0.612149i −0.111428 + 0.0236847i
\(669\) −1.32837 12.6386i −0.0513577 0.488636i
\(670\) 0.0152505 0.145099i 0.000589178 0.00560566i
\(671\) 56.0527 + 11.9144i 2.16389 + 0.459949i
\(672\) −9.26874 + 4.12671i −0.357549 + 0.159191i
\(673\) −14.9995 16.6586i −0.578188 0.642143i 0.381113 0.924529i \(-0.375541\pi\)
−0.959301 + 0.282385i \(0.908874\pi\)
\(674\) 13.9894 43.0548i 0.538850 1.65841i
\(675\) 16.2401 18.0365i 0.625083 0.694225i
\(676\) 2.95492 + 5.11806i 0.113651 + 0.196849i
\(677\) −1.32624 + 2.29711i −0.0509715 + 0.0882852i −0.890385 0.455207i \(-0.849565\pi\)
0.839414 + 0.543493i \(0.182898\pi\)
\(678\) 2.42705 + 7.46969i 0.0932103 + 0.286872i
\(679\) −51.2724 22.8279i −1.96765 0.876056i
\(680\) −2.92705 2.12663i −0.112247 0.0815524i
\(681\) 21.7426 0.833180
\(682\) 0 0
\(683\) 27.9443 1.06926 0.534629 0.845087i \(-0.320451\pi\)
0.534629 + 0.845087i \(0.320451\pi\)
\(684\) 5.00000 + 3.63271i 0.191180 + 0.138900i
\(685\) 0.862635 + 0.384070i 0.0329596 + 0.0146746i
\(686\) −7.50000 23.0826i −0.286351 0.881299i
\(687\) −1.38197 + 2.39364i −0.0527253 + 0.0913229i
\(688\) 5.78115 + 10.0133i 0.220404 + 0.381752i
\(689\) −0.878624 + 0.975810i −0.0334729 + 0.0371754i
\(690\) 0.663119 2.04087i 0.0252445 0.0776946i
\(691\) −33.3447 37.0330i −1.26849 1.40880i −0.871065 0.491167i \(-0.836570\pi\)
−0.397425 0.917634i \(-0.630096\pi\)
\(692\) 6.82614 3.03919i 0.259491 0.115533i
\(693\) 30.7299 + 6.53184i 1.16733 + 0.248124i
\(694\) −5.43326 + 51.6940i −0.206244 + 1.96228i
\(695\) 0.0341011 + 0.324451i 0.00129353 + 0.0123071i
\(696\) 13.9587 2.96701i 0.529102 0.112464i
\(697\) 8.47214 6.15537i 0.320905 0.233151i
\(698\) 4.30902 3.13068i 0.163099 0.118498i
\(699\) 5.67167 1.20555i 0.214522 0.0455981i
\(700\) 0.940756 + 8.95070i 0.0355572 + 0.338305i
\(701\) 0.100928 0.960269i 0.00381201 0.0362688i −0.992451 0.122646i \(-0.960862\pi\)
0.996263 + 0.0863767i \(0.0275288\pi\)
\(702\) 14.6722 + 3.11868i 0.553767 + 0.117707i
\(703\) 19.3492 8.61482i 0.729769 0.324914i
\(704\) 14.8415 + 16.4832i 0.559362 + 0.621234i
\(705\) 0.663119 2.04087i 0.0249745 0.0768636i
\(706\) 37.4801 41.6259i 1.41058 1.56661i
\(707\) −13.8541 23.9960i −0.521037 0.902463i
\(708\) −0.163119 + 0.282530i −0.00613039 + 0.0106181i
\(709\) −3.35410 10.3229i −0.125966 0.387683i 0.868110 0.496372i \(-0.165335\pi\)
−0.994076 + 0.108689i \(0.965335\pi\)
\(710\) 6.26153 + 2.78781i 0.234991 + 0.104625i
\(711\) 0 0
\(712\) −19.2705 −0.722193
\(713\) 0 0
\(714\) 20.5623 0.769525
\(715\) 3.00000 + 2.17963i 0.112194 + 0.0815134i
\(716\) 2.70917 + 1.20620i 0.101247 + 0.0450779i
\(717\) −4.14590 12.7598i −0.154831 0.476522i
\(718\) 7.82624 13.5554i 0.292073 0.505885i
\(719\) −21.8090 37.7743i −0.813339 1.40874i −0.910514 0.413477i \(-0.864314\pi\)
0.0971753 0.995267i \(-0.469019\pi\)
\(720\) −2.48127 + 2.75573i −0.0924716 + 0.102700i
\(721\) −6.35410 + 19.5559i −0.236639 + 0.728300i
\(722\) 6.49606 + 7.21460i 0.241758 + 0.268500i
\(723\) 15.9616 7.10656i 0.593618 0.264296i
\(724\) 10.2770 + 2.18444i 0.381941 + 0.0811841i
\(725\) 3.23816 30.8090i 0.120262 1.14422i
\(726\) −2.77652 26.4168i −0.103046 0.980419i
\(727\) −29.1809 + 6.20259i −1.08226 + 0.230041i −0.714328 0.699811i \(-0.753267\pi\)
−0.367932 + 0.929853i \(0.619934\pi\)
\(728\) 10.0623 7.31069i 0.372934 0.270952i
\(729\) −10.5172 + 7.64121i −0.389527 + 0.283008i
\(730\) −6.98974 + 1.48572i −0.258702 + 0.0549888i
\(731\) −1.05471 10.0349i −0.0390099 0.371154i
\(732\) 0.707023 6.72688i 0.0261323 0.248633i
\(733\) −9.83599 2.09070i −0.363300 0.0772219i 0.0226448 0.999744i \(-0.492791\pi\)
−0.385945 + 0.922522i \(0.626125\pi\)
\(734\) 4.03459 1.79631i 0.148919 0.0663032i
\(735\) −0.511170 0.567712i −0.0188548 0.0209404i
\(736\) 3.62868 11.1679i 0.133755 0.411655i
\(737\) 0.827091 0.918578i 0.0304663 0.0338362i
\(738\) −4.00000 6.92820i −0.147242 0.255031i
\(739\) 4.14590 7.18091i 0.152509 0.264154i −0.779640 0.626228i \(-0.784598\pi\)
0.932149 + 0.362074i \(0.117931\pi\)
\(740\) −0.309017 0.951057i −0.0113597 0.0349615i
\(741\) 8.46903 + 3.77066i 0.311118 + 0.138519i
\(742\) 2.78115 + 2.02063i 0.102099 + 0.0741795i
\(743\) 23.5623 0.864417 0.432209 0.901774i \(-0.357734\pi\)
0.432209 + 0.901774i \(0.357734\pi\)
\(744\) 0 0
\(745\) −4.59675 −0.168412
\(746\) 41.4336 + 30.1033i 1.51699 + 1.10216i
\(747\) 12.9544 + 5.76766i 0.473976 + 0.211028i
\(748\) 4.23607 + 13.0373i 0.154886 + 0.476690i
\(749\) 15.1353 26.2150i 0.553030 0.957876i
\(750\) −3.04508 5.27424i −0.111191 0.192588i
\(751\) 9.25596 10.2798i 0.337755 0.375115i −0.550210 0.835026i \(-0.685452\pi\)
0.887965 + 0.459912i \(0.152119\pi\)
\(752\) 8.42705 25.9358i 0.307303 0.945781i
\(753\) 11.3379 + 12.5920i 0.413177 + 0.458880i
\(754\) 17.4906 7.78734i 0.636972 0.283598i
\(755\) −6.91441 1.46970i −0.251641 0.0534880i
\(756\) 0.969032 9.21973i 0.0352434 0.335318i
\(757\) 0.300560 + 2.85964i 0.0109240 + 0.103935i 0.998625 0.0524180i \(-0.0166928\pi\)
−0.987701 + 0.156353i \(0.950026\pi\)
\(758\) −13.3204 + 2.83135i −0.483820 + 0.102839i
\(759\) 14.7082 10.6861i 0.533874 0.387882i
\(760\) −3.45492 + 2.51014i −0.125323 + 0.0910524i
\(761\) −33.7525 + 7.17432i −1.22353 + 0.260069i −0.773993 0.633194i \(-0.781744\pi\)
−0.449535 + 0.893263i \(0.648410\pi\)
\(762\) 0.974857 + 9.27515i 0.0353154 + 0.336003i
\(763\) −5.77512 + 54.9466i −0.209073 + 1.98920i
\(764\) 2.96813 + 0.630896i 0.107383 + 0.0228250i
\(765\) 2.95630 1.31623i 0.106885 0.0475883i
\(766\) 10.9847 + 12.1998i 0.396894 + 0.440796i
\(767\) 0.302439 0.930812i 0.0109204 0.0336097i
\(768\) 9.07495 10.0788i 0.327464 0.363686i
\(769\) 5.62868 + 9.74915i 0.202975 + 0.351564i 0.949486 0.313810i \(-0.101606\pi\)
−0.746510 + 0.665374i \(0.768272\pi\)
\(770\) 4.85410 8.40755i 0.174930 0.302987i
\(771\) −7.85410 24.1724i −0.282859 0.870549i
\(772\) −2.60735 1.16087i −0.0938406 0.0417805i
\(773\) −6.39919 4.64928i −0.230163 0.167223i 0.466727 0.884402i \(-0.345433\pi\)
−0.696889 + 0.717179i \(0.745433\pi\)
\(774\) −7.70820 −0.277066
\(775\) 0 0
\(776\) 41.8328 1.50171
\(777\) −10.2812 7.46969i −0.368834 0.267974i
\(778\) −42.9681 19.1306i −1.54048 0.685866i
\(779\) −3.81966 11.7557i −0.136854 0.421192i
\(780\) 0.218847 0.379054i 0.00783598 0.0135723i
\(781\) 29.0344 + 50.2891i 1.03893 + 1.79949i
\(782\) −15.9242 + 17.6856i −0.569449 + 0.632437i
\(783\) −9.86068 + 30.3481i −0.352392 + 1.08455i
\(784\) −6.49606 7.21460i −0.232002 0.257664i
\(785\) 1.29395 0.576105i 0.0461832 0.0205621i
\(786\) 17.5521 + 3.73082i 0.626064 + 0.133074i
\(787\) 4.67328 44.4633i 0.166584 1.58495i −0.517591 0.855628i \(-0.673171\pi\)
0.684176 0.729317i \(-0.260162\pi\)
\(788\) −0.672922 6.40243i −0.0239719 0.228077i
\(789\) 13.4968 2.86884i 0.480500 0.102134i
\(790\) 0 0
\(791\) −11.7812 + 8.55951i −0.418890 + 0.304341i
\(792\) −22.9047 + 4.86854i −0.813883 + 0.172996i
\(793\) 2.12107 + 20.1806i 0.0753214 + 0.716635i
\(794\) −5.02457 + 47.8056i −0.178315 + 1.69656i
\(795\) −0.264599 0.0562422i −0.00938434 0.00199470i
\(796\) 7.50458 3.34125i 0.265993 0.118428i
\(797\) −18.0292 20.0235i −0.638628 0.709269i 0.333755 0.942660i \(-0.391684\pi\)
−0.972383 + 0.233391i \(0.925018\pi\)
\(798\) 7.50000 23.0826i 0.265497 0.817116i
\(799\) −15.9242 + 17.6856i −0.563358 + 0.625673i
\(800\) −8.20820 14.2170i −0.290204 0.502648i
\(801\) 8.61803 14.9269i 0.304503 0.527415i
\(802\) −11.9164 36.6749i −0.420783 1.29504i
\(803\) −55.3070 24.6243i −1.95174 0.868971i
\(804\) −0.118034 0.0857567i −0.00416274 0.00302441i
\(805\) 3.97871 0.140231
\(806\) 0 0
\(807\) 3.61803 0.127361
\(808\) 16.7082 + 12.1392i 0.587793 + 0.427056i
\(809\) −27.5906 12.2841i −0.970032 0.431886i −0.140338 0.990104i \(-0.544819\pi\)
−0.829695 + 0.558217i \(0.811485\pi\)
\(810\) −0.190983 0.587785i −0.00671046 0.0206527i
\(811\) 14.3885 24.9217i 0.505250 0.875119i −0.494731 0.869046i \(-0.664734\pi\)
0.999982 0.00607295i \(-0.00193309\pi\)
\(812\) −5.91641 10.2475i −0.207625 0.359617i
\(813\) 7.06756 7.84932i 0.247870 0.275288i
\(814\) 11.0902 34.1320i 0.388710 1.19633i
\(815\) −0.181006 0.201028i −0.00634038 0.00704170i
\(816\) −18.7846 + 8.36344i −0.657593 + 0.292779i
\(817\) −11.6496 2.47619i −0.407567 0.0866310i
\(818\) 2.73659 26.0369i 0.0956826 0.910360i
\(819\) 1.16284 + 11.0637i 0.0406329 + 0.386596i
\(820\) −0.570839 + 0.121336i −0.0199346 + 0.00423722i
\(821\) −19.0344 + 13.8293i −0.664307 + 0.482647i −0.868115 0.496364i \(-0.834668\pi\)
0.203808 + 0.979011i \(0.434668\pi\)
\(822\) 3.23607 2.35114i 0.112871 0.0820055i
\(823\) 33.3789 7.09491i 1.16352 0.247313i 0.414616 0.909996i \(-0.363916\pi\)
0.748900 + 0.662684i \(0.230583\pi\)
\(824\) −1.60203 15.2423i −0.0558093 0.530990i
\(825\) 2.65674 25.2772i 0.0924957 0.880038i
\(826\) −2.50631 0.532733i −0.0872058 0.0185362i
\(827\) −16.7419 + 7.45395i −0.582171 + 0.259199i −0.676622 0.736330i \(-0.736557\pi\)
0.0944512 + 0.995529i \(0.469890\pi\)
\(828\) 2.87177 + 3.18943i 0.0998010 + 0.110840i
\(829\) 2.56231 7.88597i 0.0889926 0.273891i −0.896649 0.442742i \(-0.854006\pi\)
0.985642 + 0.168851i \(0.0540057\pi\)
\(830\) 2.93211 3.25644i 0.101775 0.113033i
\(831\) −1.16312 2.01458i −0.0403481 0.0698850i
\(832\) −3.92705 + 6.80185i −0.136146 + 0.235812i
\(833\) 2.61803 + 8.05748i 0.0907095 + 0.279175i
\(834\) 1.26249 + 0.562096i 0.0437164 + 0.0194638i
\(835\) 1.47214 + 1.06957i 0.0509454 + 0.0370140i
\(836\) 16.1803 0.559609
\(837\) 0 0
\(838\) −7.23607 −0.249966
\(839\) 9.04508 + 6.57164i 0.312271 + 0.226878i 0.732870 0.680368i \(-0.238180\pi\)
−0.420599 + 0.907246i \(0.638180\pi\)
\(840\) 2.34078 + 1.04218i 0.0807647 + 0.0359588i
\(841\) 3.62461 + 11.1554i 0.124987 + 0.384669i
\(842\) −15.5623 + 26.9547i −0.536312 + 0.928920i
\(843\) 5.01722 + 8.69008i 0.172802 + 0.299302i
\(844\) −3.30836 + 3.67431i −0.113879 + 0.126475i
\(845\) 1.12868 3.47371i 0.0388277 0.119499i
\(846\) 12.1650 + 13.5106i 0.418242 + 0.464505i
\(847\) 44.9914 20.0315i 1.54592 0.688289i
\(848\) −3.36257 0.714737i −0.115471 0.0245442i
\(849\) 1.41765 13.4880i 0.0486535 0.462907i
\(850\) 3.47772 + 33.0883i 0.119285 + 1.13492i
\(851\) 14.3868 3.05801i 0.493173 0.104827i
\(852\) 5.54508 4.02874i 0.189971 0.138022i
\(853\) −3.23607 + 2.35114i −0.110801 + 0.0805015i −0.641806 0.766867i \(-0.721815\pi\)
0.531005 + 0.847369i \(0.321815\pi\)
\(854\) 51.9637 11.0452i 1.77816 0.377960i
\(855\) −0.399263 3.79874i −0.0136545 0.129914i
\(856\) −2.35840 + 22.4387i −0.0806086 + 0.766939i
\(857\) −13.8705 2.94826i −0.473806 0.100711i −0.0351814 0.999381i \(-0.511201\pi\)
−0.438625 + 0.898670i \(0.644534\pi\)
\(858\) 14.3502 6.38910i 0.489906 0.218120i
\(859\) −37.9452 42.1424i −1.29467 1.43788i −0.835457 0.549556i \(-0.814797\pi\)
−0.459216 0.888324i \(-0.651870\pi\)
\(860\) −0.173762 + 0.534785i −0.00592524 + 0.0182360i
\(861\) −4.96255 + 5.51147i −0.169123 + 0.187830i
\(862\) −20.0344 34.7007i −0.682376 1.18191i
\(863\) 20.2533 35.0797i 0.689430 1.19413i −0.282593 0.959240i \(-0.591194\pi\)
0.972023 0.234888i \(-0.0754722\pi\)
\(864\) 5.22542 + 16.0822i 0.177773 + 0.547128i
\(865\) −4.21878 1.87832i −0.143443 0.0638649i
\(866\) 35.8885 + 26.0746i 1.21954 + 0.886049i
\(867\) 0.944272 0.0320692
\(868\) 0 0
\(869\) 0 0
\(870\) 3.19098 + 2.31838i 0.108184 + 0.0786006i
\(871\) 0.399853 + 0.178026i 0.0135485 + 0.00603219i
\(872\) −12.7254 39.1648i −0.430937 1.32629i
\(873\) −18.7082 + 32.4036i −0.633177 + 1.09669i
\(874\) 14.0451 + 24.3268i 0.475082 + 0.822866i
\(875\) 7.55569 8.39144i 0.255429 0.283682i
\(876\) −2.20820 + 6.79615i −0.0746083 + 0.229621i
\(877\) 19.8787 + 22.0775i 0.671255 + 0.745504i 0.978527 0.206117i \(-0.0660829\pi\)
−0.307272 + 0.951622i \(0.599416\pi\)
\(878\) −17.4906 + 7.78734i −0.590281 + 0.262810i
\(879\) 3.68168 + 0.782565i 0.124180 + 0.0263953i
\(880\) −1.01478 + 9.65502i −0.0342083 + 0.325471i
\(881\) 3.06903 + 29.1998i 0.103398 + 0.983768i 0.916063 + 0.401036i \(0.131350\pi\)
−0.812664 + 0.582732i \(0.801984\pi\)
\(882\) 6.33070 1.34563i 0.213166 0.0453098i
\(883\) −0.809017 + 0.587785i −0.0272256 + 0.0197805i −0.601315 0.799012i \(-0.705356\pi\)
0.574089 + 0.818793i \(0.305356\pi\)
\(884\) −3.92705 + 2.85317i −0.132081 + 0.0959625i
\(885\) 0.197220 0.0419204i 0.00662948 0.00140914i
\(886\) 0.148055 + 1.40865i 0.00497400 + 0.0473245i
\(887\) 5.02817 47.8398i 0.168829 1.60630i −0.502118 0.864799i \(-0.667446\pi\)
0.670948 0.741505i \(-0.265888\pi\)
\(888\) 9.26515 + 1.96937i 0.310918 + 0.0660877i
\(889\) −15.7968 + 7.03321i −0.529809 + 0.235886i
\(890\) −3.56395 3.95817i −0.119464 0.132678i
\(891\) 1.61803 4.97980i 0.0542062 0.166829i
\(892\) 5.25542 5.83674i 0.175964 0.195428i
\(893\) 14.0451 + 24.3268i 0.470001 + 0.814065i
\(894\) −9.73607 + 16.8634i −0.325623 + 0.563995i
\(895\) −0.566371 1.74311i −0.0189317 0.0582658i
\(896\) 37.3221 + 16.6169i 1.24684 + 0.555130i
\(897\) 5.20820 + 3.78398i 0.173897 + 0.126343i
\(898\) 55.1246 1.83953
\(899\) 0 0
\(900\) 6.00000 0.200000
\(901\) 2.42705 + 1.76336i 0.0808568 + 0.0587459i
\(902\) −19.1335 8.51880i −0.637077 0.283645i
\(903\) 2.20820 + 6.79615i 0.0734844 + 0.226162i
\(904\) 5.42705 9.39993i 0.180501 0.312637i
\(905\) −3.24671 5.62347i −0.107924 0.186930i
\(906\) −20.0366 + 22.2529i −0.665672 + 0.739304i
\(907\) −3.68441 + 11.3394i −0.122339 + 0.376520i −0.993407 0.114642i \(-0.963428\pi\)
0.871068 + 0.491162i \(0.163428\pi\)
\(908\) 8.99157 + 9.98615i 0.298396 + 0.331402i
\(909\) −16.8751 + 7.51329i −0.559713 + 0.249200i
\(910\) 3.36257 + 0.714737i 0.111468 + 0.0236933i
\(911\) −1.48225 + 14.1027i −0.0491091 + 0.467242i 0.942138 + 0.335224i \(0.108812\pi\)
−0.991247 + 0.132017i \(0.957855\pi\)
\(912\) 2.53696 + 24.1376i 0.0840071 + 0.799274i
\(913\) 36.3133 7.71864i 1.20180 0.255450i
\(914\) 35.0066 25.4338i 1.15791 0.841274i
\(915\) −3.38197 + 2.45714i −0.111804 + 0.0812306i
\(916\) −1.67088 + 0.355156i −0.0552073 + 0.0117347i
\(917\) 3.47772 + 33.0883i 0.114844 + 1.09267i
\(918\) 3.58224 34.0828i 0.118232 1.12490i
\(919\) −49.0293 10.4215i −1.61733 0.343773i −0.691692 0.722193i \(-0.743134\pi\)
−0.925634 + 0.378419i \(0.876468\pi\)
\(920\) −2.70917 + 1.20620i −0.0893188 + 0.0397673i
\(921\) −3.40599 3.78273i −0.112231 0.124645i
\(922\) 15.8713 48.8469i 0.522694 1.60869i
\(923\) −13.7589 + 15.2808i −0.452879 + 0.502973i
\(924\) −4.85410 8.40755i −0.159688 0.276588i
\(925\) 10.2812 17.8075i 0.338042 0.585506i
\(926\) −4.56231 14.0413i −0.149927 0.461427i
\(927\) 12.5231 + 5.57563i 0.411311 + 0.183128i
\(928\) 17.4615 + 12.6865i 0.573202 + 0.416455i
\(929\) 33.5410 1.10045 0.550223 0.835018i \(-0.314543\pi\)
0.550223 + 0.835018i \(0.314543\pi\)
\(930\) 0 0
\(931\) 10.0000 0.327737
\(932\) 2.89919 + 2.10638i 0.0949660 + 0.0689969i
\(933\) 6.87705 + 3.06186i 0.225144 + 0.100241i
\(934\) 19.3885 + 59.6718i 0.634413 + 1.95252i
\(935\) 4.23607 7.33708i 0.138534 0.239948i
\(936\) −4.14590 7.18091i −0.135513 0.234715i
\(937\) −29.7665 + 33.0590i −0.972428 + 1.07999i 0.0243436 + 0.999704i \(0.492250\pi\)
−0.996772 + 0.0802873i \(0.974416\pi\)
\(938\) 0.354102 1.08981i 0.0115618 0.0355837i
\(939\) 2.16535 + 2.40487i 0.0706636 + 0.0784799i
\(940\) 1.21158 0.539430i 0.0395173 0.0175943i
\(941\) 54.2054 + 11.5217i 1.76705 + 0.375597i 0.972736 0.231915i \(-0.0744991\pi\)
0.794310 + 0.607512i \(0.207832\pi\)
\(942\) 0.627171 5.96713i 0.0204343 0.194420i
\(943\) −0.897230 8.53657i −0.0292178 0.277989i
\(944\) 2.50631 0.532733i 0.0815736 0.0173390i
\(945\) −4.63525 + 3.36771i −0.150785 + 0.109552i
\(946\) −16.3262 + 11.8617i −0.530812 + 0.385657i
\(947\) −35.2807 + 7.49914i −1.14647 + 0.243689i −0.741701 0.670730i \(-0.765981\pi\)
−0.404767 + 0.914420i \(0.632647\pi\)
\(948\) 0 0
\(949\) 2.24085 21.3203i 0.0727410 0.692085i
\(950\) 38.4124 + 8.16480i 1.24626 + 0.264901i
\(951\) −9.03363 + 4.02203i −0.292936 + 0.130423i
\(952\) −19.0143 21.1175i −0.616257 0.684422i
\(953\) 2.84752 8.76378i 0.0922404 0.283887i −0.894284 0.447499i \(-0.852315\pi\)
0.986525 + 0.163613i \(0.0523147\pi\)
\(954\) 1.53351 1.70314i 0.0496492 0.0551411i
\(955\) −0.937694 1.62413i −0.0303431 0.0525557i
\(956\) 4.14590 7.18091i 0.134088 0.232247i
\(957\) 10.3262 + 31.7809i 0.333800 + 1.02733i
\(958\) 13.2210 + 5.88635i 0.427150 + 0.190179i
\(959\) 6.00000 + 4.35926i 0.193750 + 0.140768i
\(960\) −1.61803 −0.0522218
\(961\) 0 0
\(962\) 12.7082 0.409729
\(963\) −16.3262 11.8617i −0.526106 0.382238i
\(964\) 9.86481 + 4.39209i 0.317724 + 0.141460i
\(965\) 0.545085 + 1.67760i 0.0175469 + 0.0540038i
\(966\) 8.42705 14.5961i 0.271136 0.469621i
\(967\) 6.17376 + 10.6933i 0.198535 + 0.343872i 0.948054 0.318111i \(-0.103048\pi\)
−0.749519 + 0.661983i \(0.769715\pi\)
\(968\) −24.5626 + 27.2795i −0.789471 + 0.876797i
\(969\) 6.54508 20.1437i 0.210258 0.647109i
\(970\) 7.73669 + 8.59247i 0.248410 + 0.275888i
\(971\) −0.399853 + 0.178026i −0.0128319 + 0.00571313i −0.413143 0.910666i \(-0.635569\pi\)
0.400311 + 0.916379i \(0.368902\pi\)
\(972\) −9.67246 2.05594i −0.310244 0.0659444i
\(973\) −0.267834 + 2.54827i −0.00858636 + 0.0816938i
\(974\) −7.09046 67.4612i −0.227193 2.16160i
\(975\) 8.80333 1.87121i 0.281932 0.0599265i
\(976\) −42.9787 + 31.2259i −1.37572 + 0.999516i
\(977\) −42.1246 + 30.6053i −1.34769 + 0.979151i −0.348562 + 0.937286i \(0.613330\pi\)
−0.999123 + 0.0418654i \(0.986670\pi\)
\(978\) −1.12086 + 0.238246i −0.0358411 + 0.00761825i
\(979\) −4.71681 44.8774i −0.150750 1.43429i
\(980\) 0.0493516 0.469550i 0.00157648 0.0149992i
\(981\) 36.0279 + 7.65797i 1.15028 + 0.244500i
\(982\) −31.9232 + 14.2131i −1.01871 + 0.453559i
\(983\) 5.37609 + 5.97075i 0.171471 + 0.190437i 0.822755 0.568397i \(-0.192436\pi\)
−0.651284 + 0.758834i \(0.725769\pi\)
\(984\) 1.70820 5.25731i 0.0544556 0.167597i
\(985\) −2.66228 + 2.95676i −0.0848273 + 0.0942102i
\(986\) −21.8713 37.8822i −0.696525 1.20642i
\(987\) 8.42705 14.5961i 0.268236 0.464598i
\(988\) 1.77051 + 5.44907i 0.0563274 + 0.173358i
\(989\) −7.55549 3.36392i −0.240250 0.106966i
\(990\) −5.23607 3.80423i −0.166413 0.120906i
\(991\) −16.2705 −0.516850 −0.258425 0.966031i \(-0.583203\pi\)
−0.258425 + 0.966031i \(0.583203\pi\)
\(992\) 0 0
\(993\) 22.2705 0.706733
\(994\) 43.5517 + 31.6421i 1.38137 + 1.00363i
\(995\) −4.63808 2.06501i −0.147037 0.0654651i
\(996\) −1.35410 4.16750i −0.0429064 0.132052i
\(997\) −26.6246 + 46.1152i −0.843210 + 1.46048i 0.0439568 + 0.999033i \(0.486004\pi\)
−0.887167 + 0.461449i \(0.847330\pi\)
\(998\) 8.78115 + 15.2094i 0.277963 + 0.481445i
\(999\) −14.1724 + 15.7401i −0.448395 + 0.497993i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.c.732.1 8
31.2 even 5 961.2.g.g.448.1 8
31.3 odd 30 31.2.d.a.16.1 yes 4
31.4 even 5 961.2.c.d.521.2 4
31.5 even 3 inner 961.2.g.c.816.1 8
31.6 odd 6 31.2.d.a.2.1 4
31.7 even 15 961.2.a.e.1.2 2
31.8 even 5 961.2.g.g.844.1 8
31.9 even 15 961.2.g.g.547.1 8
31.10 even 15 961.2.g.g.846.1 8
31.11 odd 30 961.2.c.f.439.2 4
31.12 odd 30 961.2.d.f.628.1 4
31.13 odd 30 961.2.g.b.235.1 8
31.14 even 15 961.2.d.e.531.1 4
31.15 odd 10 961.2.g.b.338.1 8
31.16 even 5 inner 961.2.g.c.338.1 8
31.17 odd 30 961.2.d.f.531.1 4
31.18 even 15 inner 961.2.g.c.235.1 8
31.19 even 15 961.2.d.e.628.1 4
31.20 even 15 961.2.c.d.439.2 4
31.21 odd 30 961.2.g.f.846.1 8
31.22 odd 30 961.2.g.f.547.1 8
31.23 odd 10 961.2.g.f.844.1 8
31.24 odd 30 961.2.a.d.1.2 2
31.25 even 3 961.2.d.b.374.1 4
31.26 odd 6 961.2.g.b.816.1 8
31.27 odd 10 961.2.c.f.521.2 4
31.28 even 15 961.2.d.b.388.1 4
31.29 odd 10 961.2.g.f.448.1 8
31.30 odd 2 961.2.g.b.732.1 8
93.38 odd 30 8649.2.a.f.1.1 2
93.65 even 30 279.2.i.a.109.1 4
93.68 even 6 279.2.i.a.64.1 4
93.86 even 30 8649.2.a.g.1.1 2
124.3 even 30 496.2.n.b.481.1 4
124.99 even 6 496.2.n.b.33.1 4
155.3 even 60 775.2.bf.a.574.2 8
155.34 odd 30 775.2.k.c.326.1 4
155.37 even 12 775.2.bf.a.374.2 8
155.68 even 12 775.2.bf.a.374.1 8
155.99 odd 6 775.2.k.c.126.1 4
155.127 even 60 775.2.bf.a.574.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.d.a.2.1 4 31.6 odd 6
31.2.d.a.16.1 yes 4 31.3 odd 30
279.2.i.a.64.1 4 93.68 even 6
279.2.i.a.109.1 4 93.65 even 30
496.2.n.b.33.1 4 124.99 even 6
496.2.n.b.481.1 4 124.3 even 30
775.2.k.c.126.1 4 155.99 odd 6
775.2.k.c.326.1 4 155.34 odd 30
775.2.bf.a.374.1 8 155.68 even 12
775.2.bf.a.374.2 8 155.37 even 12
775.2.bf.a.574.1 8 155.127 even 60
775.2.bf.a.574.2 8 155.3 even 60
961.2.a.d.1.2 2 31.24 odd 30
961.2.a.e.1.2 2 31.7 even 15
961.2.c.d.439.2 4 31.20 even 15
961.2.c.d.521.2 4 31.4 even 5
961.2.c.f.439.2 4 31.11 odd 30
961.2.c.f.521.2 4 31.27 odd 10
961.2.d.b.374.1 4 31.25 even 3
961.2.d.b.388.1 4 31.28 even 15
961.2.d.e.531.1 4 31.14 even 15
961.2.d.e.628.1 4 31.19 even 15
961.2.d.f.531.1 4 31.17 odd 30
961.2.d.f.628.1 4 31.12 odd 30
961.2.g.b.235.1 8 31.13 odd 30
961.2.g.b.338.1 8 31.15 odd 10
961.2.g.b.732.1 8 31.30 odd 2
961.2.g.b.816.1 8 31.26 odd 6
961.2.g.c.235.1 8 31.18 even 15 inner
961.2.g.c.338.1 8 31.16 even 5 inner
961.2.g.c.732.1 8 1.1 even 1 trivial
961.2.g.c.816.1 8 31.5 even 3 inner
961.2.g.f.448.1 8 31.29 odd 10
961.2.g.f.547.1 8 31.22 odd 30
961.2.g.f.844.1 8 31.23 odd 10
961.2.g.f.846.1 8 31.21 odd 30
961.2.g.g.448.1 8 31.2 even 5
961.2.g.g.547.1 8 31.9 even 15
961.2.g.g.844.1 8 31.8 even 5
961.2.g.g.846.1 8 31.10 even 15
8649.2.a.f.1.1 2 93.38 odd 30
8649.2.a.g.1.1 2 93.86 even 30