Properties

Label 961.2.g.b.338.1
Level $961$
Weight $2$
Character 961.338
Analytic conductor $7.674$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-6,-1,6,6,2,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{15})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 338.1
Root \(-0.978148 + 0.207912i\) of defining polynomial
Character \(\chi\) \(=\) 961.338
Dual form 961.2.g.b.816.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.30902 + 0.951057i) q^{2} +(0.104528 - 0.994522i) q^{3} +(0.190983 - 0.587785i) q^{4} +(0.190983 - 0.330792i) q^{5} +(0.809017 + 1.40126i) q^{6} +(-2.93444 + 0.623735i) q^{7} +(-0.690983 - 2.12663i) q^{8} +(1.95630 + 0.415823i) q^{9} +(0.0646021 + 0.614648i) q^{10} +(-3.50361 - 3.89116i) q^{11} +(-0.564602 - 0.251377i) q^{12} +(-1.69381 + 0.754131i) q^{13} +(3.24803 - 3.60730i) q^{14} +(-0.309017 - 0.224514i) q^{15} +(3.92705 + 2.85317i) q^{16} +(-2.83448 + 3.14801i) q^{17} +(-2.95630 + 1.31623i) q^{18} +(4.56773 + 2.03368i) q^{19} +(-0.157960 - 0.175433i) q^{20} +(0.313585 + 2.98357i) q^{21} +(8.28700 + 1.76146i) q^{22} +(1.07295 + 3.30220i) q^{23} +(-2.18720 + 0.464905i) q^{24} +(2.42705 + 4.20378i) q^{25} +(1.50000 - 2.59808i) q^{26} +(1.54508 - 4.75528i) q^{27} +(-0.193806 + 1.84395i) q^{28} +(5.16312 - 3.75123i) q^{29} +0.618034 q^{30} -3.38197 q^{32} +(-4.23607 + 3.07768i) q^{33} +(0.716449 - 6.81655i) q^{34} +(-0.354102 + 1.08981i) q^{35} +(0.618034 - 1.07047i) q^{36} +(2.11803 + 3.66854i) q^{37} +(-7.91338 + 1.68204i) q^{38} +(0.572949 + 1.76336i) q^{39} +(-0.835438 - 0.177578i) q^{40} +(0.258409 + 2.45859i) q^{41} +(-3.24803 - 3.60730i) q^{42} +(-2.17603 - 0.968833i) q^{43} +(-2.95630 + 1.31623i) q^{44} +(0.511170 - 0.567712i) q^{45} +(-4.54508 - 3.30220i) q^{46} +(4.54508 + 3.30220i) q^{47} +(3.24803 - 3.60730i) q^{48} +(1.82709 - 0.813473i) q^{49} +(-7.17508 - 3.19455i) q^{50} +(2.83448 + 3.14801i) q^{51} +(0.119779 + 1.13962i) q^{52} +(-0.692728 - 0.147244i) q^{53} +(2.50000 + 7.69421i) q^{54} +(-1.95630 + 0.415823i) q^{55} +(3.35410 + 5.80948i) q^{56} +(2.50000 - 4.33013i) q^{57} +(-3.19098 + 9.82084i) q^{58} +(-0.0551768 + 0.524972i) q^{59} +(-0.190983 + 0.138757i) q^{60} +10.9443 q^{61} -6.00000 q^{63} +(-3.42705 + 2.48990i) q^{64} +(-0.0740275 + 0.704324i) q^{65} +(2.61803 - 8.05748i) q^{66} +(-0.118034 + 0.204441i) q^{67} +(1.30902 + 2.26728i) q^{68} +(3.39626 - 0.721898i) q^{69} +(-0.572949 - 1.76336i) q^{70} +(10.8478 + 2.30578i) q^{71} +(-0.467465 - 4.44764i) q^{72} +(7.73669 + 8.59247i) q^{73} +(-6.26153 - 2.78781i) q^{74} +(4.43444 - 1.97434i) q^{75} +(2.06773 - 2.29644i) q^{76} +(12.7082 + 9.23305i) q^{77} +(-2.42705 - 1.76336i) q^{78} +(1.69381 - 0.754131i) q^{80} +(0.913545 + 0.406737i) q^{81} +(-2.67652 - 2.97258i) q^{82} +(-0.741125 - 7.05133i) q^{83} +(1.81359 + 0.385489i) q^{84} +(0.500000 + 1.53884i) q^{85} +(3.76988 - 0.801313i) q^{86} +(-3.19098 - 5.52694i) q^{87} +(-5.85410 + 10.1396i) q^{88} +(-2.66312 + 8.19624i) q^{89} +(-0.129204 + 1.22930i) q^{90} +(4.50000 - 3.26944i) q^{91} +2.14590 q^{92} -9.09017 q^{94} +(1.54508 - 1.12257i) q^{95} +(-0.353512 + 3.36344i) q^{96} +(-5.78115 + 17.7926i) q^{97} +(-1.61803 + 2.80252i) q^{98} +(-5.23607 - 9.06914i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{2} - q^{3} + 6 q^{4} + 6 q^{5} + 2 q^{6} + 3 q^{7} - 10 q^{8} - 2 q^{9} - 2 q^{10} + 2 q^{11} - 2 q^{12} - 6 q^{13} - 6 q^{14} + 2 q^{15} + 18 q^{16} + 3 q^{17} - 6 q^{18} + 5 q^{19} + 7 q^{20}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{8}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30902 + 0.951057i −0.925615 + 0.672499i −0.944915 0.327315i \(-0.893856\pi\)
0.0193004 + 0.999814i \(0.493856\pi\)
\(3\) 0.104528 0.994522i 0.0603495 0.574187i −0.922007 0.387172i \(-0.873452\pi\)
0.982357 0.187015i \(-0.0598814\pi\)
\(4\) 0.190983 0.587785i 0.0954915 0.293893i
\(5\) 0.190983 0.330792i 0.0854102 0.147935i −0.820156 0.572140i \(-0.806113\pi\)
0.905566 + 0.424206i \(0.139447\pi\)
\(6\) 0.809017 + 1.40126i 0.330280 + 0.572061i
\(7\) −2.93444 + 0.623735i −1.10912 + 0.235750i −0.725826 0.687879i \(-0.758542\pi\)
−0.383289 + 0.923628i \(0.625209\pi\)
\(8\) −0.690983 2.12663i −0.244299 0.751876i
\(9\) 1.95630 + 0.415823i 0.652098 + 0.138608i
\(10\) 0.0646021 + 0.614648i 0.0204290 + 0.194369i
\(11\) −3.50361 3.89116i −1.05638 1.17323i −0.984422 0.175820i \(-0.943742\pi\)
−0.0719569 0.997408i \(-0.522924\pi\)
\(12\) −0.564602 0.251377i −0.162987 0.0725663i
\(13\) −1.69381 + 0.754131i −0.469777 + 0.209158i −0.627951 0.778253i \(-0.716106\pi\)
0.158174 + 0.987411i \(0.449439\pi\)
\(14\) 3.24803 3.60730i 0.868072 0.964092i
\(15\) −0.309017 0.224514i −0.0797878 0.0579693i
\(16\) 3.92705 + 2.85317i 0.981763 + 0.713292i
\(17\) −2.83448 + 3.14801i −0.687463 + 0.763505i −0.981328 0.192342i \(-0.938392\pi\)
0.293865 + 0.955847i \(0.405058\pi\)
\(18\) −2.95630 + 1.31623i −0.696805 + 0.310238i
\(19\) 4.56773 + 2.03368i 1.04791 + 0.466559i 0.857144 0.515077i \(-0.172237\pi\)
0.190765 + 0.981636i \(0.438903\pi\)
\(20\) −0.157960 0.175433i −0.0353210 0.0392279i
\(21\) 0.313585 + 2.98357i 0.0684299 + 0.651067i
\(22\) 8.28700 + 1.76146i 1.76679 + 0.375544i
\(23\) 1.07295 + 3.30220i 0.223725 + 0.688556i 0.998418 + 0.0562184i \(0.0179043\pi\)
−0.774693 + 0.632337i \(0.782096\pi\)
\(24\) −2.18720 + 0.464905i −0.446461 + 0.0948983i
\(25\) 2.42705 + 4.20378i 0.485410 + 0.840755i
\(26\) 1.50000 2.59808i 0.294174 0.509525i
\(27\) 1.54508 4.75528i 0.297352 0.915155i
\(28\) −0.193806 + 1.84395i −0.0366260 + 0.348473i
\(29\) 5.16312 3.75123i 0.958767 0.696585i 0.00590304 0.999983i \(-0.498121\pi\)
0.952864 + 0.303397i \(0.0981210\pi\)
\(30\) 0.618034 0.112837
\(31\) 0 0
\(32\) −3.38197 −0.597853
\(33\) −4.23607 + 3.07768i −0.737405 + 0.535756i
\(34\) 0.716449 6.81655i 0.122870 1.16903i
\(35\) −0.354102 + 1.08981i −0.0598542 + 0.184212i
\(36\) 0.618034 1.07047i 0.103006 0.178411i
\(37\) 2.11803 + 3.66854i 0.348203 + 0.603105i 0.985930 0.167157i \(-0.0534588\pi\)
−0.637728 + 0.770262i \(0.720125\pi\)
\(38\) −7.91338 + 1.68204i −1.28372 + 0.272863i
\(39\) 0.572949 + 1.76336i 0.0917453 + 0.282363i
\(40\) −0.835438 0.177578i −0.132094 0.0280775i
\(41\) 0.258409 + 2.45859i 0.0403566 + 0.383968i 0.995994 + 0.0894215i \(0.0285018\pi\)
−0.955637 + 0.294546i \(0.904832\pi\)
\(42\) −3.24803 3.60730i −0.501182 0.556619i
\(43\) −2.17603 0.968833i −0.331842 0.147746i 0.234051 0.972224i \(-0.424802\pi\)
−0.565893 + 0.824479i \(0.691468\pi\)
\(44\) −2.95630 + 1.31623i −0.445678 + 0.198429i
\(45\) 0.511170 0.567712i 0.0762008 0.0846295i
\(46\) −4.54508 3.30220i −0.670136 0.486882i
\(47\) 4.54508 + 3.30220i 0.662969 + 0.481675i 0.867664 0.497151i \(-0.165620\pi\)
−0.204695 + 0.978826i \(0.565620\pi\)
\(48\) 3.24803 3.60730i 0.468812 0.520669i
\(49\) 1.82709 0.813473i 0.261013 0.116210i
\(50\) −7.17508 3.19455i −1.01471 0.451778i
\(51\) 2.83448 + 3.14801i 0.396907 + 0.440810i
\(52\) 0.119779 + 1.13962i 0.0166104 + 0.158037i
\(53\) −0.692728 0.147244i −0.0951535 0.0202255i 0.160089 0.987103i \(-0.448822\pi\)
−0.255242 + 0.966877i \(0.582155\pi\)
\(54\) 2.50000 + 7.69421i 0.340207 + 1.04705i
\(55\) −1.95630 + 0.415823i −0.263787 + 0.0560696i
\(56\) 3.35410 + 5.80948i 0.448211 + 0.776324i
\(57\) 2.50000 4.33013i 0.331133 0.573539i
\(58\) −3.19098 + 9.82084i −0.418997 + 1.28954i
\(59\) −0.0551768 + 0.524972i −0.00718341 + 0.0683456i −0.997526 0.0702939i \(-0.977606\pi\)
0.990343 + 0.138640i \(0.0442729\pi\)
\(60\) −0.190983 + 0.138757i −0.0246558 + 0.0179135i
\(61\) 10.9443 1.40127 0.700635 0.713520i \(-0.252900\pi\)
0.700635 + 0.713520i \(0.252900\pi\)
\(62\) 0 0
\(63\) −6.00000 −0.755929
\(64\) −3.42705 + 2.48990i −0.428381 + 0.311237i
\(65\) −0.0740275 + 0.704324i −0.00918198 + 0.0873607i
\(66\) 2.61803 8.05748i 0.322258 0.991807i
\(67\) −0.118034 + 0.204441i −0.0144201 + 0.0249764i −0.873145 0.487460i \(-0.837924\pi\)
0.858725 + 0.512436i \(0.171257\pi\)
\(68\) 1.30902 + 2.26728i 0.158742 + 0.274949i
\(69\) 3.39626 0.721898i 0.408862 0.0869063i
\(70\) −0.572949 1.76336i −0.0684805 0.210761i
\(71\) 10.8478 + 2.30578i 1.28740 + 0.273645i 0.800246 0.599671i \(-0.204702\pi\)
0.487153 + 0.873316i \(0.338035\pi\)
\(72\) −0.467465 4.44764i −0.0550913 0.524159i
\(73\) 7.73669 + 8.59247i 0.905511 + 1.00567i 0.999949 + 0.0101415i \(0.00322818\pi\)
−0.0944372 + 0.995531i \(0.530105\pi\)
\(74\) −6.26153 2.78781i −0.727889 0.324077i
\(75\) 4.43444 1.97434i 0.512045 0.227977i
\(76\) 2.06773 2.29644i 0.237185 0.263420i
\(77\) 12.7082 + 9.23305i 1.44823 + 1.05220i
\(78\) −2.42705 1.76336i −0.274809 0.199661i
\(79\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(80\) 1.69381 0.754131i 0.189373 0.0843144i
\(81\) 0.913545 + 0.406737i 0.101505 + 0.0451930i
\(82\) −2.67652 2.97258i −0.295572 0.328266i
\(83\) −0.741125 7.05133i −0.0813490 0.773984i −0.956814 0.290702i \(-0.906111\pi\)
0.875465 0.483282i \(-0.160555\pi\)
\(84\) 1.81359 + 0.385489i 0.197878 + 0.0420603i
\(85\) 0.500000 + 1.53884i 0.0542326 + 0.166911i
\(86\) 3.76988 0.801313i 0.406517 0.0864078i
\(87\) −3.19098 5.52694i −0.342109 0.592551i
\(88\) −5.85410 + 10.1396i −0.624049 + 1.08089i
\(89\) −2.66312 + 8.19624i −0.282290 + 0.868799i 0.704908 + 0.709299i \(0.250988\pi\)
−0.987198 + 0.159500i \(0.949012\pi\)
\(90\) −0.129204 + 1.22930i −0.0136193 + 0.129579i
\(91\) 4.50000 3.26944i 0.471728 0.342731i
\(92\) 2.14590 0.223725
\(93\) 0 0
\(94\) −9.09017 −0.937579
\(95\) 1.54508 1.12257i 0.158522 0.115173i
\(96\) −0.353512 + 3.36344i −0.0360801 + 0.343280i
\(97\) −5.78115 + 17.7926i −0.586987 + 1.80656i 0.00415240 + 0.999991i \(0.498678\pi\)
−0.591140 + 0.806569i \(0.701322\pi\)
\(98\) −1.61803 + 2.80252i −0.163446 + 0.283097i
\(99\) −5.23607 9.06914i −0.526245 0.911482i
\(100\) 2.93444 0.623735i 0.293444 0.0623735i
\(101\) 2.85410 + 8.78402i 0.283994 + 0.874043i 0.986698 + 0.162561i \(0.0519755\pi\)
−0.702705 + 0.711482i \(0.748024\pi\)
\(102\) −6.70432 1.42505i −0.663827 0.141101i
\(103\) 0.716449 + 6.81655i 0.0705938 + 0.671655i 0.971402 + 0.237439i \(0.0763079\pi\)
−0.900809 + 0.434216i \(0.857025\pi\)
\(104\) 2.77415 + 3.08100i 0.272028 + 0.302117i
\(105\) 1.04683 + 0.466079i 0.102160 + 0.0454846i
\(106\) 1.04683 0.466079i 0.101677 0.0452696i
\(107\) −6.75164 + 7.49846i −0.652706 + 0.724903i −0.975116 0.221697i \(-0.928840\pi\)
0.322410 + 0.946600i \(0.395507\pi\)
\(108\) −2.50000 1.81636i −0.240563 0.174779i
\(109\) −14.8992 10.8249i −1.42708 1.03684i −0.990551 0.137148i \(-0.956206\pi\)
−0.436533 0.899688i \(-0.643794\pi\)
\(110\) 2.16535 2.40487i 0.206458 0.229295i
\(111\) 3.86984 1.72296i 0.367309 0.163537i
\(112\) −13.3033 5.92302i −1.25705 0.559673i
\(113\) 3.24803 + 3.60730i 0.305549 + 0.339346i 0.876290 0.481783i \(-0.160011\pi\)
−0.570742 + 0.821130i \(0.693344\pi\)
\(114\) 0.845653 + 8.04585i 0.0792027 + 0.753563i
\(115\) 1.29726 + 0.275740i 0.120970 + 0.0257129i
\(116\) −1.21885 3.75123i −0.113167 0.348293i
\(117\) −3.62717 + 0.770979i −0.335332 + 0.0712770i
\(118\) −0.427051 0.739674i −0.0393132 0.0680925i
\(119\) 6.35410 11.0056i 0.582480 1.00888i
\(120\) −0.263932 + 0.812299i −0.0240936 + 0.0741524i
\(121\) −1.71598 + 16.3265i −0.155998 + 1.48423i
\(122\) −14.3262 + 10.4086i −1.29704 + 0.942352i
\(123\) 2.47214 0.222905
\(124\) 0 0
\(125\) 3.76393 0.336656
\(126\) 7.85410 5.70634i 0.699699 0.508361i
\(127\) −0.602495 + 5.73236i −0.0534628 + 0.508664i 0.934720 + 0.355385i \(0.115650\pi\)
−0.988183 + 0.153280i \(0.951016\pi\)
\(128\) 4.20820 12.9515i 0.371956 1.14476i
\(129\) −1.19098 + 2.06284i −0.104860 + 0.181623i
\(130\) −0.572949 0.992377i −0.0502510 0.0870372i
\(131\) 10.8478 2.30578i 0.947779 0.201457i 0.292007 0.956416i \(-0.405677\pi\)
0.655771 + 0.754960i \(0.272344\pi\)
\(132\) 1.00000 + 3.07768i 0.0870388 + 0.267878i
\(133\) −14.6722 3.11868i −1.27224 0.270423i
\(134\) −0.0399263 0.379874i −0.00344911 0.0328161i
\(135\) −1.27793 1.41928i −0.109986 0.122152i
\(136\) 8.65323 + 3.85266i 0.742008 + 0.330363i
\(137\) 2.25841 1.00551i 0.192949 0.0859064i −0.307988 0.951390i \(-0.599656\pi\)
0.500937 + 0.865484i \(0.332989\pi\)
\(138\) −3.75920 + 4.17501i −0.320004 + 0.355401i
\(139\) 0.690983 + 0.502029i 0.0586084 + 0.0425815i 0.616704 0.787195i \(-0.288468\pi\)
−0.558095 + 0.829777i \(0.688468\pi\)
\(140\) 0.572949 + 0.416272i 0.0484230 + 0.0351814i
\(141\) 3.75920 4.17501i 0.316582 0.351600i
\(142\) −16.3929 + 7.29859i −1.37566 + 0.612484i
\(143\) 8.86889 + 3.94868i 0.741653 + 0.330205i
\(144\) 6.49606 + 7.21460i 0.541338 + 0.601217i
\(145\) −0.254808 2.42434i −0.0211607 0.201330i
\(146\) −18.2994 3.88965i −1.51447 0.321910i
\(147\) −0.618034 1.90211i −0.0509746 0.156884i
\(148\) 2.56082 0.544320i 0.210498 0.0447428i
\(149\) −6.01722 10.4221i −0.492950 0.853814i 0.507017 0.861936i \(-0.330748\pi\)
−0.999967 + 0.00812166i \(0.997415\pi\)
\(150\) −3.92705 + 6.80185i −0.320642 + 0.555369i
\(151\) 5.71885 17.6008i 0.465393 1.43233i −0.393094 0.919498i \(-0.628595\pi\)
0.858487 0.512835i \(-0.171405\pi\)
\(152\) 1.16866 11.1191i 0.0947911 0.901878i
\(153\) −6.85410 + 4.97980i −0.554121 + 0.402593i
\(154\) −25.4164 −2.04811
\(155\) 0 0
\(156\) 1.14590 0.0917453
\(157\) 3.00000 2.17963i 0.239426 0.173953i −0.461601 0.887087i \(-0.652725\pi\)
0.701028 + 0.713134i \(0.252725\pi\)
\(158\) 0 0
\(159\) −0.218847 + 0.673542i −0.0173557 + 0.0534154i
\(160\) −0.645898 + 1.11873i −0.0510627 + 0.0884432i
\(161\) −5.20820 9.02087i −0.410464 0.710944i
\(162\) −1.58268 + 0.336408i −0.124347 + 0.0264307i
\(163\) 0.218847 + 0.673542i 0.0171414 + 0.0527559i 0.959261 0.282520i \(-0.0911704\pi\)
−0.942120 + 0.335276i \(0.891170\pi\)
\(164\) 1.49448 + 0.317661i 0.116699 + 0.0248051i
\(165\) 0.209057 + 1.98904i 0.0162751 + 0.154847i
\(166\) 7.67636 + 8.52546i 0.595801 + 0.661704i
\(167\) −4.35207 1.93767i −0.336773 0.149941i 0.231381 0.972863i \(-0.425676\pi\)
−0.568154 + 0.822922i \(0.692342\pi\)
\(168\) 6.12825 2.72847i 0.472805 0.210506i
\(169\) −6.39843 + 7.10618i −0.492187 + 0.546629i
\(170\) −2.11803 1.53884i −0.162446 0.118024i
\(171\) 8.09017 + 5.87785i 0.618671 + 0.449491i
\(172\) −0.985051 + 1.09401i −0.0751095 + 0.0834175i
\(173\) 11.0449 4.91752i 0.839730 0.373872i 0.0586313 0.998280i \(-0.481326\pi\)
0.781098 + 0.624408i \(0.214660\pi\)
\(174\) 9.43349 + 4.20006i 0.715151 + 0.318406i
\(175\) −9.74408 10.8219i −0.736584 0.818059i
\(176\) −2.65674 25.2772i −0.200259 1.90534i
\(177\) 0.516329 + 0.109749i 0.0388097 + 0.00824925i
\(178\) −4.30902 13.2618i −0.322974 0.994013i
\(179\) 4.69352 0.997638i 0.350810 0.0745670i −0.0291365 0.999575i \(-0.509276\pi\)
0.379946 + 0.925008i \(0.375942\pi\)
\(180\) −0.236068 0.408882i −0.0175955 0.0304762i
\(181\) −8.50000 + 14.7224i −0.631800 + 1.09431i 0.355383 + 0.934721i \(0.384350\pi\)
−0.987184 + 0.159589i \(0.948983\pi\)
\(182\) −2.78115 + 8.55951i −0.206153 + 0.634473i
\(183\) 1.14399 10.8843i 0.0845660 0.804592i
\(184\) 6.28115 4.56352i 0.463053 0.336428i
\(185\) 1.61803 0.118960
\(186\) 0 0
\(187\) 22.1803 1.62199
\(188\) 2.80902 2.04087i 0.204869 0.148846i
\(189\) −1.56793 + 14.9178i −0.114050 + 1.08511i
\(190\) −0.954915 + 2.93893i −0.0692768 + 0.213212i
\(191\) 2.45492 4.25204i 0.177631 0.307667i −0.763437 0.645882i \(-0.776490\pi\)
0.941069 + 0.338215i \(0.109823\pi\)
\(192\) 2.11803 + 3.66854i 0.152856 + 0.264754i
\(193\) 4.51712 0.960143i 0.325149 0.0691126i −0.0424452 0.999099i \(-0.513515\pi\)
0.367594 + 0.929986i \(0.380181\pi\)
\(194\) −9.35410 28.7890i −0.671585 2.06693i
\(195\) 0.692728 + 0.147244i 0.0496073 + 0.0105444i
\(196\) −0.129204 1.22930i −0.00922888 0.0878069i
\(197\) −6.96994 7.74090i −0.496587 0.551516i 0.441794 0.897116i \(-0.354342\pi\)
−0.938382 + 0.345600i \(0.887675\pi\)
\(198\) 15.4794 + 6.89186i 1.10007 + 0.489783i
\(199\) −12.1427 + 5.40626i −0.860770 + 0.383240i −0.789156 0.614193i \(-0.789482\pi\)
−0.0716143 + 0.997432i \(0.522815\pi\)
\(200\) 7.26281 8.06617i 0.513558 0.570364i
\(201\) 0.190983 + 0.138757i 0.0134709 + 0.00978718i
\(202\) −12.0902 8.78402i −0.850661 0.618042i
\(203\) −12.8111 + 14.2282i −0.899163 + 0.998622i
\(204\) 2.39169 1.06485i 0.167452 0.0745544i
\(205\) 0.862635 + 0.384070i 0.0602491 + 0.0268246i
\(206\) −7.42077 8.24160i −0.517030 0.574220i
\(207\) 0.725874 + 6.90623i 0.0504517 + 0.480016i
\(208\) −8.80333 1.87121i −0.610401 0.129745i
\(209\) −8.09017 24.8990i −0.559609 1.72230i
\(210\) −1.81359 + 0.385489i −0.125149 + 0.0266013i
\(211\) 4.00000 + 6.92820i 0.275371 + 0.476957i 0.970229 0.242190i \(-0.0778659\pi\)
−0.694857 + 0.719148i \(0.744533\pi\)
\(212\) −0.218847 + 0.379054i −0.0150305 + 0.0260336i
\(213\) 3.42705 10.5474i 0.234818 0.722694i
\(214\) 1.70656 16.2368i 0.116658 1.10992i
\(215\) −0.736068 + 0.534785i −0.0501994 + 0.0364720i
\(216\) −11.1803 −0.760726
\(217\) 0 0
\(218\) 29.7984 2.01820
\(219\) 9.35410 6.79615i 0.632092 0.459241i
\(220\) −0.129204 + 1.22930i −0.00871095 + 0.0828792i
\(221\) 2.42705 7.46969i 0.163261 0.502466i
\(222\) −3.42705 + 5.93583i −0.230009 + 0.398387i
\(223\) 6.35410 + 11.0056i 0.425502 + 0.736991i 0.996467 0.0839830i \(-0.0267642\pi\)
−0.570965 + 0.820974i \(0.693431\pi\)
\(224\) 9.92419 2.10945i 0.663088 0.140944i
\(225\) 3.00000 + 9.23305i 0.200000 + 0.615537i
\(226\) −7.68247 1.63296i −0.511030 0.108623i
\(227\) −2.27273 21.6235i −0.150846 1.43520i −0.763987 0.645231i \(-0.776761\pi\)
0.613141 0.789973i \(-0.289906\pi\)
\(228\) −2.06773 2.29644i −0.136939 0.152086i
\(229\) −2.52498 1.12419i −0.166855 0.0742887i 0.321609 0.946872i \(-0.395776\pi\)
−0.488465 + 0.872584i \(0.662443\pi\)
\(230\) −1.96038 + 0.872815i −0.129263 + 0.0575517i
\(231\) 10.5108 11.6735i 0.691563 0.768058i
\(232\) −11.5451 8.38800i −0.757972 0.550699i
\(233\) 4.69098 + 3.40820i 0.307317 + 0.223279i 0.730744 0.682651i \(-0.239173\pi\)
−0.423428 + 0.905930i \(0.639173\pi\)
\(234\) 4.01478 4.45887i 0.262455 0.291485i
\(235\) 1.96038 0.872815i 0.127881 0.0569362i
\(236\) 0.298033 + 0.132693i 0.0194003 + 0.00863757i
\(237\) 0 0
\(238\) 2.14935 + 20.4497i 0.139321 + 1.32555i
\(239\) −13.1232 2.78943i −0.848871 0.180433i −0.237117 0.971481i \(-0.576202\pi\)
−0.611754 + 0.791048i \(0.709536\pi\)
\(240\) −0.572949 1.76336i −0.0369837 0.113824i
\(241\) 17.0903 3.63266i 1.10088 0.234000i 0.378575 0.925570i \(-0.376414\pi\)
0.722309 + 0.691570i \(0.243081\pi\)
\(242\) −13.2812 23.0036i −0.853745 1.47873i
\(243\) 8.00000 13.8564i 0.513200 0.888889i
\(244\) 2.09017 6.43288i 0.133809 0.411823i
\(245\) 0.0798526 0.759747i 0.00510160 0.0485385i
\(246\) −3.23607 + 2.35114i −0.206324 + 0.149903i
\(247\) −9.27051 −0.589868
\(248\) 0 0
\(249\) −7.09017 −0.449321
\(250\) −4.92705 + 3.57971i −0.311614 + 0.226401i
\(251\) 1.77116 16.8514i 0.111795 1.06365i −0.784480 0.620154i \(-0.787070\pi\)
0.896274 0.443500i \(-0.146263\pi\)
\(252\) −1.14590 + 3.52671i −0.0721848 + 0.222162i
\(253\) 9.09017 15.7446i 0.571494 0.989857i
\(254\) −4.66312 8.07676i −0.292590 0.506781i
\(255\) 1.58268 0.336408i 0.0991110 0.0210667i
\(256\) 4.19098 + 12.8985i 0.261936 + 0.806157i
\(257\) 24.8610 + 5.28437i 1.55079 + 0.329630i 0.902134 0.431455i \(-0.142000\pi\)
0.648652 + 0.761085i \(0.275333\pi\)
\(258\) −0.402863 3.83299i −0.0250812 0.238631i
\(259\) −8.50345 9.44404i −0.528379 0.586824i
\(260\) 0.399853 + 0.178026i 0.0247979 + 0.0110407i
\(261\) 11.6604 5.19156i 0.721763 0.321349i
\(262\) −12.0071 + 13.3352i −0.741799 + 0.823851i
\(263\) −11.1631 8.11048i −0.688347 0.500114i 0.187769 0.982213i \(-0.439874\pi\)
−0.876116 + 0.482100i \(0.839874\pi\)
\(264\) 9.47214 + 6.88191i 0.582970 + 0.423552i
\(265\) −0.181006 + 0.201028i −0.0111191 + 0.0123491i
\(266\) 22.1722 9.87171i 1.35947 0.605273i
\(267\) 7.87297 + 3.50527i 0.481818 + 0.214519i
\(268\) 0.0976248 + 0.108423i 0.00596339 + 0.00662301i
\(269\) 0.378188 + 3.59821i 0.0230585 + 0.219387i 0.999983 + 0.00580280i \(0.00184710\pi\)
−0.976925 + 0.213584i \(0.931486\pi\)
\(270\) 3.02264 + 0.642482i 0.183952 + 0.0391002i
\(271\) −3.26393 10.0453i −0.198270 0.610212i −0.999923 0.0124220i \(-0.996046\pi\)
0.801653 0.597790i \(-0.203954\pi\)
\(272\) −20.1130 + 4.27514i −1.21953 + 0.259219i
\(273\) −2.78115 4.81710i −0.168323 0.291544i
\(274\) −2.00000 + 3.46410i −0.120824 + 0.209274i
\(275\) 7.85410 24.1724i 0.473620 1.45765i
\(276\) 0.224307 2.13414i 0.0135017 0.128460i
\(277\) 1.88197 1.36733i 0.113076 0.0821548i −0.529810 0.848116i \(-0.677737\pi\)
0.642886 + 0.765962i \(0.277737\pi\)
\(278\) −1.38197 −0.0828848
\(279\) 0 0
\(280\) 2.56231 0.153127
\(281\) 8.11803 5.89810i 0.484281 0.351851i −0.318700 0.947856i \(-0.603246\pi\)
0.802981 + 0.596005i \(0.203246\pi\)
\(282\) −0.950181 + 9.04037i −0.0565825 + 0.538346i
\(283\) −4.19098 + 12.8985i −0.249128 + 0.766737i 0.745802 + 0.666168i \(0.232067\pi\)
−0.994930 + 0.100570i \(0.967933\pi\)
\(284\) 3.42705 5.93583i 0.203358 0.352226i
\(285\) −0.954915 1.65396i −0.0565643 0.0979722i
\(286\) −15.3649 + 3.26592i −0.908548 + 0.193118i
\(287\) −2.29180 7.05342i −0.135280 0.416350i
\(288\) −6.61612 1.40630i −0.389859 0.0828671i
\(289\) −0.0987033 0.939099i −0.00580608 0.0552411i
\(290\) 2.63923 + 2.93117i 0.154981 + 0.172124i
\(291\) 17.0908 + 7.60931i 1.00188 + 0.446066i
\(292\) 6.52810 2.90650i 0.382028 0.170090i
\(293\) −2.51856 + 2.79715i −0.147136 + 0.163411i −0.812208 0.583369i \(-0.801734\pi\)
0.665072 + 0.746780i \(0.268401\pi\)
\(294\) 2.61803 + 1.90211i 0.152687 + 0.110933i
\(295\) 0.163119 + 0.118513i 0.00949715 + 0.00690009i
\(296\) 6.33810 7.03917i 0.368394 0.409143i
\(297\) −23.9169 + 10.6485i −1.38780 + 0.617889i
\(298\) 17.7887 + 7.92003i 1.03047 + 0.458795i
\(299\) −4.30766 4.78414i −0.249118 0.276674i
\(300\) −0.313585 2.98357i −0.0181049 0.172256i
\(301\) 6.98974 + 1.48572i 0.402882 + 0.0856352i
\(302\) 9.25329 + 28.4787i 0.532467 + 1.63876i
\(303\) 9.03424 1.92029i 0.519003 0.110318i
\(304\) 12.1353 + 21.0189i 0.696005 + 1.20552i
\(305\) 2.09017 3.62028i 0.119683 0.207297i
\(306\) 4.23607 13.0373i 0.242160 0.745292i
\(307\) 0.532068 5.06229i 0.0303667 0.288920i −0.968791 0.247880i \(-0.920266\pi\)
0.999158 0.0410401i \(-0.0130671\pi\)
\(308\) 7.85410 5.70634i 0.447529 0.325149i
\(309\) 6.85410 0.389916
\(310\) 0 0
\(311\) 7.52786 0.426866 0.213433 0.976958i \(-0.431535\pi\)
0.213433 + 0.976958i \(0.431535\pi\)
\(312\) 3.35410 2.43690i 0.189889 0.137962i
\(313\) 0.338261 3.21834i 0.0191197 0.181911i −0.980794 0.195046i \(-0.937514\pi\)
0.999914 + 0.0131347i \(0.00418103\pi\)
\(314\) −1.85410 + 5.70634i −0.104633 + 0.322027i
\(315\) −1.14590 + 1.98475i −0.0645640 + 0.111828i
\(316\) 0 0
\(317\) 9.67246 2.05594i 0.543259 0.115473i 0.0718954 0.997412i \(-0.477095\pi\)
0.471364 + 0.881939i \(0.343762\pi\)
\(318\) −0.354102 1.08981i −0.0198571 0.0611137i
\(319\) −32.6862 6.94766i −1.83007 0.388994i
\(320\) 0.169131 + 1.60917i 0.00945469 + 0.0899554i
\(321\) 6.75164 + 7.49846i 0.376840 + 0.418523i
\(322\) 15.3970 + 6.85518i 0.858041 + 0.382024i
\(323\) −19.3492 + 8.61482i −1.07662 + 0.479341i
\(324\) 0.413545 0.459289i 0.0229747 0.0255160i
\(325\) −7.28115 5.29007i −0.403886 0.293440i
\(326\) −0.927051 0.673542i −0.0513446 0.0373040i
\(327\) −12.3230 + 13.6861i −0.681462 + 0.756841i
\(328\) 5.04996 2.24838i 0.278837 0.124146i
\(329\) −15.3970 6.85518i −0.848863 0.377938i
\(330\) −2.16535 2.40487i −0.119199 0.132384i
\(331\) 2.32790 + 22.1485i 0.127953 + 1.21739i 0.850464 + 0.526033i \(0.176321\pi\)
−0.722511 + 0.691359i \(0.757012\pi\)
\(332\) −4.28621 0.911062i −0.235236 0.0500010i
\(333\) 2.61803 + 8.05748i 0.143467 + 0.441547i
\(334\) 7.53976 1.60263i 0.412557 0.0876918i
\(335\) 0.0450850 + 0.0780895i 0.00246326 + 0.00426648i
\(336\) −7.28115 + 12.6113i −0.397219 + 0.688004i
\(337\) −8.64590 + 26.6093i −0.470972 + 1.44950i 0.380342 + 0.924846i \(0.375806\pi\)
−0.851314 + 0.524657i \(0.824194\pi\)
\(338\) 1.61728 15.3874i 0.0879684 0.836963i
\(339\) 3.92705 2.85317i 0.213288 0.154963i
\(340\) 1.00000 0.0542326
\(341\) 0 0
\(342\) −16.1803 −0.874933
\(343\) 12.1353 8.81678i 0.655242 0.476061i
\(344\) −0.556743 + 5.29706i −0.0300176 + 0.285598i
\(345\) 0.409830 1.26133i 0.0220645 0.0679076i
\(346\) −9.78115 + 16.9415i −0.525838 + 0.910778i
\(347\) 16.0623 + 27.8207i 0.862270 + 1.49350i 0.869733 + 0.493523i \(0.164291\pi\)
−0.00746305 + 0.999972i \(0.502376\pi\)
\(348\) −3.85808 + 0.820060i −0.206815 + 0.0439598i
\(349\) −1.01722 3.13068i −0.0544506 0.167582i 0.920133 0.391606i \(-0.128080\pi\)
−0.974584 + 0.224025i \(0.928080\pi\)
\(350\) 23.0474 + 4.89888i 1.23194 + 0.261856i
\(351\) 0.969032 + 9.21973i 0.0517231 + 0.492113i
\(352\) 11.8491 + 13.1598i 0.631559 + 0.701418i
\(353\) −31.6251 14.0804i −1.68324 0.749425i −0.999812 0.0194046i \(-0.993823\pi\)
−0.683425 0.730021i \(-0.739510\pi\)
\(354\) −0.780261 + 0.347395i −0.0414704 + 0.0184638i
\(355\) 2.83448 3.14801i 0.150439 0.167079i
\(356\) 4.30902 + 3.13068i 0.228377 + 0.165926i
\(357\) −10.2812 7.46969i −0.544136 0.395338i
\(358\) −5.19508 + 5.76973i −0.274569 + 0.304939i
\(359\) −8.83742 + 3.93467i −0.466421 + 0.207664i −0.626471 0.779445i \(-0.715501\pi\)
0.160050 + 0.987109i \(0.448835\pi\)
\(360\) −1.56052 0.694789i −0.0822467 0.0366186i
\(361\) 4.01478 + 4.45887i 0.211304 + 0.234677i
\(362\) −2.87522 27.3559i −0.151118 1.43779i
\(363\) 16.0577 + 3.41316i 0.842809 + 0.179145i
\(364\) −1.06231 3.26944i −0.0556800 0.171365i
\(365\) 4.31990 0.918223i 0.226114 0.0480620i
\(366\) 8.85410 + 15.3358i 0.462811 + 0.801613i
\(367\) 1.36475 2.36381i 0.0712391 0.123390i −0.828206 0.560425i \(-0.810638\pi\)
0.899445 + 0.437035i \(0.143971\pi\)
\(368\) −5.20820 + 16.0292i −0.271496 + 0.835580i
\(369\) −0.516817 + 4.91719i −0.0269044 + 0.255979i
\(370\) −2.11803 + 1.53884i −0.110111 + 0.0800006i
\(371\) 2.12461 0.110304
\(372\) 0 0
\(373\) −31.6525 −1.63890 −0.819452 0.573148i \(-0.805722\pi\)
−0.819452 + 0.573148i \(0.805722\pi\)
\(374\) −29.0344 + 21.0948i −1.50134 + 1.09078i
\(375\) 0.393438 3.74331i 0.0203171 0.193304i
\(376\) 3.88197 11.9475i 0.200197 0.616143i
\(377\) −5.91641 + 10.2475i −0.304711 + 0.527774i
\(378\) −12.1353 21.0189i −0.624170 1.08109i
\(379\) −8.23249 + 1.74987i −0.422875 + 0.0898848i −0.414433 0.910080i \(-0.636020\pi\)
−0.00844109 + 0.999964i \(0.502687\pi\)
\(380\) −0.364745 1.12257i −0.0187110 0.0575866i
\(381\) 5.63798 + 1.19839i 0.288842 + 0.0613953i
\(382\) 0.830403 + 7.90075i 0.0424871 + 0.404238i
\(383\) −6.78893 7.53987i −0.346898 0.385269i 0.544295 0.838894i \(-0.316797\pi\)
−0.891193 + 0.453625i \(0.850131\pi\)
\(384\) −12.4407 5.53895i −0.634861 0.282659i
\(385\) 5.48127 2.44042i 0.279352 0.124375i
\(386\) −4.99983 + 5.55288i −0.254485 + 0.282634i
\(387\) −3.85410 2.80017i −0.195915 0.142341i
\(388\) 9.35410 + 6.79615i 0.474883 + 0.345022i
\(389\) 19.4509 21.6024i 0.986199 1.09528i −0.00924722 0.999957i \(-0.502944\pi\)
0.995446 0.0953274i \(-0.0303898\pi\)
\(390\) −1.04683 + 0.466079i −0.0530083 + 0.0236008i
\(391\) −13.4366 5.98237i −0.679519 0.302541i
\(392\) −2.99244 3.32344i −0.151141 0.167859i
\(393\) −1.15924 11.0294i −0.0584758 0.556360i
\(394\) 16.4858 + 3.50416i 0.830543 + 0.176537i
\(395\) 0 0
\(396\) −6.33070 + 1.34563i −0.318130 + 0.0676206i
\(397\) −14.8541 25.7281i −0.745506 1.29125i −0.949958 0.312378i \(-0.898875\pi\)
0.204452 0.978877i \(-0.434459\pi\)
\(398\) 10.7533 18.6252i 0.539014 0.933599i
\(399\) −4.63525 + 14.2658i −0.232053 + 0.714186i
\(400\) −2.46293 + 23.4332i −0.123147 + 1.17166i
\(401\) −19.2812 + 14.0086i −0.962855 + 0.699555i −0.953812 0.300404i \(-0.902878\pi\)
−0.00904282 + 0.999959i \(0.502878\pi\)
\(402\) −0.381966 −0.0190507
\(403\) 0 0
\(404\) 5.70820 0.283994
\(405\) 0.309017 0.224514i 0.0153552 0.0111562i
\(406\) 3.23816 30.8090i 0.160707 1.52903i
\(407\) 6.85410 21.0948i 0.339745 1.04563i
\(408\) 4.73607 8.20311i 0.234470 0.406114i
\(409\) −8.09017 14.0126i −0.400033 0.692878i 0.593696 0.804689i \(-0.297668\pi\)
−0.993729 + 0.111811i \(0.964335\pi\)
\(410\) −1.49448 + 0.317661i −0.0738069 + 0.0156881i
\(411\) −0.763932 2.35114i −0.0376820 0.115973i
\(412\) 4.14350 + 0.880728i 0.204136 + 0.0433904i
\(413\) −0.165530 1.57492i −0.00814522 0.0774966i
\(414\) −7.51840 8.35003i −0.369509 0.410381i
\(415\) −2.47407 1.10153i −0.121447 0.0540718i
\(416\) 5.72840 2.55045i 0.280858 0.125046i
\(417\) 0.571506 0.634721i 0.0279868 0.0310824i
\(418\) 34.2705 + 24.8990i 1.67623 + 1.21785i
\(419\) 3.61803 + 2.62866i 0.176753 + 0.128418i 0.672644 0.739966i \(-0.265159\pi\)
−0.495891 + 0.868385i \(0.665159\pi\)
\(420\) 0.473881 0.526298i 0.0231230 0.0256807i
\(421\) 17.5730 7.82401i 0.856457 0.381319i 0.0689462 0.997620i \(-0.478036\pi\)
0.787510 + 0.616301i \(0.211370\pi\)
\(422\) −11.8252 5.26491i −0.575641 0.256292i
\(423\) 7.51840 + 8.35003i 0.365557 + 0.405992i
\(424\) 0.165530 + 1.57492i 0.00803887 + 0.0764847i
\(425\) −20.1130 4.27514i −0.975622 0.207375i
\(426\) 5.54508 + 17.0660i 0.268660 + 0.826851i
\(427\) −32.1153 + 6.82633i −1.55417 + 0.330349i
\(428\) 3.11803 + 5.40059i 0.150716 + 0.261048i
\(429\) 4.85410 8.40755i 0.234358 0.405920i
\(430\) 0.454915 1.40008i 0.0219380 0.0675181i
\(431\) −2.58854 + 24.6283i −0.124685 + 1.18630i 0.735934 + 0.677053i \(0.236743\pi\)
−0.860619 + 0.509249i \(0.829923\pi\)
\(432\) 19.6353 14.2658i 0.944702 0.686366i
\(433\) 27.4164 1.31755 0.658774 0.752341i \(-0.271075\pi\)
0.658774 + 0.752341i \(0.271075\pi\)
\(434\) 0 0
\(435\) −2.43769 −0.116878
\(436\) −9.20820 + 6.69015i −0.440993 + 0.320400i
\(437\) −1.81469 + 17.2656i −0.0868082 + 0.825925i
\(438\) −5.78115 + 17.7926i −0.276234 + 0.850161i
\(439\) 5.91641 10.2475i 0.282375 0.489087i −0.689594 0.724196i \(-0.742211\pi\)
0.971969 + 0.235108i \(0.0755445\pi\)
\(440\) 2.23607 + 3.87298i 0.106600 + 0.184637i
\(441\) 3.91259 0.831647i 0.186314 0.0396022i
\(442\) 3.92705 + 12.0862i 0.186791 + 0.574883i
\(443\) 0.856259 + 0.182003i 0.0406821 + 0.00864724i 0.228208 0.973612i \(-0.426713\pi\)
−0.187526 + 0.982260i \(0.560047\pi\)
\(444\) −0.273659 2.60369i −0.0129873 0.123566i
\(445\) 2.20264 + 2.44628i 0.104415 + 0.115965i
\(446\) −18.7846 8.36344i −0.889477 0.396021i
\(447\) −10.9940 + 4.89485i −0.519999 + 0.231518i
\(448\) 8.50345 9.44404i 0.401750 0.446189i
\(449\) 27.5623 + 20.0252i 1.30075 + 0.945047i 0.999963 0.00864558i \(-0.00275201\pi\)
0.300783 + 0.953693i \(0.402752\pi\)
\(450\) −12.7082 9.23305i −0.599070 0.435250i
\(451\) 8.66141 9.61947i 0.407850 0.452963i
\(452\) 2.74064 1.22021i 0.128909 0.0573938i
\(453\) −16.9066 7.52730i −0.794341 0.353664i
\(454\) 23.5402 + 26.1441i 1.10480 + 1.22700i
\(455\) −0.222082 2.11297i −0.0104114 0.0990577i
\(456\) −10.9360 2.32452i −0.512126 0.108856i
\(457\) 8.26393 + 25.4338i 0.386570 + 1.18974i 0.935335 + 0.353764i \(0.115098\pi\)
−0.548764 + 0.835977i \(0.684902\pi\)
\(458\) 4.37441 0.929809i 0.204403 0.0434471i
\(459\) 10.5902 + 18.3427i 0.494307 + 0.856164i
\(460\) 0.409830 0.709846i 0.0191084 0.0330968i
\(461\) −9.80902 + 30.1891i −0.456851 + 1.40604i 0.412096 + 0.911140i \(0.364797\pi\)
−0.868948 + 0.494904i \(0.835203\pi\)
\(462\) −2.65674 + 25.2772i −0.123603 + 1.17600i
\(463\) −7.38197 + 5.36331i −0.343069 + 0.249254i −0.745956 0.665996i \(-0.768007\pi\)
0.402887 + 0.915250i \(0.368007\pi\)
\(464\) 30.9787 1.43815
\(465\) 0 0
\(466\) −9.38197 −0.434611
\(467\) −31.3713 + 22.7926i −1.45169 + 1.05472i −0.466259 + 0.884648i \(0.654399\pi\)
−0.985432 + 0.170068i \(0.945601\pi\)
\(468\) −0.239558 + 2.27924i −0.0110736 + 0.105358i
\(469\) 0.218847 0.673542i 0.0101054 0.0311013i
\(470\) −1.73607 + 3.00696i −0.0800788 + 0.138701i
\(471\) −1.85410 3.21140i −0.0854325 0.147973i
\(472\) 1.15455 0.245406i 0.0531423 0.0112957i
\(473\) 3.85410 + 11.8617i 0.177212 + 0.545402i
\(474\) 0 0
\(475\) 2.53696 + 24.1376i 0.116404 + 1.10751i
\(476\) −5.25542 5.83674i −0.240882 0.267526i
\(477\) −1.29395 0.576105i −0.0592460 0.0263780i
\(478\) 19.8314 8.82952i 0.907069 0.403853i
\(479\) 5.98489 6.64689i 0.273456 0.303704i −0.590737 0.806864i \(-0.701163\pi\)
0.864193 + 0.503160i \(0.167829\pi\)
\(480\) 1.04508 + 0.759299i 0.0477014 + 0.0346571i
\(481\) −6.35410 4.61653i −0.289722 0.210495i
\(482\) −18.9167 + 21.0091i −0.861630 + 0.956938i
\(483\) −9.51586 + 4.23673i −0.432987 + 0.192778i
\(484\) 9.26874 + 4.12671i 0.421306 + 0.187578i
\(485\) 4.78154 + 5.31044i 0.217119 + 0.241135i
\(486\) 2.70609 + 25.7467i 0.122751 + 1.16790i
\(487\) 41.0069 + 8.71628i 1.85820 + 0.394972i 0.994111 0.108369i \(-0.0345627\pi\)
0.864088 + 0.503341i \(0.167896\pi\)
\(488\) −7.56231 23.2744i −0.342330 1.05358i
\(489\) 0.692728 0.147244i 0.0313262 0.00665860i
\(490\) 0.618034 + 1.07047i 0.0279199 + 0.0483587i
\(491\) −10.7984 + 18.7033i −0.487324 + 0.844070i −0.999894 0.0145759i \(-0.995360\pi\)
0.512570 + 0.858645i \(0.328694\pi\)
\(492\) 0.472136 1.45309i 0.0212855 0.0655101i
\(493\) −2.82587 + 26.8863i −0.127271 + 1.21090i
\(494\) 12.1353 8.81678i 0.545991 0.396686i
\(495\) −4.00000 −0.179787
\(496\) 0 0
\(497\) −33.2705 −1.49239
\(498\) 9.28115 6.74315i 0.415898 0.302168i
\(499\) −1.13456 + 10.7946i −0.0507900 + 0.483235i 0.939330 + 0.343014i \(0.111448\pi\)
−0.990120 + 0.140221i \(0.955219\pi\)
\(500\) 0.718847 2.21238i 0.0321478 0.0989408i
\(501\) −2.38197 + 4.12569i −0.106418 + 0.184322i
\(502\) 13.7082 + 23.7433i 0.611827 + 1.05972i
\(503\) −19.4202 + 4.12790i −0.865906 + 0.184054i −0.619389 0.785084i \(-0.712619\pi\)
−0.246517 + 0.969138i \(0.579286\pi\)
\(504\) 4.14590 + 12.7598i 0.184673 + 0.568365i
\(505\) 3.45077 + 0.733484i 0.153557 + 0.0326396i
\(506\) 3.07485 + 29.2553i 0.136694 + 1.30056i
\(507\) 6.39843 + 7.10618i 0.284164 + 0.315596i
\(508\) 3.25433 + 1.44892i 0.144387 + 0.0642854i
\(509\) −11.9585 + 5.32425i −0.530050 + 0.235993i −0.654270 0.756261i \(-0.727024\pi\)
0.124220 + 0.992255i \(0.460357\pi\)
\(510\) −1.75181 + 1.94558i −0.0775713 + 0.0861517i
\(511\) −28.0623 20.3885i −1.24140 0.901932i
\(512\) 4.28115 + 3.11044i 0.189202 + 0.137463i
\(513\) 16.7283 18.5786i 0.738571 0.820266i
\(514\) −37.5692 + 16.7269i −1.65711 + 0.737791i
\(515\) 2.39169 + 1.06485i 0.105391 + 0.0469229i
\(516\) 0.985051 + 1.09401i 0.0433645 + 0.0481611i
\(517\) −3.07485 29.2553i −0.135232 1.28664i
\(518\) 20.1130 + 4.27514i 0.883713 + 0.187839i
\(519\) −3.73607 11.4984i −0.163995 0.504725i
\(520\) 1.54899 0.329247i 0.0679276 0.0144385i
\(521\) 13.5344 + 23.4423i 0.592955 + 1.02703i 0.993832 + 0.110896i \(0.0353720\pi\)
−0.400877 + 0.916132i \(0.631295\pi\)
\(522\) −10.3262 + 17.8856i −0.451967 + 0.782830i
\(523\) −1.89261 + 5.82485i −0.0827580 + 0.254703i −0.983870 0.178883i \(-0.942752\pi\)
0.901112 + 0.433586i \(0.142752\pi\)
\(524\) 0.716449 6.81655i 0.0312982 0.297783i
\(525\) −11.7812 + 8.55951i −0.514172 + 0.373568i
\(526\) 22.3262 0.973470
\(527\) 0 0
\(528\) −25.4164 −1.10611
\(529\) 8.85410 6.43288i 0.384961 0.279691i
\(530\) 0.0457515 0.435296i 0.00198732 0.0189081i
\(531\) −0.326238 + 1.00406i −0.0141575 + 0.0435724i
\(532\) −4.63525 + 8.02850i −0.200964 + 0.348079i
\(533\) −2.29180 3.96951i −0.0992687 0.171938i
\(534\) −13.6396 + 2.89918i −0.590241 + 0.125460i
\(535\) 1.19098 + 3.66547i 0.0514907 + 0.158472i
\(536\) 0.516329 + 0.109749i 0.0223020 + 0.00474044i
\(537\) −0.501567 4.77209i −0.0216442 0.205931i
\(538\) −3.91716 4.35045i −0.168881 0.187561i
\(539\) −9.56677 4.25940i −0.412070 0.183465i
\(540\) −1.07829 + 0.480087i −0.0464024 + 0.0206597i
\(541\) 14.7209 16.3492i 0.632900 0.702906i −0.338336 0.941025i \(-0.609864\pi\)
0.971236 + 0.238119i \(0.0765308\pi\)
\(542\) 13.8262 + 10.0453i 0.593888 + 0.431485i
\(543\) 13.7533 + 9.99235i 0.590210 + 0.428813i
\(544\) 9.58612 10.6465i 0.411002 0.456464i
\(545\) −6.42628 + 2.86117i −0.275272 + 0.122559i
\(546\) 8.22191 + 3.66063i 0.351865 + 0.156660i
\(547\) −6.88656 7.64829i −0.294448 0.327017i 0.577710 0.816242i \(-0.303946\pi\)
−0.872158 + 0.489225i \(0.837280\pi\)
\(548\) −0.159705 1.51949i −0.00682227 0.0649096i
\(549\) 21.4102 + 4.55088i 0.913766 + 0.194227i
\(550\) 12.7082 + 39.1118i 0.541880 + 1.66773i
\(551\) 31.2125 6.63443i 1.32970 0.282636i
\(552\) −3.88197 6.72376i −0.165227 0.286182i
\(553\) 0 0
\(554\) −1.16312 + 3.57971i −0.0494162 + 0.152087i
\(555\) 0.169131 1.60917i 0.00717919 0.0683055i
\(556\) 0.427051 0.310271i 0.0181110 0.0131584i
\(557\) 0.111456 0.00472255 0.00236127 0.999997i \(-0.499248\pi\)
0.00236127 + 0.999997i \(0.499248\pi\)
\(558\) 0 0
\(559\) 4.41641 0.186794
\(560\) −4.50000 + 3.26944i −0.190160 + 0.138159i
\(561\) 2.31848 22.0588i 0.0978862 0.931325i
\(562\) −5.01722 + 15.4414i −0.211639 + 0.651357i
\(563\) −5.78115 + 10.0133i −0.243647 + 0.422008i −0.961750 0.273928i \(-0.911677\pi\)
0.718104 + 0.695936i \(0.245010\pi\)
\(564\) −1.73607 3.00696i −0.0731016 0.126616i
\(565\) 1.81359 0.385489i 0.0762981 0.0162177i
\(566\) −6.78115 20.8702i −0.285033 0.877242i
\(567\) −2.93444 0.623735i −0.123235 0.0261944i
\(568\) −2.59214 24.6625i −0.108764 1.03482i
\(569\) 16.3751 + 18.1863i 0.686478 + 0.762411i 0.981163 0.193183i \(-0.0618813\pi\)
−0.294685 + 0.955595i \(0.595215\pi\)
\(570\) 2.82301 + 1.25689i 0.118243 + 0.0526451i
\(571\) 6.39482 2.84716i 0.267615 0.119150i −0.268543 0.963268i \(-0.586542\pi\)
0.536157 + 0.844118i \(0.319875\pi\)
\(572\) 4.01478 4.45887i 0.167867 0.186435i
\(573\) −3.97214 2.88593i −0.165938 0.120561i
\(574\) 9.70820 + 7.05342i 0.405213 + 0.294404i
\(575\) −11.2776 + 12.5250i −0.470308 + 0.522330i
\(576\) −7.73968 + 3.44593i −0.322487 + 0.143580i
\(577\) −7.28892 3.24524i −0.303442 0.135101i 0.249367 0.968409i \(-0.419777\pi\)
−0.552809 + 0.833308i \(0.686444\pi\)
\(578\) 1.02234 + 1.13542i 0.0425238 + 0.0472274i
\(579\) −0.482716 4.59274i −0.0200610 0.190868i
\(580\) −1.47366 0.313235i −0.0611902 0.0130064i
\(581\) 6.57295 + 20.2295i 0.272692 + 0.839259i
\(582\) −29.6090 + 6.29359i −1.22733 + 0.260878i
\(583\) 1.85410 + 3.21140i 0.0767891 + 0.133003i
\(584\) 12.9271 22.3903i 0.534925 0.926518i
\(585\) −0.437694 + 1.34708i −0.0180964 + 0.0556951i
\(586\) 0.636596 6.05681i 0.0262975 0.250204i
\(587\) 32.3713 23.5191i 1.33611 0.970739i 0.336530 0.941673i \(-0.390747\pi\)
0.999577 0.0290662i \(-0.00925335\pi\)
\(588\) −1.23607 −0.0509746
\(589\) 0 0
\(590\) −0.326238 −0.0134310
\(591\) −8.42705 + 6.12261i −0.346643 + 0.251851i
\(592\) −2.14935 + 20.4497i −0.0883376 + 0.840476i
\(593\) 12.9443 39.8384i 0.531558 1.63597i −0.219414 0.975632i \(-0.570415\pi\)
0.750972 0.660334i \(-0.229585\pi\)
\(594\) 21.1803 36.6854i 0.869040 1.50522i
\(595\) −2.42705 4.20378i −0.0994994 0.172338i
\(596\) −7.27516 + 1.54638i −0.298002 + 0.0633423i
\(597\) 4.10739 + 12.6412i 0.168104 + 0.517372i
\(598\) 10.1888 + 2.16569i 0.416650 + 0.0885618i
\(599\) −0.543718 5.17313i −0.0222157 0.211368i −0.999998 0.00174761i \(-0.999444\pi\)
0.977783 0.209621i \(-0.0672229\pi\)
\(600\) −7.26281 8.06617i −0.296503 0.329300i
\(601\) 20.0980 + 8.94821i 0.819815 + 0.365005i 0.773401 0.633917i \(-0.218554\pi\)
0.0464137 + 0.998922i \(0.485221\pi\)
\(602\) −10.5627 + 4.70281i −0.430503 + 0.191672i
\(603\) −0.315921 + 0.350865i −0.0128653 + 0.0142883i
\(604\) −9.25329 6.72291i −0.376511 0.273551i
\(605\) 5.07295 + 3.68571i 0.206245 + 0.149846i
\(606\) −9.99967 + 11.1058i −0.406209 + 0.451141i
\(607\) 1.29395 0.576105i 0.0525199 0.0233834i −0.380309 0.924860i \(-0.624182\pi\)
0.432829 + 0.901476i \(0.357516\pi\)
\(608\) −15.4479 6.87785i −0.626495 0.278934i
\(609\) 12.8111 + 14.2282i 0.519132 + 0.576555i
\(610\) 0.707023 + 6.72688i 0.0286265 + 0.272363i
\(611\) −10.1888 2.16569i −0.412194 0.0876146i
\(612\) 1.61803 + 4.97980i 0.0654051 + 0.201296i
\(613\) −42.0058 + 8.92862i −1.69660 + 0.360623i −0.951813 0.306679i \(-0.900782\pi\)
−0.744787 + 0.667303i \(0.767449\pi\)
\(614\) 4.11803 + 7.13264i 0.166190 + 0.287850i
\(615\) 0.472136 0.817763i 0.0190384 0.0329754i
\(616\) 10.8541 33.4055i 0.437324 1.34595i
\(617\) 1.02061 9.71044i 0.0410882 0.390928i −0.954580 0.297954i \(-0.903696\pi\)
0.995669 0.0929742i \(-0.0296374\pi\)
\(618\) −8.97214 + 6.51864i −0.360912 + 0.262218i
\(619\) −40.0000 −1.60774 −0.803868 0.594808i \(-0.797228\pi\)
−0.803868 + 0.594808i \(0.797228\pi\)
\(620\) 0 0
\(621\) 17.3607 0.696660
\(622\) −9.85410 + 7.15942i −0.395113 + 0.287067i
\(623\) 2.70249 25.7125i 0.108273 1.03015i
\(624\) −2.78115 + 8.55951i −0.111335 + 0.342655i
\(625\) −11.4164 + 19.7738i −0.456656 + 0.790952i
\(626\) 2.61803 + 4.53457i 0.104638 + 0.181238i
\(627\) −25.6082 + 5.44320i −1.02269 + 0.217380i
\(628\) −0.708204 2.17963i −0.0282604 0.0869766i
\(629\) −17.5521 3.73082i −0.699850 0.148758i
\(630\) −0.387613 3.68789i −0.0154429 0.146929i
\(631\) −28.2845 31.4131i −1.12599 1.25054i −0.964621 0.263642i \(-0.915076\pi\)
−0.161367 0.986894i \(-0.551590\pi\)
\(632\) 0 0
\(633\) 7.30836 3.25389i 0.290481 0.129331i
\(634\) −10.7061 + 11.8903i −0.425193 + 0.472225i
\(635\) 1.78115 + 1.29408i 0.0706829 + 0.0513541i
\(636\) 0.354102 + 0.257270i 0.0140411 + 0.0102014i
\(637\) −2.48127 + 2.75573i −0.0983116 + 0.109186i
\(638\) 49.3944 21.9918i 1.95554 0.870664i
\(639\) 20.2627 + 9.02156i 0.801582 + 0.356887i
\(640\) −3.48057 3.86556i −0.137582 0.152800i
\(641\) 3.12643 + 29.7460i 0.123487 + 1.17490i 0.864226 + 0.503103i \(0.167809\pi\)
−0.740740 + 0.671792i \(0.765525\pi\)
\(642\) −15.9695 3.39442i −0.630265 0.133967i
\(643\) 4.59017 + 14.1271i 0.181019 + 0.557118i 0.999857 0.0169060i \(-0.00538159\pi\)
−0.818838 + 0.574024i \(0.805382\pi\)
\(644\) −6.29702 + 1.33847i −0.248137 + 0.0527432i
\(645\) 0.454915 + 0.787936i 0.0179123 + 0.0310249i
\(646\) 17.1353 29.6791i 0.674178 1.16771i
\(647\) 1.81966 5.60034i 0.0715382 0.220172i −0.908895 0.417026i \(-0.863072\pi\)
0.980433 + 0.196854i \(0.0630724\pi\)
\(648\) 0.233733 2.22382i 0.00918189 0.0873598i
\(649\) 2.23607 1.62460i 0.0877733 0.0637711i
\(650\) 14.5623 0.571181
\(651\) 0 0
\(652\) 0.437694 0.0171414
\(653\) −6.75329 + 4.90655i −0.264277 + 0.192008i −0.712030 0.702149i \(-0.752224\pi\)
0.447754 + 0.894157i \(0.352224\pi\)
\(654\) 3.11478 29.6351i 0.121797 1.15883i
\(655\) 1.30902 4.02874i 0.0511475 0.157416i
\(656\) −6.00000 + 10.3923i −0.234261 + 0.405751i
\(657\) 11.5623 + 20.0265i 0.451089 + 0.781308i
\(658\) 26.6746 5.66986i 1.03988 0.221034i
\(659\) −11.6459 35.8424i −0.453660 1.39622i −0.872701 0.488254i \(-0.837634\pi\)
0.419042 0.907967i \(-0.362366\pi\)
\(660\) 1.20906 + 0.256993i 0.0470625 + 0.0100034i
\(661\) 1.50332 + 14.3032i 0.0584726 + 0.556329i 0.984065 + 0.177808i \(0.0569006\pi\)
−0.925593 + 0.378521i \(0.876433\pi\)
\(662\) −24.1117 26.7788i −0.937130 1.04079i
\(663\) −7.17508 3.19455i −0.278657 0.124066i
\(664\) −14.4834 + 6.44844i −0.562067 + 0.250248i
\(665\) −3.83378 + 4.25784i −0.148668 + 0.165112i
\(666\) −11.0902 8.05748i −0.429735 0.312221i
\(667\) 17.9271 + 13.0248i 0.694138 + 0.504321i
\(668\) −1.97010 + 2.18802i −0.0762256 + 0.0846571i
\(669\) 11.6095 5.16889i 0.448850 0.199841i
\(670\) −0.133284 0.0593421i −0.00514923 0.00229258i
\(671\) −38.3445 42.5859i −1.48027 1.64401i
\(672\) −1.06054 10.0903i −0.0409110 0.389242i
\(673\) −21.9266 4.66063i −0.845207 0.179654i −0.235098 0.971972i \(-0.575541\pi\)
−0.610109 + 0.792318i \(0.708874\pi\)
\(674\) −13.9894 43.0548i −0.538850 1.65841i
\(675\) 23.7401 5.04612i 0.913758 0.194225i
\(676\) 2.95492 + 5.11806i 0.113651 + 0.196849i
\(677\) 1.32624 2.29711i 0.0509715 0.0882852i −0.839414 0.543493i \(-0.817102\pi\)
0.890385 + 0.455207i \(0.150435\pi\)
\(678\) −2.42705 + 7.46969i −0.0932103 + 0.286872i
\(679\) 5.86662 55.8172i 0.225140 2.14207i
\(680\) 2.92705 2.12663i 0.112247 0.0815524i
\(681\) −21.7426 −0.833180
\(682\) 0 0
\(683\) 27.9443 1.06926 0.534629 0.845087i \(-0.320451\pi\)
0.534629 + 0.845087i \(0.320451\pi\)
\(684\) 5.00000 3.63271i 0.191180 0.138900i
\(685\) 0.0987033 0.939099i 0.00377126 0.0358811i
\(686\) −7.50000 + 23.0826i −0.286351 + 0.881299i
\(687\) −1.38197 + 2.39364i −0.0527253 + 0.0913229i
\(688\) −5.78115 10.0133i −0.220404 0.381752i
\(689\) 1.28439 0.273005i 0.0489313 0.0104007i
\(690\) 0.663119 + 2.04087i 0.0252445 + 0.0776946i
\(691\) 48.7438 + 10.3608i 1.85430 + 0.394144i 0.993407 0.114637i \(-0.0365704\pi\)
0.860896 + 0.508781i \(0.169904\pi\)
\(692\) −0.781051 7.43120i −0.0296911 0.282492i
\(693\) 21.0217 + 23.3469i 0.798548 + 0.886877i
\(694\) −47.4849 21.1416i −1.80250 0.802526i
\(695\) 0.298033 0.132693i 0.0113050 0.00503333i
\(696\) −9.54883 + 10.6051i −0.361948 + 0.401984i
\(697\) −8.47214 6.15537i −0.320905 0.233151i
\(698\) 4.30902 + 3.13068i 0.163099 + 0.118498i
\(699\) 3.87987 4.30903i 0.146750 0.162983i
\(700\) −8.22191 + 3.66063i −0.310759 + 0.138359i
\(701\) −0.882081 0.392728i −0.0333157 0.0148331i 0.390011 0.920810i \(-0.372471\pi\)
−0.423327 + 0.905977i \(0.639138\pi\)
\(702\) −10.0370 11.1472i −0.378821 0.420723i
\(703\) 2.21395 + 21.0643i 0.0835006 + 0.794456i
\(704\) 21.6956 + 4.61155i 0.817685 + 0.173804i
\(705\) −0.663119 2.04087i −0.0249745 0.0768636i
\(706\) 54.7891 11.6458i 2.06202 0.438295i
\(707\) −13.8541 23.9960i −0.521037 0.902463i
\(708\) 0.163119 0.282530i 0.00613039 0.0106181i
\(709\) 3.35410 10.3229i 0.125966 0.387683i −0.868110 0.496372i \(-0.834665\pi\)
0.994076 + 0.108689i \(0.0346652\pi\)
\(710\) −0.716449 + 6.81655i −0.0268878 + 0.255821i
\(711\) 0 0
\(712\) 19.2705 0.722193
\(713\) 0 0
\(714\) 20.5623 0.769525
\(715\) 3.00000 2.17963i 0.112194 0.0815134i
\(716\) 0.309985 2.94931i 0.0115847 0.110221i
\(717\) −4.14590 + 12.7598i −0.154831 + 0.476522i
\(718\) 7.82624 13.5554i 0.292073 0.505885i
\(719\) 21.8090 + 37.7743i 0.813339 + 1.40874i 0.910514 + 0.413477i \(0.135686\pi\)
−0.0971753 + 0.995267i \(0.530981\pi\)
\(720\) 3.62717 0.770979i 0.135177 0.0287327i
\(721\) −6.35410 19.5559i −0.236639 0.728300i
\(722\) −9.49606 2.01845i −0.353407 0.0751189i
\(723\) −1.82634 17.3764i −0.0679221 0.646236i
\(724\) 7.03027 + 7.80791i 0.261278 + 0.290179i
\(725\) 28.3005 + 12.6002i 1.05105 + 0.467959i
\(726\) −24.2659 + 10.8039i −0.900591 + 0.400969i
\(727\) 19.9621 22.1701i 0.740351 0.822244i −0.248891 0.968532i \(-0.580066\pi\)
0.989242 + 0.146288i \(0.0467326\pi\)
\(728\) −10.0623 7.31069i −0.372934 0.270952i
\(729\) −10.5172 7.64121i −0.389527 0.283008i
\(730\) −4.78154 + 5.31044i −0.176973 + 0.196548i
\(731\) 9.21783 4.10404i 0.340934 0.151793i
\(732\) −6.17916 2.75114i −0.228388 0.101685i
\(733\) 6.72860 + 7.47286i 0.248526 + 0.276016i 0.854481 0.519483i \(-0.173875\pi\)
−0.605955 + 0.795499i \(0.707209\pi\)
\(734\) 0.461640 + 4.39221i 0.0170395 + 0.162120i
\(735\) −0.747238 0.158830i −0.0275623 0.00585855i
\(736\) −3.62868 11.1679i −0.133755 0.411655i
\(737\) 1.20906 0.256993i 0.0445362 0.00946646i
\(738\) −4.00000 6.92820i −0.147242 0.255031i
\(739\) −4.14590 + 7.18091i −0.152509 + 0.264154i −0.932149 0.362074i \(-0.882069\pi\)
0.779640 + 0.626228i \(0.215402\pi\)
\(740\) 0.309017 0.951057i 0.0113597 0.0349615i
\(741\) −0.969032 + 9.21973i −0.0355983 + 0.338695i
\(742\) −2.78115 + 2.02063i −0.102099 + 0.0741795i
\(743\) −23.5623 −0.864417 −0.432209 0.901774i \(-0.642266\pi\)
−0.432209 + 0.901774i \(0.642266\pi\)
\(744\) 0 0
\(745\) −4.59675 −0.168412
\(746\) 41.4336 30.1033i 1.51699 1.10216i
\(747\) 1.48225 14.1027i 0.0542327 0.515989i
\(748\) 4.23607 13.0373i 0.154886 0.476690i
\(749\) 15.1353 26.2150i 0.553030 0.957876i
\(750\) 3.04508 + 5.27424i 0.111191 + 0.192588i
\(751\) −13.5305 + 2.87600i −0.493736 + 0.104947i −0.448049 0.894009i \(-0.647881\pi\)
−0.0456871 + 0.998956i \(0.514548\pi\)
\(752\) 8.42705 + 25.9358i 0.307303 + 0.945781i
\(753\) −16.5740 3.52291i −0.603990 0.128382i
\(754\) −2.00129 19.0410i −0.0728827 0.693433i
\(755\) −4.73001 5.25320i −0.172143 0.191184i
\(756\) 8.46903 + 3.77066i 0.308016 + 0.137137i
\(757\) 2.62680 1.16953i 0.0954726 0.0425071i −0.358445 0.933551i \(-0.616693\pi\)
0.453917 + 0.891044i \(0.350026\pi\)
\(758\) 9.11224 10.1202i 0.330972 0.367581i
\(759\) −14.7082 10.6861i −0.533874 0.387882i
\(760\) −3.45492 2.51014i −0.125323 0.0910524i
\(761\) −23.0894 + 25.6434i −0.836990 + 0.929572i −0.998356 0.0573228i \(-0.981744\pi\)
0.161365 + 0.986895i \(0.448410\pi\)
\(762\) −8.51994 + 3.79332i −0.308645 + 0.137418i
\(763\) 50.4727 + 22.4719i 1.82723 + 0.813537i
\(764\) −2.03044 2.25503i −0.0734587 0.0815841i
\(765\) 0.338261 + 3.21834i 0.0122299 + 0.116359i
\(766\) 16.0577 + 3.41316i 0.580187 + 0.123323i
\(767\) −0.302439 0.930812i −0.0109204 0.0336097i
\(768\) 13.2659 2.81976i 0.478693 0.101749i
\(769\) 5.62868 + 9.74915i 0.202975 + 0.351564i 0.949486 0.313810i \(-0.101606\pi\)
−0.746510 + 0.665374i \(0.768272\pi\)
\(770\) −4.85410 + 8.40755i −0.174930 + 0.302987i
\(771\) 7.85410 24.1724i 0.282859 0.870549i
\(772\) 0.298335 2.83847i 0.0107373 0.102159i
\(773\) 6.39919 4.64928i 0.230163 0.167223i −0.466727 0.884402i \(-0.654567\pi\)
0.696889 + 0.717179i \(0.254567\pi\)
\(774\) 7.70820 0.277066
\(775\) 0 0
\(776\) 41.8328 1.50171
\(777\) −10.2812 + 7.46969i −0.368834 + 0.267974i
\(778\) −4.91644 + 46.7768i −0.176263 + 1.67703i
\(779\) −3.81966 + 11.7557i −0.136854 + 0.421192i
\(780\) 0.218847 0.379054i 0.00783598 0.0135723i
\(781\) −29.0344 50.2891i −1.03893 1.79949i
\(782\) 23.2783 4.94796i 0.832431 0.176939i
\(783\) −9.86068 30.3481i −0.352392 1.08455i
\(784\) 9.49606 + 2.01845i 0.339145 + 0.0720875i
\(785\) −0.148055 1.40865i −0.00528431 0.0502768i
\(786\) 12.0071 + 13.3352i 0.428278 + 0.475651i
\(787\) 40.8430 + 18.1845i 1.45589 + 0.648206i 0.973695 0.227855i \(-0.0731712\pi\)
0.482200 + 0.876061i \(0.339838\pi\)
\(788\) −5.88113 + 2.61845i −0.209506 + 0.0932783i
\(789\) −9.23291 + 10.2542i −0.328700 + 0.365059i
\(790\) 0 0
\(791\) −11.7812 8.55951i −0.418890 0.304341i
\(792\) −15.6686 + 17.4018i −0.556761 + 0.618345i
\(793\) −18.5375 + 8.25342i −0.658285 + 0.293087i
\(794\) 43.9131 + 19.5514i 1.55842 + 0.693852i
\(795\) 0.181006 + 0.201028i 0.00641964 + 0.00712973i
\(796\) 0.858679 + 8.16978i 0.0304351 + 0.289570i
\(797\) −26.3555 5.60203i −0.933559 0.198434i −0.284069 0.958804i \(-0.591684\pi\)
−0.649490 + 0.760370i \(0.725018\pi\)
\(798\) −7.50000 23.0826i −0.265497 0.817116i
\(799\) −23.2783 + 4.94796i −0.823528 + 0.175046i
\(800\) −8.20820 14.2170i −0.290204 0.502648i
\(801\) −8.61803 + 14.9269i −0.304503 + 0.527415i
\(802\) 11.9164 36.6749i 0.420783 1.29504i
\(803\) 6.32826 60.2094i 0.223319 2.12474i
\(804\) 0.118034 0.0857567i 0.00416274 0.00302441i
\(805\) −3.97871 −0.140231
\(806\) 0 0
\(807\) 3.61803 0.127361
\(808\) 16.7082 12.1392i 0.587793 0.427056i
\(809\) −3.15693 + 30.0362i −0.110992 + 1.05602i 0.787286 + 0.616588i \(0.211485\pi\)
−0.898278 + 0.439428i \(0.855181\pi\)
\(810\) −0.190983 + 0.587785i −0.00671046 + 0.0206527i
\(811\) 14.3885 24.9217i 0.505250 0.875119i −0.494731 0.869046i \(-0.664734\pi\)
0.999982 0.00607295i \(-0.00193309\pi\)
\(812\) 5.91641 + 10.2475i 0.207625 + 0.359617i
\(813\) −10.3315 + 2.19603i −0.362341 + 0.0770180i
\(814\) 11.0902 + 34.1320i 0.388710 + 1.19633i
\(815\) 0.264599 + 0.0562422i 0.00926848 + 0.00197008i
\(816\) 2.14935 + 20.4497i 0.0752422 + 0.715881i
\(817\) −7.96923 8.85073i −0.278808 0.309648i
\(818\) 23.9169 + 10.6485i 0.836236 + 0.372316i
\(819\) 10.1628 4.52479i 0.355118 0.158109i
\(820\) 0.390499 0.433693i 0.0136368 0.0151452i
\(821\) 19.0344 + 13.8293i 0.664307 + 0.482647i 0.868115 0.496364i \(-0.165332\pi\)
−0.203808 + 0.979011i \(0.565332\pi\)
\(822\) 3.23607 + 2.35114i 0.112871 + 0.0820055i
\(823\) 22.8338 25.3595i 0.795937 0.883978i −0.199451 0.979908i \(-0.563916\pi\)
0.995388 + 0.0959302i \(0.0305826\pi\)
\(824\) 14.0012 6.23374i 0.487755 0.217163i
\(825\) −23.2190 10.3378i −0.808383 0.359915i
\(826\) 1.71452 + 1.90416i 0.0596557 + 0.0662544i
\(827\) −1.91561 18.2258i −0.0666124 0.633775i −0.975992 0.217807i \(-0.930110\pi\)
0.909379 0.415968i \(-0.136557\pi\)
\(828\) 4.19801 + 0.892315i 0.145891 + 0.0310101i
\(829\) −2.56231 7.88597i −0.0889926 0.273891i 0.896649 0.442742i \(-0.145994\pi\)
−0.985642 + 0.168851i \(0.945994\pi\)
\(830\) 4.28621 0.911062i 0.148777 0.0316234i
\(831\) −1.16312 2.01458i −0.0403481 0.0698850i
\(832\) 3.92705 6.80185i 0.136146 0.235812i
\(833\) −2.61803 + 8.05748i −0.0907095 + 0.279175i
\(834\) −0.144455 + 1.37440i −0.00500206 + 0.0475914i
\(835\) −1.47214 + 1.06957i −0.0509454 + 0.0370140i
\(836\) −16.1803 −0.559609
\(837\) 0 0
\(838\) −7.23607 −0.249966
\(839\) 9.04508 6.57164i 0.312271 0.226878i −0.420599 0.907246i \(-0.638180\pi\)
0.732870 + 0.680368i \(0.238180\pi\)
\(840\) 0.267834 2.54827i 0.00924115 0.0879236i
\(841\) 3.62461 11.1554i 0.124987 0.384669i
\(842\) −15.5623 + 26.9547i −0.536312 + 0.928920i
\(843\) −5.01722 8.69008i −0.172802 0.299302i
\(844\) 4.83623 1.02797i 0.166470 0.0353843i
\(845\) 1.12868 + 3.47371i 0.0388277 + 0.119499i
\(846\) −17.7831 3.77991i −0.611394 0.129956i
\(847\) −5.14795 48.9794i −0.176886 1.68295i
\(848\) −2.30027 2.55470i −0.0789915 0.0877289i
\(849\) 12.3898 + 5.51629i 0.425216 + 0.189318i
\(850\) 30.3941 13.5323i 1.04251 0.464155i
\(851\) −9.84171 + 10.9303i −0.337369 + 0.374687i
\(852\) −5.54508 4.02874i −0.189971 0.138022i
\(853\) −3.23607 2.35114i −0.110801 0.0805015i 0.531005 0.847369i \(-0.321815\pi\)
−0.641806 + 0.766867i \(0.721815\pi\)
\(854\) 35.5473 39.4793i 1.21640 1.35095i
\(855\) 3.48943 1.55360i 0.119336 0.0531319i
\(856\) 20.6117 + 9.17692i 0.704493 + 0.313661i
\(857\) 9.48850 + 10.5380i 0.324121 + 0.359973i 0.883080 0.469222i \(-0.155466\pi\)
−0.558959 + 0.829195i \(0.688799\pi\)
\(858\) 1.64195 + 15.6222i 0.0560554 + 0.533332i
\(859\) −55.4690 11.7903i −1.89258 0.402280i −0.893658 0.448749i \(-0.851870\pi\)
−0.998920 + 0.0464691i \(0.985203\pi\)
\(860\) 0.173762 + 0.534785i 0.00592524 + 0.0182360i
\(861\) −7.25434 + 1.54196i −0.247227 + 0.0525498i
\(862\) −20.0344 34.7007i −0.682376 1.18191i
\(863\) −20.2533 + 35.0797i −0.689430 + 1.19413i 0.282593 + 0.959240i \(0.408806\pi\)
−0.972023 + 0.234888i \(0.924528\pi\)
\(864\) −5.22542 + 16.0822i −0.177773 + 0.547128i
\(865\) 0.482716 4.59274i 0.0164128 0.156158i
\(866\) −35.8885 + 26.0746i −1.21954 + 0.886049i
\(867\) −0.944272 −0.0320692
\(868\) 0 0
\(869\) 0 0
\(870\) 3.19098 2.31838i 0.108184 0.0786006i
\(871\) 0.0457515 0.435296i 0.00155023 0.0147495i
\(872\) −12.7254 + 39.1648i −0.430937 + 1.32629i
\(873\) −18.7082 + 32.4036i −0.633177 + 1.09669i
\(874\) −14.0451 24.3268i −0.475082 0.822866i
\(875\) −11.0450 + 2.34770i −0.373391 + 0.0793666i
\(876\) −2.20820 6.79615i −0.0746083 0.229621i
\(877\) −29.0590 6.17668i −0.981253 0.208572i −0.310761 0.950488i \(-0.600584\pi\)
−0.670492 + 0.741916i \(0.733917\pi\)
\(878\) 2.00129 + 19.0410i 0.0675403 + 0.642603i
\(879\) 2.51856 + 2.79715i 0.0849490 + 0.0943454i
\(880\) −8.86889 3.94868i −0.298970 0.133110i
\(881\) 26.8223 11.9421i 0.903667 0.402338i 0.0983286 0.995154i \(-0.468650\pi\)
0.805338 + 0.592816i \(0.201984\pi\)
\(882\) −4.33070 + 4.80973i −0.145822 + 0.161952i
\(883\) 0.809017 + 0.587785i 0.0272256 + 0.0197805i 0.601315 0.799012i \(-0.294644\pi\)
−0.574089 + 0.818793i \(0.694644\pi\)
\(884\) −3.92705 2.85317i −0.132081 0.0959625i
\(885\) 0.134914 0.149837i 0.00453509 0.00503673i
\(886\) −1.29395 + 0.576105i −0.0434712 + 0.0193546i
\(887\) −43.9446 19.5654i −1.47551 0.656941i −0.497879 0.867247i \(-0.665888\pi\)
−0.977636 + 0.210305i \(0.932554\pi\)
\(888\) −6.33810 7.03917i −0.212693 0.236219i
\(889\) −1.80748 17.1971i −0.0606211 0.576771i
\(890\) −5.20985 1.10739i −0.174634 0.0371197i
\(891\) −1.61803 4.97980i −0.0542062 0.166829i
\(892\) 7.68247 1.63296i 0.257228 0.0546755i
\(893\) 14.0451 + 24.3268i 0.470001 + 0.814065i
\(894\) 9.73607 16.8634i 0.325623 0.563995i
\(895\) 0.566371 1.74311i 0.0189317 0.0582658i
\(896\) −4.27042 + 40.6303i −0.142665 + 1.35736i
\(897\) −5.20820 + 3.78398i −0.173897 + 0.126343i
\(898\) −55.1246 −1.83953
\(899\) 0 0
\(900\) 6.00000 0.200000
\(901\) 2.42705 1.76336i 0.0808568 0.0587459i
\(902\) −2.18927 + 20.8295i −0.0728948 + 0.693548i
\(903\) 2.20820 6.79615i 0.0734844 0.226162i
\(904\) 5.42705 9.39993i 0.180501 0.312637i
\(905\) 3.24671 + 5.62347i 0.107924 + 0.186930i
\(906\) 29.2899 6.22576i 0.973092 0.206837i
\(907\) −3.68441 11.3394i −0.122339 0.376520i 0.871068 0.491162i \(-0.163428\pi\)
−0.993407 + 0.114642i \(0.963428\pi\)
\(908\) −13.1440 2.79385i −0.436201 0.0927173i
\(909\) 1.93086 + 18.3709i 0.0640427 + 0.609326i
\(910\) 2.30027 + 2.55470i 0.0762531 + 0.0846876i
\(911\) −12.9544 5.76766i −0.429198 0.191091i 0.180756 0.983528i \(-0.442145\pi\)
−0.609954 + 0.792437i \(0.708812\pi\)
\(912\) 22.1722 9.87171i 0.734195 0.326885i
\(913\) −24.8412 + 27.5890i −0.822124 + 0.913061i
\(914\) −35.0066 25.4338i −1.15791 0.841274i
\(915\) −3.38197 2.45714i −0.111804 0.0812306i
\(916\) −1.14301 + 1.26944i −0.0377662 + 0.0419436i
\(917\) −30.3941 + 13.5323i −1.00370 + 0.446877i
\(918\) −31.3077 13.9391i −1.03331 0.460058i
\(919\) 33.5399 + 37.2498i 1.10638 + 1.22876i 0.971283 + 0.237927i \(0.0764678\pi\)
0.135096 + 0.990832i \(0.456866\pi\)
\(920\) −0.309985 2.94931i −0.0102199 0.0972360i
\(921\) −4.97894 1.05831i −0.164062 0.0348724i
\(922\) −15.8713 48.8469i −0.522694 1.60869i
\(923\) −20.1130 + 4.27514i −0.662026 + 0.140718i
\(924\) −4.85410 8.40755i −0.159688 0.276588i
\(925\) −10.2812 + 17.8075i −0.338042 + 0.585506i
\(926\) 4.56231 14.0413i 0.149927 0.461427i
\(927\) −1.43290 + 13.6331i −0.0470625 + 0.447770i
\(928\) −17.4615 + 12.6865i −0.573202 + 0.416455i
\(929\) −33.5410 −1.10045 −0.550223 0.835018i \(-0.685457\pi\)
−0.550223 + 0.835018i \(0.685457\pi\)
\(930\) 0 0
\(931\) 10.0000 0.327737
\(932\) 2.89919 2.10638i 0.0949660 0.0689969i
\(933\) 0.786876 7.48663i 0.0257612 0.245101i
\(934\) 19.3885 59.6718i 0.634413 1.95252i
\(935\) 4.23607 7.33708i 0.138534 0.239948i
\(936\) 4.14590 + 7.18091i 0.135513 + 0.234715i
\(937\) 43.5132 9.24901i 1.42151 0.302152i 0.567917 0.823086i \(-0.307750\pi\)
0.853597 + 0.520934i \(0.174416\pi\)
\(938\) 0.354102 + 1.08981i 0.0115618 + 0.0355837i
\(939\) −3.16535 0.672816i −0.103297 0.0219565i
\(940\) −0.138630 1.31897i −0.00452160 0.0430201i
\(941\) 37.0808 + 41.1824i 1.20880 + 1.34251i 0.923276 + 0.384137i \(0.125501\pi\)
0.285524 + 0.958372i \(0.407832\pi\)
\(942\) 5.48127 + 2.44042i 0.178590 + 0.0795132i
\(943\) −7.84150 + 3.49126i −0.255354 + 0.113691i
\(944\) −1.71452 + 1.90416i −0.0558028 + 0.0619753i
\(945\) 4.63525 + 3.36771i 0.150785 + 0.109552i
\(946\) −16.3262 11.8617i −0.530812 0.385657i
\(947\) −24.1348 + 26.8044i −0.784275 + 0.871026i −0.994294 0.106671i \(-0.965981\pi\)
0.210019 + 0.977697i \(0.432647\pi\)
\(948\) 0 0
\(949\) −19.5843 8.71950i −0.635734 0.283047i
\(950\) −26.2771 29.1837i −0.852542 0.946843i
\(951\) −1.03363 9.83437i −0.0335179 0.318901i
\(952\) −27.7954 5.90810i −0.900855 0.191483i
\(953\) −2.84752 8.76378i −0.0922404 0.283887i 0.894284 0.447499i \(-0.147685\pi\)
−0.986525 + 0.163613i \(0.947685\pi\)
\(954\) 2.24171 0.476491i 0.0725782 0.0154270i
\(955\) −0.937694 1.62413i −0.0303431 0.0525557i
\(956\) −4.14590 + 7.18091i −0.134088 + 0.232247i
\(957\) −10.3262 + 31.7809i −0.333800 + 1.02733i
\(958\) −1.51275 + 14.3929i −0.0488747 + 0.465012i
\(959\) −6.00000 + 4.35926i −0.193750 + 0.140768i
\(960\) 1.61803 0.0522218
\(961\) 0 0
\(962\) 12.7082 0.409729
\(963\) −16.3262 + 11.8617i −0.526106 + 0.382238i
\(964\) 1.12874 10.7392i 0.0363542 0.345887i
\(965\) 0.545085 1.67760i 0.0175469 0.0540038i
\(966\) 8.42705 14.5961i 0.271136 0.469621i
\(967\) −6.17376 10.6933i −0.198535 0.343872i 0.749519 0.661983i \(-0.230285\pi\)
−0.948054 + 0.318111i \(0.896952\pi\)
\(968\) 35.9060 7.63206i 1.15406 0.245304i
\(969\) 6.54508 + 20.1437i 0.210258 + 0.647109i
\(970\) −11.3096 2.40394i −0.363131 0.0771858i
\(971\) 0.0457515 + 0.435296i 0.00146824 + 0.0139693i 0.995231 0.0975412i \(-0.0310978\pi\)
−0.993763 + 0.111511i \(0.964431\pi\)
\(972\) −6.61673 7.34862i −0.212232 0.235707i
\(973\) −2.34078 1.04218i −0.0750421 0.0334109i
\(974\) −61.9684 + 27.5901i −1.98559 + 0.884044i
\(975\) −6.02218 + 6.68830i −0.192864 + 0.214197i
\(976\) 42.9787 + 31.2259i 1.37572 + 0.999516i
\(977\) −42.1246 30.6053i −1.34769 0.979151i −0.999123 0.0418654i \(-0.986670\pi\)
−0.348562 0.937286i \(-0.613330\pi\)
\(978\) −0.766755 + 0.851568i −0.0245181 + 0.0272301i
\(979\) 41.2234 18.3538i 1.31751 0.586591i
\(980\) −0.431318 0.192035i −0.0137779 0.00613433i
\(981\) −24.6460 27.3721i −0.786885 0.873924i
\(982\) −3.65267 34.7528i −0.116561 1.10901i
\(983\) 7.85887 + 1.67045i 0.250659 + 0.0532792i 0.331527 0.943446i \(-0.392436\pi\)
−0.0808685 + 0.996725i \(0.525769\pi\)
\(984\) −1.70820 5.25731i −0.0544556 0.167597i
\(985\) −3.89177 + 0.827221i −0.124002 + 0.0263575i
\(986\) −21.8713 37.8822i −0.696525 1.20642i
\(987\) −8.42705 + 14.5961i −0.268236 + 0.464598i
\(988\) −1.77051 + 5.44907i −0.0563274 + 0.173358i
\(989\) 0.864504 8.22520i 0.0274896 0.261546i
\(990\) 5.23607 3.80423i 0.166413 0.120906i
\(991\) 16.2705 0.516850 0.258425 0.966031i \(-0.416797\pi\)
0.258425 + 0.966031i \(0.416797\pi\)
\(992\) 0 0
\(993\) 22.2705 0.706733
\(994\) 43.5517 31.6421i 1.38137 1.00363i
\(995\) −0.530693 + 5.04920i −0.0168241 + 0.160070i
\(996\) −1.35410 + 4.16750i −0.0429064 + 0.132052i
\(997\) −26.6246 + 46.1152i −0.843210 + 1.46048i 0.0439568 + 0.999033i \(0.486004\pi\)
−0.887167 + 0.461449i \(0.847330\pi\)
\(998\) −8.78115 15.2094i −0.277963 0.481445i
\(999\) 20.7175 4.40364i 0.655473 0.139325i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.b.338.1 8
31.2 even 5 inner 961.2.g.b.732.1 8
31.3 odd 30 961.2.d.e.531.1 4
31.4 even 5 961.2.g.f.448.1 8
31.5 even 3 inner 961.2.g.b.235.1 8
31.6 odd 6 961.2.d.b.388.1 4
31.7 even 15 961.2.d.f.628.1 4
31.8 even 5 961.2.c.f.521.2 4
31.9 even 15 961.2.c.f.439.2 4
31.10 even 15 inner 961.2.g.b.816.1 8
31.11 odd 30 961.2.g.g.846.1 8
31.12 odd 30 961.2.d.b.374.1 4
31.13 odd 30 961.2.g.g.547.1 8
31.14 even 15 961.2.a.d.1.2 2
31.15 odd 10 961.2.g.g.844.1 8
31.16 even 5 961.2.g.f.844.1 8
31.17 odd 30 961.2.a.e.1.2 2
31.18 even 15 961.2.g.f.547.1 8
31.19 even 15 31.2.d.a.2.1 4
31.20 even 15 961.2.g.f.846.1 8
31.21 odd 30 961.2.g.c.816.1 8
31.22 odd 30 961.2.c.d.439.2 4
31.23 odd 10 961.2.c.d.521.2 4
31.24 odd 30 961.2.d.e.628.1 4
31.25 even 3 31.2.d.a.16.1 yes 4
31.26 odd 6 961.2.g.c.235.1 8
31.27 odd 10 961.2.g.g.448.1 8
31.28 even 15 961.2.d.f.531.1 4
31.29 odd 10 961.2.g.c.732.1 8
31.30 odd 2 961.2.g.c.338.1 8
93.14 odd 30 8649.2.a.g.1.1 2
93.17 even 30 8649.2.a.f.1.1 2
93.50 odd 30 279.2.i.a.64.1 4
93.56 odd 6 279.2.i.a.109.1 4
124.19 odd 30 496.2.n.b.33.1 4
124.87 odd 6 496.2.n.b.481.1 4
155.19 even 30 775.2.k.c.126.1 4
155.87 odd 12 775.2.bf.a.574.1 8
155.112 odd 60 775.2.bf.a.374.2 8
155.118 odd 12 775.2.bf.a.574.2 8
155.143 odd 60 775.2.bf.a.374.1 8
155.149 even 6 775.2.k.c.326.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.d.a.2.1 4 31.19 even 15
31.2.d.a.16.1 yes 4 31.25 even 3
279.2.i.a.64.1 4 93.50 odd 30
279.2.i.a.109.1 4 93.56 odd 6
496.2.n.b.33.1 4 124.19 odd 30
496.2.n.b.481.1 4 124.87 odd 6
775.2.k.c.126.1 4 155.19 even 30
775.2.k.c.326.1 4 155.149 even 6
775.2.bf.a.374.1 8 155.143 odd 60
775.2.bf.a.374.2 8 155.112 odd 60
775.2.bf.a.574.1 8 155.87 odd 12
775.2.bf.a.574.2 8 155.118 odd 12
961.2.a.d.1.2 2 31.14 even 15
961.2.a.e.1.2 2 31.17 odd 30
961.2.c.d.439.2 4 31.22 odd 30
961.2.c.d.521.2 4 31.23 odd 10
961.2.c.f.439.2 4 31.9 even 15
961.2.c.f.521.2 4 31.8 even 5
961.2.d.b.374.1 4 31.12 odd 30
961.2.d.b.388.1 4 31.6 odd 6
961.2.d.e.531.1 4 31.3 odd 30
961.2.d.e.628.1 4 31.24 odd 30
961.2.d.f.531.1 4 31.28 even 15
961.2.d.f.628.1 4 31.7 even 15
961.2.g.b.235.1 8 31.5 even 3 inner
961.2.g.b.338.1 8 1.1 even 1 trivial
961.2.g.b.732.1 8 31.2 even 5 inner
961.2.g.b.816.1 8 31.10 even 15 inner
961.2.g.c.235.1 8 31.26 odd 6
961.2.g.c.338.1 8 31.30 odd 2
961.2.g.c.732.1 8 31.29 odd 10
961.2.g.c.816.1 8 31.21 odd 30
961.2.g.f.448.1 8 31.4 even 5
961.2.g.f.547.1 8 31.18 even 15
961.2.g.f.844.1 8 31.16 even 5
961.2.g.f.846.1 8 31.20 even 15
961.2.g.g.448.1 8 31.27 odd 10
961.2.g.g.547.1 8 31.13 odd 30
961.2.g.g.844.1 8 31.15 odd 10
961.2.g.g.846.1 8 31.11 odd 30
8649.2.a.f.1.1 2 93.17 even 30
8649.2.a.g.1.1 2 93.14 odd 30