Properties

Label 961.2.g.c.816.1
Level $961$
Weight $2$
Character 961.816
Analytic conductor $7.674$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-6,1,6,6,-2,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{15})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 816.1
Root \(-0.978148 - 0.207912i\) of defining polynomial
Character \(\chi\) \(=\) 961.816
Dual form 961.2.g.c.338.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.30902 - 0.951057i) q^{2} +(-0.104528 - 0.994522i) q^{3} +(0.190983 + 0.587785i) q^{4} +(0.190983 + 0.330792i) q^{5} +(-0.809017 + 1.40126i) q^{6} +(-2.93444 - 0.623735i) q^{7} +(-0.690983 + 2.12663i) q^{8} +(1.95630 - 0.415823i) q^{9} +(0.0646021 - 0.614648i) q^{10} +(3.50361 - 3.89116i) q^{11} +(0.564602 - 0.251377i) q^{12} +(1.69381 + 0.754131i) q^{13} +(3.24803 + 3.60730i) q^{14} +(0.309017 - 0.224514i) q^{15} +(3.92705 - 2.85317i) q^{16} +(2.83448 + 3.14801i) q^{17} +(-2.95630 - 1.31623i) q^{18} +(4.56773 - 2.03368i) q^{19} +(-0.157960 + 0.175433i) q^{20} +(-0.313585 + 2.98357i) q^{21} +(-8.28700 + 1.76146i) q^{22} +(-1.07295 + 3.30220i) q^{23} +(2.18720 + 0.464905i) q^{24} +(2.42705 - 4.20378i) q^{25} +(-1.50000 - 2.59808i) q^{26} +(-1.54508 - 4.75528i) q^{27} +(-0.193806 - 1.84395i) q^{28} +(-5.16312 - 3.75123i) q^{29} -0.618034 q^{30} -3.38197 q^{32} +(-4.23607 - 3.07768i) q^{33} +(-0.716449 - 6.81655i) q^{34} +(-0.354102 - 1.08981i) q^{35} +(0.618034 + 1.07047i) q^{36} +(-2.11803 + 3.66854i) q^{37} +(-7.91338 - 1.68204i) q^{38} +(0.572949 - 1.76336i) q^{39} +(-0.835438 + 0.177578i) q^{40} +(0.258409 - 2.45859i) q^{41} +(3.24803 - 3.60730i) q^{42} +(2.17603 - 0.968833i) q^{43} +(2.95630 + 1.31623i) q^{44} +(0.511170 + 0.567712i) q^{45} +(4.54508 - 3.30220i) q^{46} +(4.54508 - 3.30220i) q^{47} +(-3.24803 - 3.60730i) q^{48} +(1.82709 + 0.813473i) q^{49} +(-7.17508 + 3.19455i) q^{50} +(2.83448 - 3.14801i) q^{51} +(-0.119779 + 1.13962i) q^{52} +(0.692728 - 0.147244i) q^{53} +(-2.50000 + 7.69421i) q^{54} +(1.95630 + 0.415823i) q^{55} +(3.35410 - 5.80948i) q^{56} +(-2.50000 - 4.33013i) q^{57} +(3.19098 + 9.82084i) q^{58} +(-0.0551768 - 0.524972i) q^{59} +(0.190983 + 0.138757i) q^{60} -10.9443 q^{61} -6.00000 q^{63} +(-3.42705 - 2.48990i) q^{64} +(0.0740275 + 0.704324i) q^{65} +(2.61803 + 8.05748i) q^{66} +(-0.118034 - 0.204441i) q^{67} +(-1.30902 + 2.26728i) q^{68} +(3.39626 + 0.721898i) q^{69} +(-0.572949 + 1.76336i) q^{70} +(10.8478 - 2.30578i) q^{71} +(-0.467465 + 4.44764i) q^{72} +(-7.73669 + 8.59247i) q^{73} +(6.26153 - 2.78781i) q^{74} +(-4.43444 - 1.97434i) q^{75} +(2.06773 + 2.29644i) q^{76} +(-12.7082 + 9.23305i) q^{77} +(-2.42705 + 1.76336i) q^{78} +(1.69381 + 0.754131i) q^{80} +(0.913545 - 0.406737i) q^{81} +(-2.67652 + 2.97258i) q^{82} +(0.741125 - 7.05133i) q^{83} +(-1.81359 + 0.385489i) q^{84} +(-0.500000 + 1.53884i) q^{85} +(-3.76988 - 0.801313i) q^{86} +(-3.19098 + 5.52694i) q^{87} +(5.85410 + 10.1396i) q^{88} +(2.66312 + 8.19624i) q^{89} +(-0.129204 - 1.22930i) q^{90} +(-4.50000 - 3.26944i) q^{91} -2.14590 q^{92} -9.09017 q^{94} +(1.54508 + 1.12257i) q^{95} +(0.353512 + 3.36344i) q^{96} +(-5.78115 - 17.7926i) q^{97} +(-1.61803 - 2.80252i) q^{98} +(5.23607 - 9.06914i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{2} + q^{3} + 6 q^{4} + 6 q^{5} - 2 q^{6} + 3 q^{7} - 10 q^{8} - 2 q^{9} - 2 q^{10} - 2 q^{11} + 2 q^{12} + 6 q^{13} - 6 q^{14} - 2 q^{15} + 18 q^{16} - 3 q^{17} - 6 q^{18} + 5 q^{19} + 7 q^{20}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{7}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30902 0.951057i −0.925615 0.672499i 0.0193004 0.999814i \(-0.493856\pi\)
−0.944915 + 0.327315i \(0.893856\pi\)
\(3\) −0.104528 0.994522i −0.0603495 0.574187i −0.982357 0.187015i \(-0.940119\pi\)
0.922007 0.387172i \(-0.126548\pi\)
\(4\) 0.190983 + 0.587785i 0.0954915 + 0.293893i
\(5\) 0.190983 + 0.330792i 0.0854102 + 0.147935i 0.905566 0.424206i \(-0.139447\pi\)
−0.820156 + 0.572140i \(0.806113\pi\)
\(6\) −0.809017 + 1.40126i −0.330280 + 0.572061i
\(7\) −2.93444 0.623735i −1.10912 0.235750i −0.383289 0.923628i \(-0.625209\pi\)
−0.725826 + 0.687879i \(0.758542\pi\)
\(8\) −0.690983 + 2.12663i −0.244299 + 0.751876i
\(9\) 1.95630 0.415823i 0.652098 0.138608i
\(10\) 0.0646021 0.614648i 0.0204290 0.194369i
\(11\) 3.50361 3.89116i 1.05638 1.17323i 0.0719569 0.997408i \(-0.477076\pi\)
0.984422 0.175820i \(-0.0562577\pi\)
\(12\) 0.564602 0.251377i 0.162987 0.0725663i
\(13\) 1.69381 + 0.754131i 0.469777 + 0.209158i 0.627951 0.778253i \(-0.283894\pi\)
−0.158174 + 0.987411i \(0.550561\pi\)
\(14\) 3.24803 + 3.60730i 0.868072 + 0.964092i
\(15\) 0.309017 0.224514i 0.0797878 0.0579693i
\(16\) 3.92705 2.85317i 0.981763 0.713292i
\(17\) 2.83448 + 3.14801i 0.687463 + 0.763505i 0.981328 0.192342i \(-0.0616083\pi\)
−0.293865 + 0.955847i \(0.594942\pi\)
\(18\) −2.95630 1.31623i −0.696805 0.310238i
\(19\) 4.56773 2.03368i 1.04791 0.466559i 0.190765 0.981636i \(-0.438903\pi\)
0.857144 + 0.515077i \(0.172237\pi\)
\(20\) −0.157960 + 0.175433i −0.0353210 + 0.0392279i
\(21\) −0.313585 + 2.98357i −0.0684299 + 0.651067i
\(22\) −8.28700 + 1.76146i −1.76679 + 0.375544i
\(23\) −1.07295 + 3.30220i −0.223725 + 0.688556i 0.774693 + 0.632337i \(0.217904\pi\)
−0.998418 + 0.0562184i \(0.982096\pi\)
\(24\) 2.18720 + 0.464905i 0.446461 + 0.0948983i
\(25\) 2.42705 4.20378i 0.485410 0.840755i
\(26\) −1.50000 2.59808i −0.294174 0.509525i
\(27\) −1.54508 4.75528i −0.297352 0.915155i
\(28\) −0.193806 1.84395i −0.0366260 0.348473i
\(29\) −5.16312 3.75123i −0.958767 0.696585i −0.00590304 0.999983i \(-0.501879\pi\)
−0.952864 + 0.303397i \(0.901879\pi\)
\(30\) −0.618034 −0.112837
\(31\) 0 0
\(32\) −3.38197 −0.597853
\(33\) −4.23607 3.07768i −0.737405 0.535756i
\(34\) −0.716449 6.81655i −0.122870 1.16903i
\(35\) −0.354102 1.08981i −0.0598542 0.184212i
\(36\) 0.618034 + 1.07047i 0.103006 + 0.178411i
\(37\) −2.11803 + 3.66854i −0.348203 + 0.603105i −0.985930 0.167157i \(-0.946541\pi\)
0.637728 + 0.770262i \(0.279875\pi\)
\(38\) −7.91338 1.68204i −1.28372 0.272863i
\(39\) 0.572949 1.76336i 0.0917453 0.282363i
\(40\) −0.835438 + 0.177578i −0.132094 + 0.0280775i
\(41\) 0.258409 2.45859i 0.0403566 0.383968i −0.955637 0.294546i \(-0.904832\pi\)
0.995994 0.0894215i \(-0.0285018\pi\)
\(42\) 3.24803 3.60730i 0.501182 0.556619i
\(43\) 2.17603 0.968833i 0.331842 0.147746i −0.234051 0.972224i \(-0.575198\pi\)
0.565893 + 0.824479i \(0.308532\pi\)
\(44\) 2.95630 + 1.31623i 0.445678 + 0.198429i
\(45\) 0.511170 + 0.567712i 0.0762008 + 0.0846295i
\(46\) 4.54508 3.30220i 0.670136 0.486882i
\(47\) 4.54508 3.30220i 0.662969 0.481675i −0.204695 0.978826i \(-0.565620\pi\)
0.867664 + 0.497151i \(0.165620\pi\)
\(48\) −3.24803 3.60730i −0.468812 0.520669i
\(49\) 1.82709 + 0.813473i 0.261013 + 0.116210i
\(50\) −7.17508 + 3.19455i −1.01471 + 0.451778i
\(51\) 2.83448 3.14801i 0.396907 0.440810i
\(52\) −0.119779 + 1.13962i −0.0166104 + 0.158037i
\(53\) 0.692728 0.147244i 0.0951535 0.0202255i −0.160089 0.987103i \(-0.551178\pi\)
0.255242 + 0.966877i \(0.417845\pi\)
\(54\) −2.50000 + 7.69421i −0.340207 + 1.04705i
\(55\) 1.95630 + 0.415823i 0.263787 + 0.0560696i
\(56\) 3.35410 5.80948i 0.448211 0.776324i
\(57\) −2.50000 4.33013i −0.331133 0.573539i
\(58\) 3.19098 + 9.82084i 0.418997 + 1.28954i
\(59\) −0.0551768 0.524972i −0.00718341 0.0683456i 0.990343 0.138640i \(-0.0442729\pi\)
−0.997526 + 0.0702939i \(0.977606\pi\)
\(60\) 0.190983 + 0.138757i 0.0246558 + 0.0179135i
\(61\) −10.9443 −1.40127 −0.700635 0.713520i \(-0.747100\pi\)
−0.700635 + 0.713520i \(0.747100\pi\)
\(62\) 0 0
\(63\) −6.00000 −0.755929
\(64\) −3.42705 2.48990i −0.428381 0.311237i
\(65\) 0.0740275 + 0.704324i 0.00918198 + 0.0873607i
\(66\) 2.61803 + 8.05748i 0.322258 + 0.991807i
\(67\) −0.118034 0.204441i −0.0144201 0.0249764i 0.858725 0.512436i \(-0.171257\pi\)
−0.873145 + 0.487460i \(0.837924\pi\)
\(68\) −1.30902 + 2.26728i −0.158742 + 0.274949i
\(69\) 3.39626 + 0.721898i 0.408862 + 0.0869063i
\(70\) −0.572949 + 1.76336i −0.0684805 + 0.210761i
\(71\) 10.8478 2.30578i 1.28740 0.273645i 0.487153 0.873316i \(-0.338035\pi\)
0.800246 + 0.599671i \(0.204702\pi\)
\(72\) −0.467465 + 4.44764i −0.0550913 + 0.524159i
\(73\) −7.73669 + 8.59247i −0.905511 + 1.00567i 0.0944372 + 0.995531i \(0.469895\pi\)
−0.999949 + 0.0101415i \(0.996772\pi\)
\(74\) 6.26153 2.78781i 0.727889 0.324077i
\(75\) −4.43444 1.97434i −0.512045 0.227977i
\(76\) 2.06773 + 2.29644i 0.237185 + 0.263420i
\(77\) −12.7082 + 9.23305i −1.44823 + 1.05220i
\(78\) −2.42705 + 1.76336i −0.274809 + 0.199661i
\(79\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(80\) 1.69381 + 0.754131i 0.189373 + 0.0843144i
\(81\) 0.913545 0.406737i 0.101505 0.0451930i
\(82\) −2.67652 + 2.97258i −0.295572 + 0.328266i
\(83\) 0.741125 7.05133i 0.0813490 0.773984i −0.875465 0.483282i \(-0.839445\pi\)
0.956814 0.290702i \(-0.0938888\pi\)
\(84\) −1.81359 + 0.385489i −0.197878 + 0.0420603i
\(85\) −0.500000 + 1.53884i −0.0542326 + 0.166911i
\(86\) −3.76988 0.801313i −0.406517 0.0864078i
\(87\) −3.19098 + 5.52694i −0.342109 + 0.592551i
\(88\) 5.85410 + 10.1396i 0.624049 + 1.08089i
\(89\) 2.66312 + 8.19624i 0.282290 + 0.868799i 0.987198 + 0.159500i \(0.0509884\pi\)
−0.704908 + 0.709299i \(0.749012\pi\)
\(90\) −0.129204 1.22930i −0.0136193 0.129579i
\(91\) −4.50000 3.26944i −0.471728 0.342731i
\(92\) −2.14590 −0.223725
\(93\) 0 0
\(94\) −9.09017 −0.937579
\(95\) 1.54508 + 1.12257i 0.158522 + 0.115173i
\(96\) 0.353512 + 3.36344i 0.0360801 + 0.343280i
\(97\) −5.78115 17.7926i −0.586987 1.80656i −0.591140 0.806569i \(-0.701322\pi\)
0.00415240 0.999991i \(-0.498678\pi\)
\(98\) −1.61803 2.80252i −0.163446 0.283097i
\(99\) 5.23607 9.06914i 0.526245 0.911482i
\(100\) 2.93444 + 0.623735i 0.293444 + 0.0623735i
\(101\) 2.85410 8.78402i 0.283994 0.874043i −0.702705 0.711482i \(-0.748024\pi\)
0.986698 0.162561i \(-0.0519755\pi\)
\(102\) −6.70432 + 1.42505i −0.663827 + 0.141101i
\(103\) 0.716449 6.81655i 0.0705938 0.671655i −0.900809 0.434216i \(-0.857025\pi\)
0.971402 0.237439i \(-0.0763079\pi\)
\(104\) −2.77415 + 3.08100i −0.272028 + 0.302117i
\(105\) −1.04683 + 0.466079i −0.102160 + 0.0454846i
\(106\) −1.04683 0.466079i −0.101677 0.0452696i
\(107\) −6.75164 7.49846i −0.652706 0.724903i 0.322410 0.946600i \(-0.395507\pi\)
−0.975116 + 0.221697i \(0.928840\pi\)
\(108\) 2.50000 1.81636i 0.240563 0.174779i
\(109\) −14.8992 + 10.8249i −1.42708 + 1.03684i −0.436533 + 0.899688i \(0.643794\pi\)
−0.990551 + 0.137148i \(0.956206\pi\)
\(110\) −2.16535 2.40487i −0.206458 0.229295i
\(111\) 3.86984 + 1.72296i 0.367309 + 0.163537i
\(112\) −13.3033 + 5.92302i −1.25705 + 0.559673i
\(113\) 3.24803 3.60730i 0.305549 0.339346i −0.570742 0.821130i \(-0.693344\pi\)
0.876290 + 0.481783i \(0.160011\pi\)
\(114\) −0.845653 + 8.04585i −0.0792027 + 0.753563i
\(115\) −1.29726 + 0.275740i −0.120970 + 0.0257129i
\(116\) 1.21885 3.75123i 0.113167 0.348293i
\(117\) 3.62717 + 0.770979i 0.335332 + 0.0712770i
\(118\) −0.427051 + 0.739674i −0.0393132 + 0.0680925i
\(119\) −6.35410 11.0056i −0.582480 1.00888i
\(120\) 0.263932 + 0.812299i 0.0240936 + 0.0741524i
\(121\) −1.71598 16.3265i −0.155998 1.48423i
\(122\) 14.3262 + 10.4086i 1.29704 + 0.942352i
\(123\) −2.47214 −0.222905
\(124\) 0 0
\(125\) 3.76393 0.336656
\(126\) 7.85410 + 5.70634i 0.699699 + 0.508361i
\(127\) 0.602495 + 5.73236i 0.0534628 + 0.508664i 0.988183 + 0.153280i \(0.0489835\pi\)
−0.934720 + 0.355385i \(0.884350\pi\)
\(128\) 4.20820 + 12.9515i 0.371956 + 1.14476i
\(129\) −1.19098 2.06284i −0.104860 0.181623i
\(130\) 0.572949 0.992377i 0.0502510 0.0870372i
\(131\) 10.8478 + 2.30578i 0.947779 + 0.201457i 0.655771 0.754960i \(-0.272344\pi\)
0.292007 + 0.956416i \(0.405677\pi\)
\(132\) 1.00000 3.07768i 0.0870388 0.267878i
\(133\) −14.6722 + 3.11868i −1.27224 + 0.270423i
\(134\) −0.0399263 + 0.379874i −0.00344911 + 0.0328161i
\(135\) 1.27793 1.41928i 0.109986 0.122152i
\(136\) −8.65323 + 3.85266i −0.742008 + 0.330363i
\(137\) −2.25841 1.00551i −0.192949 0.0859064i 0.307988 0.951390i \(-0.400344\pi\)
−0.500937 + 0.865484i \(0.667011\pi\)
\(138\) −3.75920 4.17501i −0.320004 0.355401i
\(139\) −0.690983 + 0.502029i −0.0586084 + 0.0425815i −0.616704 0.787195i \(-0.711532\pi\)
0.558095 + 0.829777i \(0.311532\pi\)
\(140\) 0.572949 0.416272i 0.0484230 0.0351814i
\(141\) −3.75920 4.17501i −0.316582 0.351600i
\(142\) −16.3929 7.29859i −1.37566 0.612484i
\(143\) 8.86889 3.94868i 0.741653 0.330205i
\(144\) 6.49606 7.21460i 0.541338 0.601217i
\(145\) 0.254808 2.42434i 0.0211607 0.201330i
\(146\) 18.2994 3.88965i 1.51447 0.321910i
\(147\) 0.618034 1.90211i 0.0509746 0.156884i
\(148\) −2.56082 0.544320i −0.210498 0.0447428i
\(149\) −6.01722 + 10.4221i −0.492950 + 0.853814i −0.999967 0.00812166i \(-0.997415\pi\)
0.507017 + 0.861936i \(0.330748\pi\)
\(150\) 3.92705 + 6.80185i 0.320642 + 0.555369i
\(151\) −5.71885 17.6008i −0.465393 1.43233i −0.858487 0.512835i \(-0.828595\pi\)
0.393094 0.919498i \(-0.371405\pi\)
\(152\) 1.16866 + 11.1191i 0.0947911 + 0.901878i
\(153\) 6.85410 + 4.97980i 0.554121 + 0.402593i
\(154\) 25.4164 2.04811
\(155\) 0 0
\(156\) 1.14590 0.0917453
\(157\) 3.00000 + 2.17963i 0.239426 + 0.173953i 0.701028 0.713134i \(-0.252725\pi\)
−0.461601 + 0.887087i \(0.652725\pi\)
\(158\) 0 0
\(159\) −0.218847 0.673542i −0.0173557 0.0534154i
\(160\) −0.645898 1.11873i −0.0510627 0.0884432i
\(161\) 5.20820 9.02087i 0.410464 0.710944i
\(162\) −1.58268 0.336408i −0.124347 0.0264307i
\(163\) 0.218847 0.673542i 0.0171414 0.0527559i −0.942120 0.335276i \(-0.891170\pi\)
0.959261 + 0.282520i \(0.0911704\pi\)
\(164\) 1.49448 0.317661i 0.116699 0.0248051i
\(165\) 0.209057 1.98904i 0.0162751 0.154847i
\(166\) −7.67636 + 8.52546i −0.595801 + 0.661704i
\(167\) 4.35207 1.93767i 0.336773 0.149941i −0.231381 0.972863i \(-0.574324\pi\)
0.568154 + 0.822922i \(0.307658\pi\)
\(168\) −6.12825 2.72847i −0.472805 0.210506i
\(169\) −6.39843 7.10618i −0.492187 0.546629i
\(170\) 2.11803 1.53884i 0.162446 0.118024i
\(171\) 8.09017 5.87785i 0.618671 0.449491i
\(172\) 0.985051 + 1.09401i 0.0751095 + 0.0834175i
\(173\) 11.0449 + 4.91752i 0.839730 + 0.373872i 0.781098 0.624408i \(-0.214660\pi\)
0.0586313 + 0.998280i \(0.481326\pi\)
\(174\) 9.43349 4.20006i 0.715151 0.318406i
\(175\) −9.74408 + 10.8219i −0.736584 + 0.818059i
\(176\) 2.65674 25.2772i 0.200259 1.90534i
\(177\) −0.516329 + 0.109749i −0.0388097 + 0.00824925i
\(178\) 4.30902 13.2618i 0.322974 0.994013i
\(179\) −4.69352 0.997638i −0.350810 0.0745670i 0.0291365 0.999575i \(-0.490724\pi\)
−0.379946 + 0.925008i \(0.624058\pi\)
\(180\) −0.236068 + 0.408882i −0.0175955 + 0.0304762i
\(181\) 8.50000 + 14.7224i 0.631800 + 1.09431i 0.987184 + 0.159589i \(0.0510169\pi\)
−0.355383 + 0.934721i \(0.615650\pi\)
\(182\) 2.78115 + 8.55951i 0.206153 + 0.634473i
\(183\) 1.14399 + 10.8843i 0.0845660 + 0.804592i
\(184\) −6.28115 4.56352i −0.463053 0.336428i
\(185\) −1.61803 −0.118960
\(186\) 0 0
\(187\) 22.1803 1.62199
\(188\) 2.80902 + 2.04087i 0.204869 + 0.148846i
\(189\) 1.56793 + 14.9178i 0.114050 + 1.08511i
\(190\) −0.954915 2.93893i −0.0692768 0.213212i
\(191\) 2.45492 + 4.25204i 0.177631 + 0.307667i 0.941069 0.338215i \(-0.109823\pi\)
−0.763437 + 0.645882i \(0.776490\pi\)
\(192\) −2.11803 + 3.66854i −0.152856 + 0.264754i
\(193\) 4.51712 + 0.960143i 0.325149 + 0.0691126i 0.367594 0.929986i \(-0.380181\pi\)
−0.0424452 + 0.999099i \(0.513515\pi\)
\(194\) −9.35410 + 28.7890i −0.671585 + 2.06693i
\(195\) 0.692728 0.147244i 0.0496073 0.0105444i
\(196\) −0.129204 + 1.22930i −0.00922888 + 0.0878069i
\(197\) 6.96994 7.74090i 0.496587 0.551516i −0.441794 0.897116i \(-0.645658\pi\)
0.938382 + 0.345600i \(0.112325\pi\)
\(198\) −15.4794 + 6.89186i −1.10007 + 0.489783i
\(199\) 12.1427 + 5.40626i 0.860770 + 0.383240i 0.789156 0.614193i \(-0.210518\pi\)
0.0716143 + 0.997432i \(0.477185\pi\)
\(200\) 7.26281 + 8.06617i 0.513558 + 0.570364i
\(201\) −0.190983 + 0.138757i −0.0134709 + 0.00978718i
\(202\) −12.0902 + 8.78402i −0.850661 + 0.618042i
\(203\) 12.8111 + 14.2282i 0.899163 + 0.998622i
\(204\) 2.39169 + 1.06485i 0.167452 + 0.0745544i
\(205\) 0.862635 0.384070i 0.0602491 0.0268246i
\(206\) −7.42077 + 8.24160i −0.517030 + 0.574220i
\(207\) −0.725874 + 6.90623i −0.0504517 + 0.480016i
\(208\) 8.80333 1.87121i 0.610401 0.129745i
\(209\) 8.09017 24.8990i 0.559609 1.72230i
\(210\) 1.81359 + 0.385489i 0.125149 + 0.0266013i
\(211\) 4.00000 6.92820i 0.275371 0.476957i −0.694857 0.719148i \(-0.744533\pi\)
0.970229 + 0.242190i \(0.0778659\pi\)
\(212\) 0.218847 + 0.379054i 0.0150305 + 0.0260336i
\(213\) −3.42705 10.5474i −0.234818 0.722694i
\(214\) 1.70656 + 16.2368i 0.116658 + 1.10992i
\(215\) 0.736068 + 0.534785i 0.0501994 + 0.0364720i
\(216\) 11.1803 0.760726
\(217\) 0 0
\(218\) 29.7984 2.01820
\(219\) 9.35410 + 6.79615i 0.632092 + 0.459241i
\(220\) 0.129204 + 1.22930i 0.00871095 + 0.0828792i
\(221\) 2.42705 + 7.46969i 0.163261 + 0.502466i
\(222\) −3.42705 5.93583i −0.230009 0.398387i
\(223\) −6.35410 + 11.0056i −0.425502 + 0.736991i −0.996467 0.0839830i \(-0.973236\pi\)
0.570965 + 0.820974i \(0.306569\pi\)
\(224\) 9.92419 + 2.10945i 0.663088 + 0.140944i
\(225\) 3.00000 9.23305i 0.200000 0.615537i
\(226\) −7.68247 + 1.63296i −0.511030 + 0.108623i
\(227\) −2.27273 + 21.6235i −0.150846 + 1.43520i 0.613141 + 0.789973i \(0.289906\pi\)
−0.763987 + 0.645231i \(0.776761\pi\)
\(228\) 2.06773 2.29644i 0.136939 0.152086i
\(229\) 2.52498 1.12419i 0.166855 0.0742887i −0.321609 0.946872i \(-0.604224\pi\)
0.488465 + 0.872584i \(0.337557\pi\)
\(230\) 1.96038 + 0.872815i 0.129263 + 0.0575517i
\(231\) 10.5108 + 11.6735i 0.691563 + 0.768058i
\(232\) 11.5451 8.38800i 0.757972 0.550699i
\(233\) 4.69098 3.40820i 0.307317 0.223279i −0.423428 0.905930i \(-0.639173\pi\)
0.730744 + 0.682651i \(0.239173\pi\)
\(234\) −4.01478 4.45887i −0.262455 0.291485i
\(235\) 1.96038 + 0.872815i 0.127881 + 0.0569362i
\(236\) 0.298033 0.132693i 0.0194003 0.00863757i
\(237\) 0 0
\(238\) −2.14935 + 20.4497i −0.139321 + 1.32555i
\(239\) 13.1232 2.78943i 0.848871 0.180433i 0.237117 0.971481i \(-0.423798\pi\)
0.611754 + 0.791048i \(0.290464\pi\)
\(240\) 0.572949 1.76336i 0.0369837 0.113824i
\(241\) −17.0903 3.63266i −1.10088 0.234000i −0.378575 0.925570i \(-0.623586\pi\)
−0.722309 + 0.691570i \(0.756919\pi\)
\(242\) −13.2812 + 23.0036i −0.853745 + 1.47873i
\(243\) −8.00000 13.8564i −0.513200 0.888889i
\(244\) −2.09017 6.43288i −0.133809 0.411823i
\(245\) 0.0798526 + 0.759747i 0.00510160 + 0.0485385i
\(246\) 3.23607 + 2.35114i 0.206324 + 0.149903i
\(247\) 9.27051 0.589868
\(248\) 0 0
\(249\) −7.09017 −0.449321
\(250\) −4.92705 3.57971i −0.311614 0.226401i
\(251\) −1.77116 16.8514i −0.111795 1.06365i −0.896274 0.443500i \(-0.853737\pi\)
0.784480 0.620154i \(-0.212930\pi\)
\(252\) −1.14590 3.52671i −0.0721848 0.222162i
\(253\) 9.09017 + 15.7446i 0.571494 + 0.989857i
\(254\) 4.66312 8.07676i 0.292590 0.506781i
\(255\) 1.58268 + 0.336408i 0.0991110 + 0.0210667i
\(256\) 4.19098 12.8985i 0.261936 0.806157i
\(257\) 24.8610 5.28437i 1.55079 0.329630i 0.648652 0.761085i \(-0.275333\pi\)
0.902134 + 0.431455i \(0.142000\pi\)
\(258\) −0.402863 + 3.83299i −0.0250812 + 0.238631i
\(259\) 8.50345 9.44404i 0.528379 0.586824i
\(260\) −0.399853 + 0.178026i −0.0247979 + 0.0110407i
\(261\) −11.6604 5.19156i −0.721763 0.321349i
\(262\) −12.0071 13.3352i −0.741799 0.823851i
\(263\) 11.1631 8.11048i 0.688347 0.500114i −0.187769 0.982213i \(-0.560126\pi\)
0.876116 + 0.482100i \(0.160126\pi\)
\(264\) 9.47214 6.88191i 0.582970 0.423552i
\(265\) 0.181006 + 0.201028i 0.0111191 + 0.0123491i
\(266\) 22.1722 + 9.87171i 1.35947 + 0.605273i
\(267\) 7.87297 3.50527i 0.481818 0.214519i
\(268\) 0.0976248 0.108423i 0.00596339 0.00662301i
\(269\) −0.378188 + 3.59821i −0.0230585 + 0.219387i 0.976925 + 0.213584i \(0.0685138\pi\)
−0.999983 + 0.00580280i \(0.998153\pi\)
\(270\) −3.02264 + 0.642482i −0.183952 + 0.0391002i
\(271\) 3.26393 10.0453i 0.198270 0.610212i −0.801653 0.597790i \(-0.796046\pi\)
0.999923 0.0124220i \(-0.00395415\pi\)
\(272\) 20.1130 + 4.27514i 1.21953 + 0.259219i
\(273\) −2.78115 + 4.81710i −0.168323 + 0.291544i
\(274\) 2.00000 + 3.46410i 0.120824 + 0.209274i
\(275\) −7.85410 24.1724i −0.473620 1.45765i
\(276\) 0.224307 + 2.13414i 0.0135017 + 0.128460i
\(277\) −1.88197 1.36733i −0.113076 0.0821548i 0.529810 0.848116i \(-0.322263\pi\)
−0.642886 + 0.765962i \(0.722263\pi\)
\(278\) 1.38197 0.0828848
\(279\) 0 0
\(280\) 2.56231 0.153127
\(281\) 8.11803 + 5.89810i 0.484281 + 0.351851i 0.802981 0.596005i \(-0.203246\pi\)
−0.318700 + 0.947856i \(0.603246\pi\)
\(282\) 0.950181 + 9.04037i 0.0565825 + 0.538346i
\(283\) −4.19098 12.8985i −0.249128 0.766737i −0.994930 0.100570i \(-0.967933\pi\)
0.745802 0.666168i \(-0.232067\pi\)
\(284\) 3.42705 + 5.93583i 0.203358 + 0.352226i
\(285\) 0.954915 1.65396i 0.0565643 0.0979722i
\(286\) −15.3649 3.26592i −0.908548 0.193118i
\(287\) −2.29180 + 7.05342i −0.135280 + 0.416350i
\(288\) −6.61612 + 1.40630i −0.389859 + 0.0828671i
\(289\) −0.0987033 + 0.939099i −0.00580608 + 0.0552411i
\(290\) −2.63923 + 2.93117i −0.154981 + 0.172124i
\(291\) −17.0908 + 7.60931i −1.00188 + 0.446066i
\(292\) −6.52810 2.90650i −0.382028 0.170090i
\(293\) −2.51856 2.79715i −0.147136 0.163411i 0.665072 0.746780i \(-0.268401\pi\)
−0.812208 + 0.583369i \(0.801734\pi\)
\(294\) −2.61803 + 1.90211i −0.152687 + 0.110933i
\(295\) 0.163119 0.118513i 0.00949715 0.00690009i
\(296\) −6.33810 7.03917i −0.368394 0.409143i
\(297\) −23.9169 10.6485i −1.38780 0.617889i
\(298\) 17.7887 7.92003i 1.03047 0.458795i
\(299\) −4.30766 + 4.78414i −0.249118 + 0.276674i
\(300\) 0.313585 2.98357i 0.0181049 0.172256i
\(301\) −6.98974 + 1.48572i −0.402882 + 0.0856352i
\(302\) −9.25329 + 28.4787i −0.532467 + 1.63876i
\(303\) −9.03424 1.92029i −0.519003 0.110318i
\(304\) 12.1353 21.0189i 0.696005 1.20552i
\(305\) −2.09017 3.62028i −0.119683 0.207297i
\(306\) −4.23607 13.0373i −0.242160 0.745292i
\(307\) 0.532068 + 5.06229i 0.0303667 + 0.288920i 0.999158 + 0.0410401i \(0.0130671\pi\)
−0.968791 + 0.247880i \(0.920266\pi\)
\(308\) −7.85410 5.70634i −0.447529 0.325149i
\(309\) −6.85410 −0.389916
\(310\) 0 0
\(311\) 7.52786 0.426866 0.213433 0.976958i \(-0.431535\pi\)
0.213433 + 0.976958i \(0.431535\pi\)
\(312\) 3.35410 + 2.43690i 0.189889 + 0.137962i
\(313\) −0.338261 3.21834i −0.0191197 0.181911i 0.980794 0.195046i \(-0.0624856\pi\)
−0.999914 + 0.0131347i \(0.995819\pi\)
\(314\) −1.85410 5.70634i −0.104633 0.322027i
\(315\) −1.14590 1.98475i −0.0645640 0.111828i
\(316\) 0 0
\(317\) 9.67246 + 2.05594i 0.543259 + 0.115473i 0.471364 0.881939i \(-0.343762\pi\)
0.0718954 + 0.997412i \(0.477095\pi\)
\(318\) −0.354102 + 1.08981i −0.0198571 + 0.0611137i
\(319\) −32.6862 + 6.94766i −1.83007 + 0.388994i
\(320\) 0.169131 1.60917i 0.00945469 0.0899554i
\(321\) −6.75164 + 7.49846i −0.376840 + 0.418523i
\(322\) −15.3970 + 6.85518i −0.858041 + 0.382024i
\(323\) 19.3492 + 8.61482i 1.07662 + 0.479341i
\(324\) 0.413545 + 0.459289i 0.0229747 + 0.0255160i
\(325\) 7.28115 5.29007i 0.403886 0.293440i
\(326\) −0.927051 + 0.673542i −0.0513446 + 0.0373040i
\(327\) 12.3230 + 13.6861i 0.681462 + 0.756841i
\(328\) 5.04996 + 2.24838i 0.278837 + 0.124146i
\(329\) −15.3970 + 6.85518i −0.848863 + 0.377938i
\(330\) −2.16535 + 2.40487i −0.119199 + 0.132384i
\(331\) −2.32790 + 22.1485i −0.127953 + 1.21739i 0.722511 + 0.691359i \(0.242988\pi\)
−0.850464 + 0.526033i \(0.823679\pi\)
\(332\) 4.28621 0.911062i 0.235236 0.0500010i
\(333\) −2.61803 + 8.05748i −0.143467 + 0.441547i
\(334\) −7.53976 1.60263i −0.412557 0.0876918i
\(335\) 0.0450850 0.0780895i 0.00246326 0.00426648i
\(336\) 7.28115 + 12.6113i 0.397219 + 0.688004i
\(337\) 8.64590 + 26.6093i 0.470972 + 1.44950i 0.851314 + 0.524657i \(0.175806\pi\)
−0.380342 + 0.924846i \(0.624194\pi\)
\(338\) 1.61728 + 15.3874i 0.0879684 + 0.836963i
\(339\) −3.92705 2.85317i −0.213288 0.154963i
\(340\) −1.00000 −0.0542326
\(341\) 0 0
\(342\) −16.1803 −0.874933
\(343\) 12.1353 + 8.81678i 0.655242 + 0.476061i
\(344\) 0.556743 + 5.29706i 0.0300176 + 0.285598i
\(345\) 0.409830 + 1.26133i 0.0220645 + 0.0679076i
\(346\) −9.78115 16.9415i −0.525838 0.910778i
\(347\) −16.0623 + 27.8207i −0.862270 + 1.49350i 0.00746305 + 0.999972i \(0.497624\pi\)
−0.869733 + 0.493523i \(0.835709\pi\)
\(348\) −3.85808 0.820060i −0.206815 0.0439598i
\(349\) −1.01722 + 3.13068i −0.0544506 + 0.167582i −0.974584 0.224025i \(-0.928080\pi\)
0.920133 + 0.391606i \(0.128080\pi\)
\(350\) 23.0474 4.89888i 1.23194 0.261856i
\(351\) 0.969032 9.21973i 0.0517231 0.492113i
\(352\) −11.8491 + 13.1598i −0.631559 + 0.701418i
\(353\) 31.6251 14.0804i 1.68324 0.749425i 0.683425 0.730021i \(-0.260490\pi\)
0.999812 0.0194046i \(-0.00617707\pi\)
\(354\) 0.780261 + 0.347395i 0.0414704 + 0.0184638i
\(355\) 2.83448 + 3.14801i 0.150439 + 0.167079i
\(356\) −4.30902 + 3.13068i −0.228377 + 0.165926i
\(357\) −10.2812 + 7.46969i −0.544136 + 0.395338i
\(358\) 5.19508 + 5.76973i 0.274569 + 0.304939i
\(359\) −8.83742 3.93467i −0.466421 0.207664i 0.160050 0.987109i \(-0.448835\pi\)
−0.626471 + 0.779445i \(0.715501\pi\)
\(360\) −1.56052 + 0.694789i −0.0822467 + 0.0366186i
\(361\) 4.01478 4.45887i 0.211304 0.234677i
\(362\) 2.87522 27.3559i 0.151118 1.43779i
\(363\) −16.0577 + 3.41316i −0.842809 + 0.179145i
\(364\) 1.06231 3.26944i 0.0556800 0.171365i
\(365\) −4.31990 0.918223i −0.226114 0.0480620i
\(366\) 8.85410 15.3358i 0.462811 0.801613i
\(367\) −1.36475 2.36381i −0.0712391 0.123390i 0.828206 0.560425i \(-0.189362\pi\)
−0.899445 + 0.437035i \(0.856029\pi\)
\(368\) 5.20820 + 16.0292i 0.271496 + 0.835580i
\(369\) −0.516817 4.91719i −0.0269044 0.255979i
\(370\) 2.11803 + 1.53884i 0.110111 + 0.0800006i
\(371\) −2.12461 −0.110304
\(372\) 0 0
\(373\) −31.6525 −1.63890 −0.819452 0.573148i \(-0.805722\pi\)
−0.819452 + 0.573148i \(0.805722\pi\)
\(374\) −29.0344 21.0948i −1.50134 1.09078i
\(375\) −0.393438 3.74331i −0.0203171 0.193304i
\(376\) 3.88197 + 11.9475i 0.200197 + 0.616143i
\(377\) −5.91641 10.2475i −0.304711 0.527774i
\(378\) 12.1353 21.0189i 0.624170 1.08109i
\(379\) −8.23249 1.74987i −0.422875 0.0898848i −0.00844109 0.999964i \(-0.502687\pi\)
−0.414433 + 0.910080i \(0.636020\pi\)
\(380\) −0.364745 + 1.12257i −0.0187110 + 0.0575866i
\(381\) 5.63798 1.19839i 0.288842 0.0613953i
\(382\) 0.830403 7.90075i 0.0424871 0.404238i
\(383\) 6.78893 7.53987i 0.346898 0.385269i −0.544295 0.838894i \(-0.683203\pi\)
0.891193 + 0.453625i \(0.149869\pi\)
\(384\) 12.4407 5.53895i 0.634861 0.282659i
\(385\) −5.48127 2.44042i −0.279352 0.124375i
\(386\) −4.99983 5.55288i −0.254485 0.282634i
\(387\) 3.85410 2.80017i 0.195915 0.142341i
\(388\) 9.35410 6.79615i 0.474883 0.345022i
\(389\) −19.4509 21.6024i −0.986199 1.09528i −0.995446 0.0953274i \(-0.969610\pi\)
0.00924722 0.999957i \(-0.497056\pi\)
\(390\) −1.04683 0.466079i −0.0530083 0.0236008i
\(391\) −13.4366 + 5.98237i −0.679519 + 0.302541i
\(392\) −2.99244 + 3.32344i −0.151141 + 0.167859i
\(393\) 1.15924 11.0294i 0.0584758 0.556360i
\(394\) −16.4858 + 3.50416i −0.830543 + 0.176537i
\(395\) 0 0
\(396\) 6.33070 + 1.34563i 0.318130 + 0.0676206i
\(397\) −14.8541 + 25.7281i −0.745506 + 1.29125i 0.204452 + 0.978877i \(0.434459\pi\)
−0.949958 + 0.312378i \(0.898875\pi\)
\(398\) −10.7533 18.6252i −0.539014 0.933599i
\(399\) 4.63525 + 14.2658i 0.232053 + 0.714186i
\(400\) −2.46293 23.4332i −0.123147 1.17166i
\(401\) 19.2812 + 14.0086i 0.962855 + 0.699555i 0.953812 0.300404i \(-0.0971215\pi\)
0.00904282 + 0.999959i \(0.497122\pi\)
\(402\) 0.381966 0.0190507
\(403\) 0 0
\(404\) 5.70820 0.283994
\(405\) 0.309017 + 0.224514i 0.0153552 + 0.0111562i
\(406\) −3.23816 30.8090i −0.160707 1.52903i
\(407\) 6.85410 + 21.0948i 0.339745 + 1.04563i
\(408\) 4.73607 + 8.20311i 0.234470 + 0.406114i
\(409\) 8.09017 14.0126i 0.400033 0.692878i −0.593696 0.804689i \(-0.702332\pi\)
0.993729 + 0.111811i \(0.0356653\pi\)
\(410\) −1.49448 0.317661i −0.0738069 0.0156881i
\(411\) −0.763932 + 2.35114i −0.0376820 + 0.115973i
\(412\) 4.14350 0.880728i 0.204136 0.0433904i
\(413\) −0.165530 + 1.57492i −0.00814522 + 0.0774966i
\(414\) 7.51840 8.35003i 0.369509 0.410381i
\(415\) 2.47407 1.10153i 0.121447 0.0540718i
\(416\) −5.72840 2.55045i −0.280858 0.125046i
\(417\) 0.571506 + 0.634721i 0.0279868 + 0.0310824i
\(418\) −34.2705 + 24.8990i −1.67623 + 1.21785i
\(419\) 3.61803 2.62866i 0.176753 0.128418i −0.495891 0.868385i \(-0.665159\pi\)
0.672644 + 0.739966i \(0.265159\pi\)
\(420\) −0.473881 0.526298i −0.0231230 0.0256807i
\(421\) 17.5730 + 7.82401i 0.856457 + 0.381319i 0.787510 0.616301i \(-0.211370\pi\)
0.0689462 + 0.997620i \(0.478036\pi\)
\(422\) −11.8252 + 5.26491i −0.575641 + 0.256292i
\(423\) 7.51840 8.35003i 0.365557 0.405992i
\(424\) −0.165530 + 1.57492i −0.00803887 + 0.0764847i
\(425\) 20.1130 4.27514i 0.975622 0.207375i
\(426\) −5.54508 + 17.0660i −0.268660 + 0.826851i
\(427\) 32.1153 + 6.82633i 1.55417 + 0.330349i
\(428\) 3.11803 5.40059i 0.150716 0.261048i
\(429\) −4.85410 8.40755i −0.234358 0.405920i
\(430\) −0.454915 1.40008i −0.0219380 0.0675181i
\(431\) −2.58854 24.6283i −0.124685 1.18630i −0.860619 0.509249i \(-0.829923\pi\)
0.735934 0.677053i \(-0.236743\pi\)
\(432\) −19.6353 14.2658i −0.944702 0.686366i
\(433\) −27.4164 −1.31755 −0.658774 0.752341i \(-0.728925\pi\)
−0.658774 + 0.752341i \(0.728925\pi\)
\(434\) 0 0
\(435\) −2.43769 −0.116878
\(436\) −9.20820 6.69015i −0.440993 0.320400i
\(437\) 1.81469 + 17.2656i 0.0868082 + 0.825925i
\(438\) −5.78115 17.7926i −0.276234 0.850161i
\(439\) 5.91641 + 10.2475i 0.282375 + 0.489087i 0.971969 0.235108i \(-0.0755445\pi\)
−0.689594 + 0.724196i \(0.742211\pi\)
\(440\) −2.23607 + 3.87298i −0.106600 + 0.184637i
\(441\) 3.91259 + 0.831647i 0.186314 + 0.0396022i
\(442\) 3.92705 12.0862i 0.186791 0.574883i
\(443\) 0.856259 0.182003i 0.0406821 0.00864724i −0.187526 0.982260i \(-0.560047\pi\)
0.228208 + 0.973612i \(0.426713\pi\)
\(444\) −0.273659 + 2.60369i −0.0129873 + 0.123566i
\(445\) −2.20264 + 2.44628i −0.104415 + 0.115965i
\(446\) 18.7846 8.36344i 0.889477 0.396021i
\(447\) 10.9940 + 4.89485i 0.519999 + 0.231518i
\(448\) 8.50345 + 9.44404i 0.401750 + 0.446189i
\(449\) −27.5623 + 20.0252i −1.30075 + 0.945047i −0.999963 0.00864558i \(-0.997248\pi\)
−0.300783 + 0.953693i \(0.597248\pi\)
\(450\) −12.7082 + 9.23305i −0.599070 + 0.435250i
\(451\) −8.66141 9.61947i −0.407850 0.452963i
\(452\) 2.74064 + 1.22021i 0.128909 + 0.0573938i
\(453\) −16.9066 + 7.52730i −0.794341 + 0.353664i
\(454\) 23.5402 26.1441i 1.10480 1.22700i
\(455\) 0.222082 2.11297i 0.0104114 0.0990577i
\(456\) 10.9360 2.32452i 0.512126 0.108856i
\(457\) −8.26393 + 25.4338i −0.386570 + 1.18974i 0.548764 + 0.835977i \(0.315098\pi\)
−0.935335 + 0.353764i \(0.884902\pi\)
\(458\) −4.37441 0.929809i −0.204403 0.0434471i
\(459\) 10.5902 18.3427i 0.494307 0.856164i
\(460\) −0.409830 0.709846i −0.0191084 0.0330968i
\(461\) 9.80902 + 30.1891i 0.456851 + 1.40604i 0.868948 + 0.494904i \(0.164797\pi\)
−0.412096 + 0.911140i \(0.635203\pi\)
\(462\) −2.65674 25.2772i −0.123603 1.17600i
\(463\) 7.38197 + 5.36331i 0.343069 + 0.249254i 0.745956 0.665996i \(-0.231993\pi\)
−0.402887 + 0.915250i \(0.631993\pi\)
\(464\) −30.9787 −1.43815
\(465\) 0 0
\(466\) −9.38197 −0.434611
\(467\) −31.3713 22.7926i −1.45169 1.05472i −0.985432 0.170068i \(-0.945601\pi\)
−0.466259 0.884648i \(-0.654399\pi\)
\(468\) 0.239558 + 2.27924i 0.0110736 + 0.105358i
\(469\) 0.218847 + 0.673542i 0.0101054 + 0.0311013i
\(470\) −1.73607 3.00696i −0.0800788 0.138701i
\(471\) 1.85410 3.21140i 0.0854325 0.147973i
\(472\) 1.15455 + 0.245406i 0.0531423 + 0.0112957i
\(473\) 3.85410 11.8617i 0.177212 0.545402i
\(474\) 0 0
\(475\) 2.53696 24.1376i 0.116404 1.10751i
\(476\) 5.25542 5.83674i 0.240882 0.267526i
\(477\) 1.29395 0.576105i 0.0592460 0.0263780i
\(478\) −19.8314 8.82952i −0.907069 0.403853i
\(479\) 5.98489 + 6.64689i 0.273456 + 0.303704i 0.864193 0.503160i \(-0.167829\pi\)
−0.590737 + 0.806864i \(0.701163\pi\)
\(480\) −1.04508 + 0.759299i −0.0477014 + 0.0346571i
\(481\) −6.35410 + 4.61653i −0.289722 + 0.210495i
\(482\) 18.9167 + 21.0091i 0.861630 + 0.956938i
\(483\) −9.51586 4.23673i −0.432987 0.192778i
\(484\) 9.26874 4.12671i 0.421306 0.187578i
\(485\) 4.78154 5.31044i 0.217119 0.241135i
\(486\) −2.70609 + 25.7467i −0.122751 + 1.16790i
\(487\) −41.0069 + 8.71628i −1.85820 + 0.394972i −0.994111 0.108369i \(-0.965437\pi\)
−0.864088 + 0.503341i \(0.832104\pi\)
\(488\) 7.56231 23.2744i 0.342330 1.05358i
\(489\) −0.692728 0.147244i −0.0313262 0.00665860i
\(490\) 0.618034 1.07047i 0.0279199 0.0483587i
\(491\) 10.7984 + 18.7033i 0.487324 + 0.844070i 0.999894 0.0145759i \(-0.00463981\pi\)
−0.512570 + 0.858645i \(0.671306\pi\)
\(492\) −0.472136 1.45309i −0.0212855 0.0655101i
\(493\) −2.82587 26.8863i −0.127271 1.21090i
\(494\) −12.1353 8.81678i −0.545991 0.396686i
\(495\) 4.00000 0.179787
\(496\) 0 0
\(497\) −33.2705 −1.49239
\(498\) 9.28115 + 6.74315i 0.415898 + 0.302168i
\(499\) 1.13456 + 10.7946i 0.0507900 + 0.483235i 0.990120 + 0.140221i \(0.0447812\pi\)
−0.939330 + 0.343014i \(0.888552\pi\)
\(500\) 0.718847 + 2.21238i 0.0321478 + 0.0989408i
\(501\) −2.38197 4.12569i −0.106418 0.184322i
\(502\) −13.7082 + 23.7433i −0.611827 + 1.05972i
\(503\) −19.4202 4.12790i −0.865906 0.184054i −0.246517 0.969138i \(-0.579286\pi\)
−0.619389 + 0.785084i \(0.712619\pi\)
\(504\) 4.14590 12.7598i 0.184673 0.568365i
\(505\) 3.45077 0.733484i 0.153557 0.0326396i
\(506\) 3.07485 29.2553i 0.136694 1.30056i
\(507\) −6.39843 + 7.10618i −0.284164 + 0.315596i
\(508\) −3.25433 + 1.44892i −0.144387 + 0.0642854i
\(509\) 11.9585 + 5.32425i 0.530050 + 0.235993i 0.654270 0.756261i \(-0.272976\pi\)
−0.124220 + 0.992255i \(0.539643\pi\)
\(510\) −1.75181 1.94558i −0.0775713 0.0861517i
\(511\) 28.0623 20.3885i 1.24140 0.901932i
\(512\) 4.28115 3.11044i 0.189202 0.137463i
\(513\) −16.7283 18.5786i −0.738571 0.820266i
\(514\) −37.5692 16.7269i −1.65711 0.737791i
\(515\) 2.39169 1.06485i 0.105391 0.0469229i
\(516\) 0.985051 1.09401i 0.0433645 0.0481611i
\(517\) 3.07485 29.2553i 0.135232 1.28664i
\(518\) −20.1130 + 4.27514i −0.883713 + 0.187839i
\(519\) 3.73607 11.4984i 0.163995 0.504725i
\(520\) −1.54899 0.329247i −0.0679276 0.0144385i
\(521\) 13.5344 23.4423i 0.592955 1.02703i −0.400877 0.916132i \(-0.631295\pi\)
0.993832 0.110896i \(-0.0353720\pi\)
\(522\) 10.3262 + 17.8856i 0.451967 + 0.782830i
\(523\) 1.89261 + 5.82485i 0.0827580 + 0.254703i 0.983870 0.178883i \(-0.0572482\pi\)
−0.901112 + 0.433586i \(0.857248\pi\)
\(524\) 0.716449 + 6.81655i 0.0312982 + 0.297783i
\(525\) 11.7812 + 8.55951i 0.514172 + 0.373568i
\(526\) −22.3262 −0.973470
\(527\) 0 0
\(528\) −25.4164 −1.10611
\(529\) 8.85410 + 6.43288i 0.384961 + 0.279691i
\(530\) −0.0457515 0.435296i −0.00198732 0.0189081i
\(531\) −0.326238 1.00406i −0.0141575 0.0435724i
\(532\) −4.63525 8.02850i −0.200964 0.348079i
\(533\) 2.29180 3.96951i 0.0992687 0.171938i
\(534\) −13.6396 2.89918i −0.590241 0.125460i
\(535\) 1.19098 3.66547i 0.0514907 0.158472i
\(536\) 0.516329 0.109749i 0.0223020 0.00474044i
\(537\) −0.501567 + 4.77209i −0.0216442 + 0.205931i
\(538\) 3.91716 4.35045i 0.168881 0.187561i
\(539\) 9.56677 4.25940i 0.412070 0.183465i
\(540\) 1.07829 + 0.480087i 0.0464024 + 0.0206597i
\(541\) 14.7209 + 16.3492i 0.632900 + 0.702906i 0.971236 0.238119i \(-0.0765308\pi\)
−0.338336 + 0.941025i \(0.609864\pi\)
\(542\) −13.8262 + 10.0453i −0.593888 + 0.431485i
\(543\) 13.7533 9.99235i 0.590210 0.428813i
\(544\) −9.58612 10.6465i −0.411002 0.456464i
\(545\) −6.42628 2.86117i −0.275272 0.122559i
\(546\) 8.22191 3.66063i 0.351865 0.156660i
\(547\) −6.88656 + 7.64829i −0.294448 + 0.327017i −0.872158 0.489225i \(-0.837280\pi\)
0.577710 + 0.816242i \(0.303946\pi\)
\(548\) 0.159705 1.51949i 0.00682227 0.0649096i
\(549\) −21.4102 + 4.55088i −0.913766 + 0.194227i
\(550\) −12.7082 + 39.1118i −0.541880 + 1.66773i
\(551\) −31.2125 6.63443i −1.32970 0.282636i
\(552\) −3.88197 + 6.72376i −0.165227 + 0.286182i
\(553\) 0 0
\(554\) 1.16312 + 3.57971i 0.0494162 + 0.152087i
\(555\) 0.169131 + 1.60917i 0.00717919 + 0.0683055i
\(556\) −0.427051 0.310271i −0.0181110 0.0131584i
\(557\) −0.111456 −0.00472255 −0.00236127 0.999997i \(-0.500752\pi\)
−0.00236127 + 0.999997i \(0.500752\pi\)
\(558\) 0 0
\(559\) 4.41641 0.186794
\(560\) −4.50000 3.26944i −0.190160 0.138159i
\(561\) −2.31848 22.0588i −0.0978862 0.931325i
\(562\) −5.01722 15.4414i −0.211639 0.651357i
\(563\) −5.78115 10.0133i −0.243647 0.422008i 0.718104 0.695936i \(-0.245010\pi\)
−0.961750 + 0.273928i \(0.911677\pi\)
\(564\) 1.73607 3.00696i 0.0731016 0.126616i
\(565\) 1.81359 + 0.385489i 0.0762981 + 0.0162177i
\(566\) −6.78115 + 20.8702i −0.285033 + 0.877242i
\(567\) −2.93444 + 0.623735i −0.123235 + 0.0261944i
\(568\) −2.59214 + 24.6625i −0.108764 + 1.03482i
\(569\) −16.3751 + 18.1863i −0.686478 + 0.762411i −0.981163 0.193183i \(-0.938119\pi\)
0.294685 + 0.955595i \(0.404785\pi\)
\(570\) −2.82301 + 1.25689i −0.118243 + 0.0526451i
\(571\) −6.39482 2.84716i −0.267615 0.119150i 0.268543 0.963268i \(-0.413458\pi\)
−0.536157 + 0.844118i \(0.680125\pi\)
\(572\) 4.01478 + 4.45887i 0.167867 + 0.186435i
\(573\) 3.97214 2.88593i 0.165938 0.120561i
\(574\) 9.70820 7.05342i 0.405213 0.294404i
\(575\) 11.2776 + 12.5250i 0.470308 + 0.522330i
\(576\) −7.73968 3.44593i −0.322487 0.143580i
\(577\) −7.28892 + 3.24524i −0.303442 + 0.135101i −0.552809 0.833308i \(-0.686444\pi\)
0.249367 + 0.968409i \(0.419777\pi\)
\(578\) 1.02234 1.13542i 0.0425238 0.0472274i
\(579\) 0.482716 4.59274i 0.0200610 0.190868i
\(580\) 1.47366 0.313235i 0.0611902 0.0130064i
\(581\) −6.57295 + 20.2295i −0.272692 + 0.839259i
\(582\) 29.6090 + 6.29359i 1.22733 + 0.260878i
\(583\) 1.85410 3.21140i 0.0767891 0.133003i
\(584\) −12.9271 22.3903i −0.534925 0.926518i
\(585\) 0.437694 + 1.34708i 0.0180964 + 0.0556951i
\(586\) 0.636596 + 6.05681i 0.0262975 + 0.250204i
\(587\) −32.3713 23.5191i −1.33611 0.970739i −0.999577 0.0290662i \(-0.990747\pi\)
−0.336530 0.941673i \(-0.609253\pi\)
\(588\) 1.23607 0.0509746
\(589\) 0 0
\(590\) −0.326238 −0.0134310
\(591\) −8.42705 6.12261i −0.346643 0.251851i
\(592\) 2.14935 + 20.4497i 0.0883376 + 0.840476i
\(593\) 12.9443 + 39.8384i 0.531558 + 1.63597i 0.750972 + 0.660334i \(0.229585\pi\)
−0.219414 + 0.975632i \(0.570415\pi\)
\(594\) 21.1803 + 36.6854i 0.869040 + 1.50522i
\(595\) 2.42705 4.20378i 0.0994994 0.172338i
\(596\) −7.27516 1.54638i −0.298002 0.0633423i
\(597\) 4.10739 12.6412i 0.168104 0.517372i
\(598\) 10.1888 2.16569i 0.416650 0.0885618i
\(599\) −0.543718 + 5.17313i −0.0222157 + 0.211368i 0.977783 + 0.209621i \(0.0672229\pi\)
−0.999998 + 0.00174761i \(0.999444\pi\)
\(600\) 7.26281 8.06617i 0.296503 0.329300i
\(601\) −20.0980 + 8.94821i −0.819815 + 0.365005i −0.773401 0.633917i \(-0.781446\pi\)
−0.0464137 + 0.998922i \(0.514779\pi\)
\(602\) 10.5627 + 4.70281i 0.430503 + 0.191672i
\(603\) −0.315921 0.350865i −0.0128653 0.0142883i
\(604\) 9.25329 6.72291i 0.376511 0.273551i
\(605\) 5.07295 3.68571i 0.206245 0.149846i
\(606\) 9.99967 + 11.1058i 0.406209 + 0.451141i
\(607\) 1.29395 + 0.576105i 0.0525199 + 0.0233834i 0.432829 0.901476i \(-0.357516\pi\)
−0.380309 + 0.924860i \(0.624182\pi\)
\(608\) −15.4479 + 6.87785i −0.626495 + 0.278934i
\(609\) 12.8111 14.2282i 0.519132 0.576555i
\(610\) −0.707023 + 6.72688i −0.0286265 + 0.272363i
\(611\) 10.1888 2.16569i 0.412194 0.0876146i
\(612\) −1.61803 + 4.97980i −0.0654051 + 0.201296i
\(613\) 42.0058 + 8.92862i 1.69660 + 0.360623i 0.951813 0.306679i \(-0.0992178\pi\)
0.744787 + 0.667303i \(0.232551\pi\)
\(614\) 4.11803 7.13264i 0.166190 0.287850i
\(615\) −0.472136 0.817763i −0.0190384 0.0329754i
\(616\) −10.8541 33.4055i −0.437324 1.34595i
\(617\) 1.02061 + 9.71044i 0.0410882 + 0.390928i 0.995669 + 0.0929742i \(0.0296374\pi\)
−0.954580 + 0.297954i \(0.903696\pi\)
\(618\) 8.97214 + 6.51864i 0.360912 + 0.262218i
\(619\) 40.0000 1.60774 0.803868 0.594808i \(-0.202772\pi\)
0.803868 + 0.594808i \(0.202772\pi\)
\(620\) 0 0
\(621\) 17.3607 0.696660
\(622\) −9.85410 7.15942i −0.395113 0.287067i
\(623\) −2.70249 25.7125i −0.108273 1.03015i
\(624\) −2.78115 8.55951i −0.111335 0.342655i
\(625\) −11.4164 19.7738i −0.456656 0.790952i
\(626\) −2.61803 + 4.53457i −0.104638 + 0.181238i
\(627\) −25.6082 5.44320i −1.02269 0.217380i
\(628\) −0.708204 + 2.17963i −0.0282604 + 0.0869766i
\(629\) −17.5521 + 3.73082i −0.699850 + 0.148758i
\(630\) −0.387613 + 3.68789i −0.0154429 + 0.146929i
\(631\) 28.2845 31.4131i 1.12599 1.25054i 0.161367 0.986894i \(-0.448410\pi\)
0.964621 0.263642i \(-0.0849237\pi\)
\(632\) 0 0
\(633\) −7.30836 3.25389i −0.290481 0.129331i
\(634\) −10.7061 11.8903i −0.425193 0.472225i
\(635\) −1.78115 + 1.29408i −0.0706829 + 0.0513541i
\(636\) 0.354102 0.257270i 0.0140411 0.0102014i
\(637\) 2.48127 + 2.75573i 0.0983116 + 0.109186i
\(638\) 49.3944 + 21.9918i 1.95554 + 0.870664i
\(639\) 20.2627 9.02156i 0.801582 0.356887i
\(640\) −3.48057 + 3.86556i −0.137582 + 0.152800i
\(641\) −3.12643 + 29.7460i −0.123487 + 1.17490i 0.740740 + 0.671792i \(0.234475\pi\)
−0.864226 + 0.503103i \(0.832191\pi\)
\(642\) 15.9695 3.39442i 0.630265 0.133967i
\(643\) −4.59017 + 14.1271i −0.181019 + 0.557118i −0.999857 0.0169060i \(-0.994618\pi\)
0.818838 + 0.574024i \(0.194618\pi\)
\(644\) 6.29702 + 1.33847i 0.248137 + 0.0527432i
\(645\) 0.454915 0.787936i 0.0179123 0.0310249i
\(646\) −17.1353 29.6791i −0.674178 1.16771i
\(647\) −1.81966 5.60034i −0.0715382 0.220172i 0.908895 0.417026i \(-0.136928\pi\)
−0.980433 + 0.196854i \(0.936928\pi\)
\(648\) 0.233733 + 2.22382i 0.00918189 + 0.0873598i
\(649\) −2.23607 1.62460i −0.0877733 0.0637711i
\(650\) −14.5623 −0.571181
\(651\) 0 0
\(652\) 0.437694 0.0171414
\(653\) −6.75329 4.90655i −0.264277 0.192008i 0.447754 0.894157i \(-0.352224\pi\)
−0.712030 + 0.702149i \(0.752224\pi\)
\(654\) −3.11478 29.6351i −0.121797 1.15883i
\(655\) 1.30902 + 4.02874i 0.0511475 + 0.157416i
\(656\) −6.00000 10.3923i −0.234261 0.405751i
\(657\) −11.5623 + 20.0265i −0.451089 + 0.781308i
\(658\) 26.6746 + 5.66986i 1.03988 + 0.221034i
\(659\) −11.6459 + 35.8424i −0.453660 + 1.39622i 0.419042 + 0.907967i \(0.362366\pi\)
−0.872701 + 0.488254i \(0.837634\pi\)
\(660\) 1.20906 0.256993i 0.0470625 0.0100034i
\(661\) 1.50332 14.3032i 0.0584726 0.556329i −0.925593 0.378521i \(-0.876433\pi\)
0.984065 0.177808i \(-0.0569006\pi\)
\(662\) 24.1117 26.7788i 0.937130 1.04079i
\(663\) 7.17508 3.19455i 0.278657 0.124066i
\(664\) 14.4834 + 6.44844i 0.562067 + 0.250248i
\(665\) −3.83378 4.25784i −0.148668 0.165112i
\(666\) 11.0902 8.05748i 0.429735 0.312221i
\(667\) 17.9271 13.0248i 0.694138 0.504321i
\(668\) 1.97010 + 2.18802i 0.0762256 + 0.0846571i
\(669\) 11.6095 + 5.16889i 0.448850 + 0.199841i
\(670\) −0.133284 + 0.0593421i −0.00514923 + 0.00229258i
\(671\) −38.3445 + 42.5859i −1.48027 + 1.64401i
\(672\) 1.06054 10.0903i 0.0409110 0.389242i
\(673\) 21.9266 4.66063i 0.845207 0.179654i 0.235098 0.971972i \(-0.424459\pi\)
0.610109 + 0.792318i \(0.291126\pi\)
\(674\) 13.9894 43.0548i 0.538850 1.65841i
\(675\) −23.7401 5.04612i −0.913758 0.194225i
\(676\) 2.95492 5.11806i 0.113651 0.196849i
\(677\) −1.32624 2.29711i −0.0509715 0.0882852i 0.839414 0.543493i \(-0.182898\pi\)
−0.890385 + 0.455207i \(0.849565\pi\)
\(678\) 2.42705 + 7.46969i 0.0932103 + 0.286872i
\(679\) 5.86662 + 55.8172i 0.225140 + 2.14207i
\(680\) −2.92705 2.12663i −0.112247 0.0815524i
\(681\) 21.7426 0.833180
\(682\) 0 0
\(683\) 27.9443 1.06926 0.534629 0.845087i \(-0.320451\pi\)
0.534629 + 0.845087i \(0.320451\pi\)
\(684\) 5.00000 + 3.63271i 0.191180 + 0.138900i
\(685\) −0.0987033 0.939099i −0.00377126 0.0358811i
\(686\) −7.50000 23.0826i −0.286351 0.881299i
\(687\) −1.38197 2.39364i −0.0527253 0.0913229i
\(688\) 5.78115 10.0133i 0.220404 0.381752i
\(689\) 1.28439 + 0.273005i 0.0489313 + 0.0104007i
\(690\) 0.663119 2.04087i 0.0252445 0.0776946i
\(691\) 48.7438 10.3608i 1.85430 0.394144i 0.860896 0.508781i \(-0.169904\pi\)
0.993407 + 0.114637i \(0.0365704\pi\)
\(692\) −0.781051 + 7.43120i −0.0296911 + 0.282492i
\(693\) −21.0217 + 23.3469i −0.798548 + 0.886877i
\(694\) 47.4849 21.1416i 1.80250 0.802526i
\(695\) −0.298033 0.132693i −0.0113050 0.00503333i
\(696\) −9.54883 10.6051i −0.361948 0.401984i
\(697\) 8.47214 6.15537i 0.320905 0.233151i
\(698\) 4.30902 3.13068i 0.163099 0.118498i
\(699\) −3.87987 4.30903i −0.146750 0.162983i
\(700\) −8.22191 3.66063i −0.310759 0.138359i
\(701\) −0.882081 + 0.392728i −0.0333157 + 0.0148331i −0.423327 0.905977i \(-0.639138\pi\)
0.390011 + 0.920810i \(0.372471\pi\)
\(702\) −10.0370 + 11.1472i −0.378821 + 0.420723i
\(703\) −2.21395 + 21.0643i −0.0835006 + 0.794456i
\(704\) −21.6956 + 4.61155i −0.817685 + 0.173804i
\(705\) 0.663119 2.04087i 0.0249745 0.0768636i
\(706\) −54.7891 11.6458i −2.06202 0.438295i
\(707\) −13.8541 + 23.9960i −0.521037 + 0.902463i
\(708\) −0.163119 0.282530i −0.00613039 0.0106181i
\(709\) −3.35410 10.3229i −0.125966 0.387683i 0.868110 0.496372i \(-0.165335\pi\)
−0.994076 + 0.108689i \(0.965335\pi\)
\(710\) −0.716449 6.81655i −0.0268878 0.255821i
\(711\) 0 0
\(712\) −19.2705 −0.722193
\(713\) 0 0
\(714\) 20.5623 0.769525
\(715\) 3.00000 + 2.17963i 0.112194 + 0.0815134i
\(716\) −0.309985 2.94931i −0.0115847 0.110221i
\(717\) −4.14590 12.7598i −0.154831 0.476522i
\(718\) 7.82624 + 13.5554i 0.292073 + 0.505885i
\(719\) −21.8090 + 37.7743i −0.813339 + 1.40874i 0.0971753 + 0.995267i \(0.469019\pi\)
−0.910514 + 0.413477i \(0.864314\pi\)
\(720\) 3.62717 + 0.770979i 0.135177 + 0.0287327i
\(721\) −6.35410 + 19.5559i −0.236639 + 0.728300i
\(722\) −9.49606 + 2.01845i −0.353407 + 0.0751189i
\(723\) −1.82634 + 17.3764i −0.0679221 + 0.646236i
\(724\) −7.03027 + 7.80791i −0.261278 + 0.290179i
\(725\) −28.3005 + 12.6002i −1.05105 + 0.467959i
\(726\) 24.2659 + 10.8039i 0.900591 + 0.400969i
\(727\) 19.9621 + 22.1701i 0.740351 + 0.822244i 0.989242 0.146288i \(-0.0467326\pi\)
−0.248891 + 0.968532i \(0.580066\pi\)
\(728\) 10.0623 7.31069i 0.372934 0.270952i
\(729\) −10.5172 + 7.64121i −0.389527 + 0.283008i
\(730\) 4.78154 + 5.31044i 0.176973 + 0.196548i
\(731\) 9.21783 + 4.10404i 0.340934 + 0.151793i
\(732\) −6.17916 + 2.75114i −0.228388 + 0.101685i
\(733\) 6.72860 7.47286i 0.248526 0.276016i −0.605955 0.795499i \(-0.707209\pi\)
0.854481 + 0.519483i \(0.173875\pi\)
\(734\) −0.461640 + 4.39221i −0.0170395 + 0.162120i
\(735\) 0.747238 0.158830i 0.0275623 0.00585855i
\(736\) 3.62868 11.1679i 0.133755 0.411655i
\(737\) −1.20906 0.256993i −0.0445362 0.00946646i
\(738\) −4.00000 + 6.92820i −0.147242 + 0.255031i
\(739\) 4.14590 + 7.18091i 0.152509 + 0.264154i 0.932149 0.362074i \(-0.117931\pi\)
−0.779640 + 0.626228i \(0.784598\pi\)
\(740\) −0.309017 0.951057i −0.0113597 0.0349615i
\(741\) −0.969032 9.21973i −0.0355983 0.338695i
\(742\) 2.78115 + 2.02063i 0.102099 + 0.0741795i
\(743\) 23.5623 0.864417 0.432209 0.901774i \(-0.357734\pi\)
0.432209 + 0.901774i \(0.357734\pi\)
\(744\) 0 0
\(745\) −4.59675 −0.168412
\(746\) 41.4336 + 30.1033i 1.51699 + 1.10216i
\(747\) −1.48225 14.1027i −0.0542327 0.515989i
\(748\) 4.23607 + 13.0373i 0.154886 + 0.476690i
\(749\) 15.1353 + 26.2150i 0.553030 + 0.957876i
\(750\) −3.04508 + 5.27424i −0.111191 + 0.192588i
\(751\) −13.5305 2.87600i −0.493736 0.104947i −0.0456871 0.998956i \(-0.514548\pi\)
−0.448049 + 0.894009i \(0.647881\pi\)
\(752\) 8.42705 25.9358i 0.307303 0.945781i
\(753\) −16.5740 + 3.52291i −0.603990 + 0.128382i
\(754\) −2.00129 + 19.0410i −0.0728827 + 0.693433i
\(755\) 4.73001 5.25320i 0.172143 0.191184i
\(756\) −8.46903 + 3.77066i −0.308016 + 0.137137i
\(757\) −2.62680 1.16953i −0.0954726 0.0425071i 0.358445 0.933551i \(-0.383307\pi\)
−0.453917 + 0.891044i \(0.649974\pi\)
\(758\) 9.11224 + 10.1202i 0.330972 + 0.367581i
\(759\) 14.7082 10.6861i 0.533874 0.387882i
\(760\) −3.45492 + 2.51014i −0.125323 + 0.0910524i
\(761\) 23.0894 + 25.6434i 0.836990 + 0.929572i 0.998356 0.0573228i \(-0.0182564\pi\)
−0.161365 + 0.986895i \(0.551590\pi\)
\(762\) −8.51994 3.79332i −0.308645 0.137418i
\(763\) 50.4727 22.4719i 1.82723 0.813537i
\(764\) −2.03044 + 2.25503i −0.0734587 + 0.0815841i
\(765\) −0.338261 + 3.21834i −0.0122299 + 0.116359i
\(766\) −16.0577 + 3.41316i −0.580187 + 0.123323i
\(767\) 0.302439 0.930812i 0.0109204 0.0336097i
\(768\) −13.2659 2.81976i −0.478693 0.101749i
\(769\) 5.62868 9.74915i 0.202975 0.351564i −0.746510 0.665374i \(-0.768272\pi\)
0.949486 + 0.313810i \(0.101606\pi\)
\(770\) 4.85410 + 8.40755i 0.174930 + 0.302987i
\(771\) −7.85410 24.1724i −0.282859 0.870549i
\(772\) 0.298335 + 2.83847i 0.0107373 + 0.102159i
\(773\) −6.39919 4.64928i −0.230163 0.167223i 0.466727 0.884402i \(-0.345433\pi\)
−0.696889 + 0.717179i \(0.745433\pi\)
\(774\) −7.70820 −0.277066
\(775\) 0 0
\(776\) 41.8328 1.50171
\(777\) −10.2812 7.46969i −0.368834 0.267974i
\(778\) 4.91644 + 46.7768i 0.176263 + 1.67703i
\(779\) −3.81966 11.7557i −0.136854 0.421192i
\(780\) 0.218847 + 0.379054i 0.00783598 + 0.0135723i
\(781\) 29.0344 50.2891i 1.03893 1.79949i
\(782\) 23.2783 + 4.94796i 0.832431 + 0.176939i
\(783\) −9.86068 + 30.3481i −0.352392 + 1.08455i
\(784\) 9.49606 2.01845i 0.339145 0.0720875i
\(785\) −0.148055 + 1.40865i −0.00528431 + 0.0502768i
\(786\) −12.0071 + 13.3352i −0.428278 + 0.475651i
\(787\) −40.8430 + 18.1845i −1.45589 + 0.648206i −0.973695 0.227855i \(-0.926829\pi\)
−0.482200 + 0.876061i \(0.660162\pi\)
\(788\) 5.88113 + 2.61845i 0.209506 + 0.0932783i
\(789\) −9.23291 10.2542i −0.328700 0.365059i
\(790\) 0 0
\(791\) −11.7812 + 8.55951i −0.418890 + 0.304341i
\(792\) 15.6686 + 17.4018i 0.556761 + 0.618345i
\(793\) −18.5375 8.25342i −0.658285 0.293087i
\(794\) 43.9131 19.5514i 1.55842 0.693852i
\(795\) 0.181006 0.201028i 0.00641964 0.00712973i
\(796\) −0.858679 + 8.16978i −0.0304351 + 0.289570i
\(797\) 26.3555 5.60203i 0.933559 0.198434i 0.284069 0.958804i \(-0.408316\pi\)
0.649490 + 0.760370i \(0.274982\pi\)
\(798\) 7.50000 23.0826i 0.265497 0.817116i
\(799\) 23.2783 + 4.94796i 0.823528 + 0.175046i
\(800\) −8.20820 + 14.2170i −0.290204 + 0.502648i
\(801\) 8.61803 + 14.9269i 0.304503 + 0.527415i
\(802\) −11.9164 36.6749i −0.420783 1.29504i
\(803\) 6.32826 + 60.2094i 0.223319 + 2.12474i
\(804\) −0.118034 0.0857567i −0.00416274 0.00302441i
\(805\) 3.97871 0.140231
\(806\) 0 0
\(807\) 3.61803 0.127361
\(808\) 16.7082 + 12.1392i 0.587793 + 0.427056i
\(809\) 3.15693 + 30.0362i 0.110992 + 1.05602i 0.898278 + 0.439428i \(0.144819\pi\)
−0.787286 + 0.616588i \(0.788515\pi\)
\(810\) −0.190983 0.587785i −0.00671046 0.0206527i
\(811\) 14.3885 + 24.9217i 0.505250 + 0.875119i 0.999982 + 0.00607295i \(0.00193309\pi\)
−0.494731 + 0.869046i \(0.664734\pi\)
\(812\) −5.91641 + 10.2475i −0.207625 + 0.359617i
\(813\) −10.3315 2.19603i −0.362341 0.0770180i
\(814\) 11.0902 34.1320i 0.388710 1.19633i
\(815\) 0.264599 0.0562422i 0.00926848 0.00197008i
\(816\) 2.14935 20.4497i 0.0752422 0.715881i
\(817\) 7.96923 8.85073i 0.278808 0.309648i
\(818\) −23.9169 + 10.6485i −0.836236 + 0.372316i
\(819\) −10.1628 4.52479i −0.355118 0.158109i
\(820\) 0.390499 + 0.433693i 0.0136368 + 0.0151452i
\(821\) −19.0344 + 13.8293i −0.664307 + 0.482647i −0.868115 0.496364i \(-0.834668\pi\)
0.203808 + 0.979011i \(0.434668\pi\)
\(822\) 3.23607 2.35114i 0.112871 0.0820055i
\(823\) −22.8338 25.3595i −0.795937 0.883978i 0.199451 0.979908i \(-0.436084\pi\)
−0.995388 + 0.0959302i \(0.969417\pi\)
\(824\) 14.0012 + 6.23374i 0.487755 + 0.217163i
\(825\) −23.2190 + 10.3378i −0.808383 + 0.359915i
\(826\) 1.71452 1.90416i 0.0596557 0.0662544i
\(827\) 1.91561 18.2258i 0.0666124 0.633775i −0.909379 0.415968i \(-0.863443\pi\)
0.975992 0.217807i \(-0.0698904\pi\)
\(828\) −4.19801 + 0.892315i −0.145891 + 0.0310101i
\(829\) 2.56231 7.88597i 0.0889926 0.273891i −0.896649 0.442742i \(-0.854006\pi\)
0.985642 + 0.168851i \(0.0540057\pi\)
\(830\) −4.28621 0.911062i −0.148777 0.0316234i
\(831\) −1.16312 + 2.01458i −0.0403481 + 0.0698850i
\(832\) −3.92705 6.80185i −0.136146 0.235812i
\(833\) 2.61803 + 8.05748i 0.0907095 + 0.279175i
\(834\) −0.144455 1.37440i −0.00500206 0.0475914i
\(835\) 1.47214 + 1.06957i 0.0509454 + 0.0370140i
\(836\) 16.1803 0.559609
\(837\) 0 0
\(838\) −7.23607 −0.249966
\(839\) 9.04508 + 6.57164i 0.312271 + 0.226878i 0.732870 0.680368i \(-0.238180\pi\)
−0.420599 + 0.907246i \(0.638180\pi\)
\(840\) −0.267834 2.54827i −0.00924115 0.0879236i
\(841\) 3.62461 + 11.1554i 0.124987 + 0.384669i
\(842\) −15.5623 26.9547i −0.536312 0.928920i
\(843\) 5.01722 8.69008i 0.172802 0.299302i
\(844\) 4.83623 + 1.02797i 0.166470 + 0.0353843i
\(845\) 1.12868 3.47371i 0.0388277 0.119499i
\(846\) −17.7831 + 3.77991i −0.611394 + 0.129956i
\(847\) −5.14795 + 48.9794i −0.176886 + 1.68295i
\(848\) 2.30027 2.55470i 0.0789915 0.0877289i
\(849\) −12.3898 + 5.51629i −0.425216 + 0.189318i
\(850\) −30.3941 13.5323i −1.04251 0.464155i
\(851\) −9.84171 10.9303i −0.337369 0.374687i
\(852\) 5.54508 4.02874i 0.189971 0.138022i
\(853\) −3.23607 + 2.35114i −0.110801 + 0.0805015i −0.641806 0.766867i \(-0.721815\pi\)
0.531005 + 0.847369i \(0.321815\pi\)
\(854\) −35.5473 39.4793i −1.21640 1.35095i
\(855\) 3.48943 + 1.55360i 0.119336 + 0.0531319i
\(856\) 20.6117 9.17692i 0.704493 0.313661i
\(857\) 9.48850 10.5380i 0.324121 0.359973i −0.558959 0.829195i \(-0.688799\pi\)
0.883080 + 0.469222i \(0.155466\pi\)
\(858\) −1.64195 + 15.6222i −0.0560554 + 0.533332i
\(859\) 55.4690 11.7903i 1.89258 0.402280i 0.893658 0.448749i \(-0.148130\pi\)
0.998920 + 0.0464691i \(0.0147969\pi\)
\(860\) −0.173762 + 0.534785i −0.00592524 + 0.0182360i
\(861\) 7.25434 + 1.54196i 0.247227 + 0.0525498i
\(862\) −20.0344 + 34.7007i −0.682376 + 1.18191i
\(863\) 20.2533 + 35.0797i 0.689430 + 1.19413i 0.972023 + 0.234888i \(0.0754722\pi\)
−0.282593 + 0.959240i \(0.591194\pi\)
\(864\) 5.22542 + 16.0822i 0.177773 + 0.547128i
\(865\) 0.482716 + 4.59274i 0.0164128 + 0.156158i
\(866\) 35.8885 + 26.0746i 1.21954 + 0.886049i
\(867\) 0.944272 0.0320692
\(868\) 0 0
\(869\) 0 0
\(870\) 3.19098 + 2.31838i 0.108184 + 0.0786006i
\(871\) −0.0457515 0.435296i −0.00155023 0.0147495i
\(872\) −12.7254 39.1648i −0.430937 1.32629i
\(873\) −18.7082 32.4036i −0.633177 1.09669i
\(874\) 14.0451 24.3268i 0.475082 0.822866i
\(875\) −11.0450 2.34770i −0.373391 0.0793666i
\(876\) −2.20820 + 6.79615i −0.0746083 + 0.229621i
\(877\) −29.0590 + 6.17668i −0.981253 + 0.208572i −0.670492 0.741916i \(-0.733917\pi\)
−0.310761 + 0.950488i \(0.600584\pi\)
\(878\) 2.00129 19.0410i 0.0675403 0.642603i
\(879\) −2.51856 + 2.79715i −0.0849490 + 0.0943454i
\(880\) 8.86889 3.94868i 0.298970 0.133110i
\(881\) −26.8223 11.9421i −0.903667 0.402338i −0.0983286 0.995154i \(-0.531350\pi\)
−0.805338 + 0.592816i \(0.798016\pi\)
\(882\) −4.33070 4.80973i −0.145822 0.161952i
\(883\) −0.809017 + 0.587785i −0.0272256 + 0.0197805i −0.601315 0.799012i \(-0.705356\pi\)
0.574089 + 0.818793i \(0.305356\pi\)
\(884\) −3.92705 + 2.85317i −0.132081 + 0.0959625i
\(885\) −0.134914 0.149837i −0.00453509 0.00503673i
\(886\) −1.29395 0.576105i −0.0434712 0.0193546i
\(887\) −43.9446 + 19.5654i −1.47551 + 0.656941i −0.977636 0.210305i \(-0.932554\pi\)
−0.497879 + 0.867247i \(0.665888\pi\)
\(888\) −6.33810 + 7.03917i −0.212693 + 0.236219i
\(889\) 1.80748 17.1971i 0.0606211 0.576771i
\(890\) 5.20985 1.10739i 0.174634 0.0371197i
\(891\) 1.61803 4.97980i 0.0542062 0.166829i
\(892\) −7.68247 1.63296i −0.257228 0.0546755i
\(893\) 14.0451 24.3268i 0.470001 0.814065i
\(894\) −9.73607 16.8634i −0.325623 0.563995i
\(895\) −0.566371 1.74311i −0.0189317 0.0582658i
\(896\) −4.27042 40.6303i −0.142665 1.35736i
\(897\) 5.20820 + 3.78398i 0.173897 + 0.126343i
\(898\) 55.1246 1.83953
\(899\) 0 0
\(900\) 6.00000 0.200000
\(901\) 2.42705 + 1.76336i 0.0808568 + 0.0587459i
\(902\) 2.18927 + 20.8295i 0.0728948 + 0.693548i
\(903\) 2.20820 + 6.79615i 0.0734844 + 0.226162i
\(904\) 5.42705 + 9.39993i 0.180501 + 0.312637i
\(905\) −3.24671 + 5.62347i −0.107924 + 0.186930i
\(906\) 29.2899 + 6.22576i 0.973092 + 0.206837i
\(907\) −3.68441 + 11.3394i −0.122339 + 0.376520i −0.993407 0.114642i \(-0.963428\pi\)
0.871068 + 0.491162i \(0.163428\pi\)
\(908\) −13.1440 + 2.79385i −0.436201 + 0.0927173i
\(909\) 1.93086 18.3709i 0.0640427 0.609326i
\(910\) −2.30027 + 2.55470i −0.0762531 + 0.0846876i
\(911\) 12.9544 5.76766i 0.429198 0.191091i −0.180756 0.983528i \(-0.557855\pi\)
0.609954 + 0.792437i \(0.291188\pi\)
\(912\) −22.1722 9.87171i −0.734195 0.326885i
\(913\) −24.8412 27.5890i −0.822124 0.913061i
\(914\) 35.0066 25.4338i 1.15791 0.841274i
\(915\) −3.38197 + 2.45714i −0.111804 + 0.0812306i
\(916\) 1.14301 + 1.26944i 0.0377662 + 0.0419436i
\(917\) −30.3941 13.5323i −1.00370 0.446877i
\(918\) −31.3077 + 13.9391i −1.03331 + 0.460058i
\(919\) 33.5399 37.2498i 1.10638 1.22876i 0.135096 0.990832i \(-0.456866\pi\)
0.971283 0.237927i \(-0.0764678\pi\)
\(920\) 0.309985 2.94931i 0.0102199 0.0972360i
\(921\) 4.97894 1.05831i 0.164062 0.0348724i
\(922\) 15.8713 48.8469i 0.522694 1.60869i
\(923\) 20.1130 + 4.27514i 0.662026 + 0.140718i
\(924\) −4.85410 + 8.40755i −0.159688 + 0.276588i
\(925\) 10.2812 + 17.8075i 0.338042 + 0.585506i
\(926\) −4.56231 14.0413i −0.149927 0.461427i
\(927\) −1.43290 13.6331i −0.0470625 0.447770i
\(928\) 17.4615 + 12.6865i 0.573202 + 0.416455i
\(929\) 33.5410 1.10045 0.550223 0.835018i \(-0.314543\pi\)
0.550223 + 0.835018i \(0.314543\pi\)
\(930\) 0 0
\(931\) 10.0000 0.327737
\(932\) 2.89919 + 2.10638i 0.0949660 + 0.0689969i
\(933\) −0.786876 7.48663i −0.0257612 0.245101i
\(934\) 19.3885 + 59.6718i 0.634413 + 1.95252i
\(935\) 4.23607 + 7.33708i 0.138534 + 0.239948i
\(936\) −4.14590 + 7.18091i −0.135513 + 0.234715i
\(937\) 43.5132 + 9.24901i 1.42151 + 0.302152i 0.853597 0.520934i \(-0.174416\pi\)
0.567917 + 0.823086i \(0.307750\pi\)
\(938\) 0.354102 1.08981i 0.0115618 0.0355837i
\(939\) −3.16535 + 0.672816i −0.103297 + 0.0219565i
\(940\) −0.138630 + 1.31897i −0.00452160 + 0.0430201i
\(941\) −37.0808 + 41.1824i −1.20880 + 1.34251i −0.285524 + 0.958372i \(0.592168\pi\)
−0.923276 + 0.384137i \(0.874499\pi\)
\(942\) −5.48127 + 2.44042i −0.178590 + 0.0795132i
\(943\) 7.84150 + 3.49126i 0.255354 + 0.113691i
\(944\) −1.71452 1.90416i −0.0558028 0.0619753i
\(945\) −4.63525 + 3.36771i −0.150785 + 0.109552i
\(946\) −16.3262 + 11.8617i −0.530812 + 0.385657i
\(947\) 24.1348 + 26.8044i 0.784275 + 0.871026i 0.994294 0.106671i \(-0.0340192\pi\)
−0.210019 + 0.977697i \(0.567353\pi\)
\(948\) 0 0
\(949\) −19.5843 + 8.71950i −0.635734 + 0.283047i
\(950\) −26.2771 + 29.1837i −0.852542 + 0.946843i
\(951\) 1.03363 9.83437i 0.0335179 0.318901i
\(952\) 27.7954 5.90810i 0.900855 0.191483i
\(953\) 2.84752 8.76378i 0.0922404 0.283887i −0.894284 0.447499i \(-0.852315\pi\)
0.986525 + 0.163613i \(0.0523147\pi\)
\(954\) −2.24171 0.476491i −0.0725782 0.0154270i
\(955\) −0.937694 + 1.62413i −0.0303431 + 0.0525557i
\(956\) 4.14590 + 7.18091i 0.134088 + 0.232247i
\(957\) 10.3262 + 31.7809i 0.333800 + 1.02733i
\(958\) −1.51275 14.3929i −0.0488747 0.465012i
\(959\) 6.00000 + 4.35926i 0.193750 + 0.140768i
\(960\) −1.61803 −0.0522218
\(961\) 0 0
\(962\) 12.7082 0.409729
\(963\) −16.3262 11.8617i −0.526106 0.382238i
\(964\) −1.12874 10.7392i −0.0363542 0.345887i
\(965\) 0.545085 + 1.67760i 0.0175469 + 0.0540038i
\(966\) 8.42705 + 14.5961i 0.271136 + 0.469621i
\(967\) 6.17376 10.6933i 0.198535 0.343872i −0.749519 0.661983i \(-0.769715\pi\)
0.948054 + 0.318111i \(0.103048\pi\)
\(968\) 35.9060 + 7.63206i 1.15406 + 0.245304i
\(969\) 6.54508 20.1437i 0.210258 0.647109i
\(970\) −11.3096 + 2.40394i −0.363131 + 0.0771858i
\(971\) 0.0457515 0.435296i 0.00146824 0.0139693i −0.993763 0.111511i \(-0.964431\pi\)
0.995231 + 0.0975412i \(0.0310978\pi\)
\(972\) 6.61673 7.34862i 0.212232 0.235707i
\(973\) 2.34078 1.04218i 0.0750421 0.0334109i
\(974\) 61.9684 + 27.5901i 1.98559 + 0.884044i
\(975\) −6.02218 6.68830i −0.192864 0.214197i
\(976\) −42.9787 + 31.2259i −1.37572 + 0.999516i
\(977\) −42.1246 + 30.6053i −1.34769 + 0.979151i −0.348562 + 0.937286i \(0.613330\pi\)
−0.999123 + 0.0418654i \(0.986670\pi\)
\(978\) 0.766755 + 0.851568i 0.0245181 + 0.0272301i
\(979\) 41.2234 + 18.3538i 1.31751 + 0.586591i
\(980\) −0.431318 + 0.192035i −0.0137779 + 0.00613433i
\(981\) −24.6460 + 27.3721i −0.786885 + 0.873924i
\(982\) 3.65267 34.7528i 0.116561 1.10901i
\(983\) −7.85887 + 1.67045i −0.250659 + 0.0532792i −0.331527 0.943446i \(-0.607564\pi\)
0.0808685 + 0.996725i \(0.474231\pi\)
\(984\) 1.70820 5.25731i 0.0544556 0.167597i
\(985\) 3.89177 + 0.827221i 0.124002 + 0.0263575i
\(986\) −21.8713 + 37.8822i −0.696525 + 1.20642i
\(987\) 8.42705 + 14.5961i 0.268236 + 0.464598i
\(988\) 1.77051 + 5.44907i 0.0563274 + 0.173358i
\(989\) 0.864504 + 8.22520i 0.0274896 + 0.261546i
\(990\) −5.23607 3.80423i −0.166413 0.120906i
\(991\) −16.2705 −0.516850 −0.258425 0.966031i \(-0.583203\pi\)
−0.258425 + 0.966031i \(0.583203\pi\)
\(992\) 0 0
\(993\) 22.2705 0.706733
\(994\) 43.5517 + 31.6421i 1.38137 + 1.00363i
\(995\) 0.530693 + 5.04920i 0.0168241 + 0.160070i
\(996\) −1.35410 4.16750i −0.0429064 0.132052i
\(997\) −26.6246 46.1152i −0.843210 1.46048i −0.887167 0.461449i \(-0.847330\pi\)
0.0439568 0.999033i \(-0.486004\pi\)
\(998\) 8.78115 15.2094i 0.277963 0.481445i
\(999\) 20.7175 + 4.40364i 0.655473 + 0.139325i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.c.816.1 8
31.2 even 5 961.2.g.g.846.1 8
31.3 odd 30 961.2.g.b.338.1 8
31.4 even 5 961.2.c.d.439.2 4
31.5 even 3 961.2.d.b.374.1 4
31.6 odd 6 961.2.g.b.732.1 8
31.7 even 15 961.2.c.d.521.2 4
31.8 even 5 961.2.g.g.547.1 8
31.9 even 15 961.2.d.e.531.1 4
31.10 even 15 961.2.d.e.628.1 4
31.11 odd 30 961.2.a.d.1.2 2
31.12 odd 30 961.2.g.f.448.1 8
31.13 odd 30 31.2.d.a.16.1 yes 4
31.14 even 15 961.2.g.g.844.1 8
31.15 odd 10 961.2.g.b.235.1 8
31.16 even 5 inner 961.2.g.c.235.1 8
31.17 odd 30 961.2.g.f.844.1 8
31.18 even 15 961.2.d.b.388.1 4
31.19 even 15 961.2.g.g.448.1 8
31.20 even 15 961.2.a.e.1.2 2
31.21 odd 30 961.2.d.f.628.1 4
31.22 odd 30 961.2.d.f.531.1 4
31.23 odd 10 961.2.g.f.547.1 8
31.24 odd 30 961.2.c.f.521.2 4
31.25 even 3 inner 961.2.g.c.732.1 8
31.26 odd 6 31.2.d.a.2.1 4
31.27 odd 10 961.2.c.f.439.2 4
31.28 even 15 inner 961.2.g.c.338.1 8
31.29 odd 10 961.2.g.f.846.1 8
31.30 odd 2 961.2.g.b.816.1 8
93.11 even 30 8649.2.a.g.1.1 2
93.20 odd 30 8649.2.a.f.1.1 2
93.26 even 6 279.2.i.a.64.1 4
93.44 even 30 279.2.i.a.109.1 4
124.75 even 30 496.2.n.b.481.1 4
124.119 even 6 496.2.n.b.33.1 4
155.13 even 60 775.2.bf.a.574.2 8
155.44 odd 30 775.2.k.c.326.1 4
155.57 even 12 775.2.bf.a.374.2 8
155.88 even 12 775.2.bf.a.374.1 8
155.119 odd 6 775.2.k.c.126.1 4
155.137 even 60 775.2.bf.a.574.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.d.a.2.1 4 31.26 odd 6
31.2.d.a.16.1 yes 4 31.13 odd 30
279.2.i.a.64.1 4 93.26 even 6
279.2.i.a.109.1 4 93.44 even 30
496.2.n.b.33.1 4 124.119 even 6
496.2.n.b.481.1 4 124.75 even 30
775.2.k.c.126.1 4 155.119 odd 6
775.2.k.c.326.1 4 155.44 odd 30
775.2.bf.a.374.1 8 155.88 even 12
775.2.bf.a.374.2 8 155.57 even 12
775.2.bf.a.574.1 8 155.137 even 60
775.2.bf.a.574.2 8 155.13 even 60
961.2.a.d.1.2 2 31.11 odd 30
961.2.a.e.1.2 2 31.20 even 15
961.2.c.d.439.2 4 31.4 even 5
961.2.c.d.521.2 4 31.7 even 15
961.2.c.f.439.2 4 31.27 odd 10
961.2.c.f.521.2 4 31.24 odd 30
961.2.d.b.374.1 4 31.5 even 3
961.2.d.b.388.1 4 31.18 even 15
961.2.d.e.531.1 4 31.9 even 15
961.2.d.e.628.1 4 31.10 even 15
961.2.d.f.531.1 4 31.22 odd 30
961.2.d.f.628.1 4 31.21 odd 30
961.2.g.b.235.1 8 31.15 odd 10
961.2.g.b.338.1 8 31.3 odd 30
961.2.g.b.732.1 8 31.6 odd 6
961.2.g.b.816.1 8 31.30 odd 2
961.2.g.c.235.1 8 31.16 even 5 inner
961.2.g.c.338.1 8 31.28 even 15 inner
961.2.g.c.732.1 8 31.25 even 3 inner
961.2.g.c.816.1 8 1.1 even 1 trivial
961.2.g.f.448.1 8 31.12 odd 30
961.2.g.f.547.1 8 31.23 odd 10
961.2.g.f.844.1 8 31.17 odd 30
961.2.g.f.846.1 8 31.29 odd 10
961.2.g.g.448.1 8 31.19 even 15
961.2.g.g.547.1 8 31.8 even 5
961.2.g.g.844.1 8 31.14 even 15
961.2.g.g.846.1 8 31.2 even 5
8649.2.a.f.1.1 2 93.20 odd 30
8649.2.a.g.1.1 2 93.11 even 30