Properties

Label 961.2.g.b.732.1
Level $961$
Weight $2$
Character 961.732
Analytic conductor $7.674$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [961,2,Mod(235,961)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("961.235"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(961, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([26])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 961 = 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 961.g (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-6,-1,6,6,2,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.67362363425\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{15})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 732.1
Root \(0.669131 - 0.743145i\) of defining polynomial
Character \(\chi\) \(=\) 961.732
Dual form 961.2.g.b.235.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.30902 - 0.951057i) q^{2} +(-0.913545 - 0.406737i) q^{3} +(0.190983 + 0.587785i) q^{4} +(0.190983 - 0.330792i) q^{5} +(0.809017 + 1.40126i) q^{6} +(2.00739 - 2.22943i) q^{7} +(-0.690983 + 2.12663i) q^{8} +(-1.33826 - 1.48629i) q^{9} +(-0.564602 + 0.251377i) q^{10} +(5.12165 + 1.08864i) q^{11} +(0.0646021 - 0.614648i) q^{12} +(0.193806 + 1.84395i) q^{13} +(-4.74803 + 1.00922i) q^{14} +(-0.309017 + 0.224514i) q^{15} +(3.92705 - 2.85317i) q^{16} +(4.14350 - 0.880728i) q^{17} +(0.338261 + 3.21834i) q^{18} +(-0.522642 + 4.97261i) q^{19} +(0.230909 + 0.0490813i) q^{20} +(-2.74064 + 1.22021i) q^{21} +(-5.66897 - 6.29602i) q^{22} +(1.07295 - 3.30220i) q^{23} +(1.49622 - 1.66172i) q^{24} +(2.42705 + 4.20378i) q^{25} +(1.50000 - 2.59808i) q^{26} +(1.54508 + 4.75528i) q^{27} +(1.69381 + 0.754131i) q^{28} +(5.16312 + 3.75123i) q^{29} +0.618034 q^{30} -3.38197 q^{32} +(-4.23607 - 3.07768i) q^{33} +(-6.26153 - 2.78781i) q^{34} +(-0.354102 - 1.08981i) q^{35} +(0.618034 - 1.07047i) q^{36} +(2.11803 + 3.66854i) q^{37} +(5.41338 - 6.01217i) q^{38} +(0.572949 - 1.76336i) q^{39} +(0.571506 + 0.634721i) q^{40} +(-2.25841 + 1.00551i) q^{41} +(4.74803 + 1.00922i) q^{42} +(0.248983 - 2.36892i) q^{43} +(0.338261 + 3.21834i) q^{44} +(-0.747238 + 0.158830i) q^{45} +(-4.54508 + 3.30220i) q^{46} +(4.54508 - 3.30220i) q^{47} +(-4.74803 + 1.00922i) q^{48} +(-0.209057 - 1.98904i) q^{49} +(0.820977 - 7.81108i) q^{50} +(-4.14350 - 0.880728i) q^{51} +(-1.04683 + 0.466079i) q^{52} +(0.473881 + 0.526298i) q^{53} +(2.50000 - 7.69421i) q^{54} +(1.33826 - 1.48629i) q^{55} +(3.35410 + 5.80948i) q^{56} +(2.50000 - 4.33013i) q^{57} +(-3.19098 - 9.82084i) q^{58} +(0.482228 + 0.214702i) q^{59} +(-0.190983 - 0.138757i) q^{60} +10.9443 q^{61} -6.00000 q^{63} +(-3.42705 - 2.48990i) q^{64} +(0.646976 + 0.288052i) q^{65} +(2.61803 + 8.05748i) q^{66} +(-0.118034 + 0.204441i) q^{67} +(1.30902 + 2.26728i) q^{68} +(-2.32331 + 2.58030i) q^{69} +(-0.572949 + 1.76336i) q^{70} +(-7.42077 - 8.24160i) q^{71} +(4.08550 - 1.81898i) q^{72} +(-11.3096 - 2.40394i) q^{73} +(0.716449 - 6.81655i) q^{74} +(-0.507392 - 4.82751i) q^{75} +(-3.02264 + 0.642482i) q^{76} +(12.7082 - 9.23305i) q^{77} +(-2.42705 + 1.76336i) q^{78} +(-0.193806 - 1.84395i) q^{80} +(-0.104528 + 0.994522i) q^{81} +(3.91259 + 0.831647i) q^{82} +(6.47719 - 2.88383i) q^{83} +(-1.24064 - 1.37787i) q^{84} +(0.500000 - 1.53884i) q^{85} +(-2.57890 + 2.86416i) q^{86} +(-3.19098 - 5.52694i) q^{87} +(-5.85410 + 10.1396i) q^{88} +(-2.66312 - 8.19624i) q^{89} +(1.12920 + 0.502754i) q^{90} +(4.50000 + 3.26944i) q^{91} +2.14590 q^{92} -9.09017 q^{94} +(1.54508 + 1.12257i) q^{95} +(3.08958 + 1.37557i) q^{96} +(-5.78115 - 17.7926i) q^{97} +(-1.61803 + 2.80252i) q^{98} +(-5.23607 - 9.06914i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{2} - q^{3} + 6 q^{4} + 6 q^{5} + 2 q^{6} + 3 q^{7} - 10 q^{8} - 2 q^{9} - 2 q^{10} + 2 q^{11} - 2 q^{12} - 6 q^{13} - 6 q^{14} + 2 q^{15} + 18 q^{16} + 3 q^{17} - 6 q^{18} + 5 q^{19} + 7 q^{20}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/961\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{15}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30902 0.951057i −0.925615 0.672499i 0.0193004 0.999814i \(-0.493856\pi\)
−0.944915 + 0.327315i \(0.893856\pi\)
\(3\) −0.913545 0.406737i −0.527436 0.234830i 0.125703 0.992068i \(-0.459881\pi\)
−0.653139 + 0.757238i \(0.726548\pi\)
\(4\) 0.190983 + 0.587785i 0.0954915 + 0.293893i
\(5\) 0.190983 0.330792i 0.0854102 0.147935i −0.820156 0.572140i \(-0.806113\pi\)
0.905566 + 0.424206i \(0.139447\pi\)
\(6\) 0.809017 + 1.40126i 0.330280 + 0.572061i
\(7\) 2.00739 2.22943i 0.758723 0.842647i −0.232807 0.972523i \(-0.574791\pi\)
0.991530 + 0.129876i \(0.0414579\pi\)
\(8\) −0.690983 + 2.12663i −0.244299 + 0.751876i
\(9\) −1.33826 1.48629i −0.446087 0.495430i
\(10\) −0.564602 + 0.251377i −0.178543 + 0.0794924i
\(11\) 5.12165 + 1.08864i 1.54423 + 0.328237i 0.899759 0.436387i \(-0.143742\pi\)
0.644476 + 0.764625i \(0.277076\pi\)
\(12\) 0.0646021 0.614648i 0.0186490 0.177434i
\(13\) 0.193806 + 1.84395i 0.0537522 + 0.511418i 0.987962 + 0.154695i \(0.0494395\pi\)
−0.934210 + 0.356723i \(0.883894\pi\)
\(14\) −4.74803 + 1.00922i −1.26896 + 0.269727i
\(15\) −0.309017 + 0.224514i −0.0797878 + 0.0579693i
\(16\) 3.92705 2.85317i 0.981763 0.713292i
\(17\) 4.14350 0.880728i 1.00495 0.213608i 0.324091 0.946026i \(-0.394942\pi\)
0.680855 + 0.732418i \(0.261608\pi\)
\(18\) 0.338261 + 3.21834i 0.0797289 + 0.758570i
\(19\) −0.522642 + 4.97261i −0.119902 + 1.14079i 0.754739 + 0.656025i \(0.227763\pi\)
−0.874642 + 0.484770i \(0.838903\pi\)
\(20\) 0.230909 + 0.0490813i 0.0516329 + 0.0109749i
\(21\) −2.74064 + 1.22021i −0.598056 + 0.266272i
\(22\) −5.66897 6.29602i −1.20863 1.34232i
\(23\) 1.07295 3.30220i 0.223725 0.688556i −0.774693 0.632337i \(-0.782096\pi\)
0.998418 0.0562184i \(-0.0179043\pi\)
\(24\) 1.49622 1.66172i 0.305415 0.339198i
\(25\) 2.42705 + 4.20378i 0.485410 + 0.840755i
\(26\) 1.50000 2.59808i 0.294174 0.509525i
\(27\) 1.54508 + 4.75528i 0.297352 + 0.915155i
\(28\) 1.69381 + 0.754131i 0.320099 + 0.142517i
\(29\) 5.16312 + 3.75123i 0.958767 + 0.696585i 0.952864 0.303397i \(-0.0981210\pi\)
0.00590304 + 0.999983i \(0.498121\pi\)
\(30\) 0.618034 0.112837
\(31\) 0 0
\(32\) −3.38197 −0.597853
\(33\) −4.23607 3.07768i −0.737405 0.535756i
\(34\) −6.26153 2.78781i −1.07384 0.478106i
\(35\) −0.354102 1.08981i −0.0598542 0.184212i
\(36\) 0.618034 1.07047i 0.103006 0.178411i
\(37\) 2.11803 + 3.66854i 0.348203 + 0.603105i 0.985930 0.167157i \(-0.0534588\pi\)
−0.637728 + 0.770262i \(0.720125\pi\)
\(38\) 5.41338 6.01217i 0.878166 0.975302i
\(39\) 0.572949 1.76336i 0.0917453 0.282363i
\(40\) 0.571506 + 0.634721i 0.0903630 + 0.100358i
\(41\) −2.25841 + 1.00551i −0.352704 + 0.157034i −0.575438 0.817845i \(-0.695168\pi\)
0.222734 + 0.974879i \(0.428502\pi\)
\(42\) 4.74803 + 1.00922i 0.732637 + 0.155727i
\(43\) 0.248983 2.36892i 0.0379696 0.361257i −0.958996 0.283418i \(-0.908532\pi\)
0.996966 0.0778383i \(-0.0248018\pi\)
\(44\) 0.338261 + 3.21834i 0.0509948 + 0.485183i
\(45\) −0.747238 + 0.158830i −0.111392 + 0.0236770i
\(46\) −4.54508 + 3.30220i −0.670136 + 0.486882i
\(47\) 4.54508 3.30220i 0.662969 0.481675i −0.204695 0.978826i \(-0.565620\pi\)
0.867664 + 0.497151i \(0.165620\pi\)
\(48\) −4.74803 + 1.00922i −0.685319 + 0.145669i
\(49\) −0.209057 1.98904i −0.0298653 0.284149i
\(50\) 0.820977 7.81108i 0.116104 1.10465i
\(51\) −4.14350 0.880728i −0.580206 0.123327i
\(52\) −1.04683 + 0.466079i −0.145169 + 0.0646335i
\(53\) 0.473881 + 0.526298i 0.0650926 + 0.0722926i 0.774812 0.632192i \(-0.217845\pi\)
−0.709719 + 0.704485i \(0.751178\pi\)
\(54\) 2.50000 7.69421i 0.340207 1.04705i
\(55\) 1.33826 1.48629i 0.180451 0.200411i
\(56\) 3.35410 + 5.80948i 0.448211 + 0.776324i
\(57\) 2.50000 4.33013i 0.331133 0.573539i
\(58\) −3.19098 9.82084i −0.418997 1.28954i
\(59\) 0.482228 + 0.214702i 0.0627807 + 0.0279518i 0.437887 0.899030i \(-0.355727\pi\)
−0.375106 + 0.926982i \(0.622394\pi\)
\(60\) −0.190983 0.138757i −0.0246558 0.0179135i
\(61\) 10.9443 1.40127 0.700635 0.713520i \(-0.252900\pi\)
0.700635 + 0.713520i \(0.252900\pi\)
\(62\) 0 0
\(63\) −6.00000 −0.755929
\(64\) −3.42705 2.48990i −0.428381 0.311237i
\(65\) 0.646976 + 0.288052i 0.0802476 + 0.0357285i
\(66\) 2.61803 + 8.05748i 0.322258 + 0.991807i
\(67\) −0.118034 + 0.204441i −0.0144201 + 0.0249764i −0.873145 0.487460i \(-0.837924\pi\)
0.858725 + 0.512436i \(0.171257\pi\)
\(68\) 1.30902 + 2.26728i 0.158742 + 0.274949i
\(69\) −2.32331 + 2.58030i −0.279694 + 0.310632i
\(70\) −0.572949 + 1.76336i −0.0684805 + 0.210761i
\(71\) −7.42077 8.24160i −0.880684 0.978098i 0.119207 0.992869i \(-0.461965\pi\)
−0.999891 + 0.0147711i \(0.995298\pi\)
\(72\) 4.08550 1.81898i 0.481481 0.214369i
\(73\) −11.3096 2.40394i −1.32369 0.281360i −0.508757 0.860910i \(-0.669895\pi\)
−0.814936 + 0.579550i \(0.803228\pi\)
\(74\) 0.716449 6.81655i 0.0832855 0.792408i
\(75\) −0.507392 4.82751i −0.0585886 0.557433i
\(76\) −3.02264 + 0.642482i −0.346721 + 0.0736978i
\(77\) 12.7082 9.23305i 1.44823 1.05220i
\(78\) −2.42705 + 1.76336i −0.274809 + 0.199661i
\(79\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(80\) −0.193806 1.84395i −0.0216682 0.206159i
\(81\) −0.104528 + 0.994522i −0.0116143 + 0.110502i
\(82\) 3.91259 + 0.831647i 0.432073 + 0.0918400i
\(83\) 6.47719 2.88383i 0.710964 0.316542i −0.0191978 0.999816i \(-0.506111\pi\)
0.730162 + 0.683274i \(0.239445\pi\)
\(84\) −1.24064 1.37787i −0.135365 0.150338i
\(85\) 0.500000 1.53884i 0.0542326 0.166911i
\(86\) −2.57890 + 2.86416i −0.278090 + 0.308850i
\(87\) −3.19098 5.52694i −0.342109 0.592551i
\(88\) −5.85410 + 10.1396i −0.624049 + 1.08089i
\(89\) −2.66312 8.19624i −0.282290 0.868799i −0.987198 0.159500i \(-0.949012\pi\)
0.704908 0.709299i \(-0.250988\pi\)
\(90\) 1.12920 + 0.502754i 0.119029 + 0.0529949i
\(91\) 4.50000 + 3.26944i 0.471728 + 0.342731i
\(92\) 2.14590 0.223725
\(93\) 0 0
\(94\) −9.09017 −0.937579
\(95\) 1.54508 + 1.12257i 0.158522 + 0.115173i
\(96\) 3.08958 + 1.37557i 0.315329 + 0.140393i
\(97\) −5.78115 17.7926i −0.586987 1.80656i −0.591140 0.806569i \(-0.701322\pi\)
0.00415240 0.999991i \(-0.498678\pi\)
\(98\) −1.61803 + 2.80252i −0.163446 + 0.283097i
\(99\) −5.23607 9.06914i −0.526245 0.911482i
\(100\) −2.00739 + 2.22943i −0.200739 + 0.222943i
\(101\) 2.85410 8.78402i 0.283994 0.874043i −0.702705 0.711482i \(-0.748024\pi\)
0.986698 0.162561i \(-0.0519755\pi\)
\(102\) 4.58629 + 5.09359i 0.454110 + 0.504341i
\(103\) −6.26153 + 2.78781i −0.616967 + 0.274692i −0.691329 0.722540i \(-0.742975\pi\)
0.0743621 + 0.997231i \(0.476308\pi\)
\(104\) −4.05530 0.861981i −0.397655 0.0845242i
\(105\) −0.119779 + 1.13962i −0.0116892 + 0.111216i
\(106\) −0.119779 1.13962i −0.0116340 0.110690i
\(107\) 9.86968 2.09786i 0.954138 0.202808i 0.295563 0.955323i \(-0.404493\pi\)
0.658575 + 0.752515i \(0.271160\pi\)
\(108\) −2.50000 + 1.81636i −0.240563 + 0.174779i
\(109\) −14.8992 + 10.8249i −1.42708 + 1.03684i −0.436533 + 0.899688i \(0.643794\pi\)
−0.990551 + 0.137148i \(0.956206\pi\)
\(110\) −3.16535 + 0.672816i −0.301804 + 0.0641505i
\(111\) −0.442790 4.21286i −0.0420277 0.399867i
\(112\) 1.52218 14.4825i 0.143832 1.36847i
\(113\) −4.74803 1.00922i −0.446657 0.0949399i −0.0209084 0.999781i \(-0.506656\pi\)
−0.425749 + 0.904842i \(0.639989\pi\)
\(114\) −7.39074 + 3.29057i −0.692206 + 0.308190i
\(115\) −0.887426 0.985587i −0.0827529 0.0919064i
\(116\) −1.21885 + 3.75123i −0.113167 + 0.348293i
\(117\) 2.48127 2.75573i 0.229394 0.254768i
\(118\) −0.427051 0.739674i −0.0393132 0.0680925i
\(119\) 6.35410 11.0056i 0.582480 1.00888i
\(120\) −0.263932 0.812299i −0.0240936 0.0741524i
\(121\) 14.9971 + 6.67715i 1.36338 + 0.607014i
\(122\) −14.3262 10.4086i −1.29704 0.942352i
\(123\) 2.47214 0.222905
\(124\) 0 0
\(125\) 3.76393 0.336656
\(126\) 7.85410 + 5.70634i 0.699699 + 0.508361i
\(127\) 5.26561 + 2.34440i 0.467248 + 0.208032i 0.626835 0.779152i \(-0.284350\pi\)
−0.159588 + 0.987184i \(0.551016\pi\)
\(128\) 4.20820 + 12.9515i 0.371956 + 1.14476i
\(129\) −1.19098 + 2.06284i −0.104860 + 0.181623i
\(130\) −0.572949 0.992377i −0.0502510 0.0870372i
\(131\) −7.42077 + 8.24160i −0.648356 + 0.720072i −0.974284 0.225322i \(-0.927656\pi\)
0.325928 + 0.945394i \(0.394323\pi\)
\(132\) 1.00000 3.07768i 0.0870388 0.267878i
\(133\) 10.0370 + 11.1472i 0.870315 + 0.966582i
\(134\) 0.348943 0.155360i 0.0301441 0.0134210i
\(135\) 1.86810 + 0.397076i 0.160780 + 0.0341749i
\(136\) −0.990108 + 9.42025i −0.0849010 + 0.807779i
\(137\) −0.258409 2.45859i −0.0220773 0.210052i −0.999999 0.00108194i \(-0.999656\pi\)
0.977922 0.208970i \(-0.0670111\pi\)
\(138\) 5.49527 1.16805i 0.467788 0.0994314i
\(139\) 0.690983 0.502029i 0.0586084 0.0425815i −0.558095 0.829777i \(-0.688468\pi\)
0.616704 + 0.787195i \(0.288468\pi\)
\(140\) 0.572949 0.416272i 0.0484230 0.0351814i
\(141\) −5.49527 + 1.16805i −0.462785 + 0.0983680i
\(142\) 1.87569 + 17.8460i 0.157404 + 1.49760i
\(143\) −1.01478 + 9.65502i −0.0848605 + 0.807393i
\(144\) −9.49606 2.01845i −0.791338 0.168204i
\(145\) 2.22694 0.991500i 0.184938 0.0823396i
\(146\) 12.5182 + 13.9029i 1.03602 + 1.15061i
\(147\) −0.618034 + 1.90211i −0.0509746 + 0.156884i
\(148\) −1.75181 + 1.94558i −0.143998 + 0.159926i
\(149\) −6.01722 10.4221i −0.492950 0.853814i 0.507017 0.861936i \(-0.330748\pi\)
−0.999967 + 0.00812166i \(0.997415\pi\)
\(150\) −3.92705 + 6.80185i −0.320642 + 0.555369i
\(151\) 5.71885 + 17.6008i 0.465393 + 1.43233i 0.858487 + 0.512835i \(0.171405\pi\)
−0.393094 + 0.919498i \(0.628595\pi\)
\(152\) −10.2137 4.54745i −0.828444 0.368847i
\(153\) −6.85410 4.97980i −0.554121 0.402593i
\(154\) −25.4164 −2.04811
\(155\) 0 0
\(156\) 1.14590 0.0917453
\(157\) 3.00000 + 2.17963i 0.239426 + 0.173953i 0.701028 0.713134i \(-0.252725\pi\)
−0.461601 + 0.887087i \(0.652725\pi\)
\(158\) 0 0
\(159\) −0.218847 0.673542i −0.0173557 0.0534154i
\(160\) −0.645898 + 1.11873i −0.0510627 + 0.0884432i
\(161\) −5.20820 9.02087i −0.410464 0.710944i
\(162\) 1.08268 1.20243i 0.0850631 0.0944721i
\(163\) 0.218847 0.673542i 0.0171414 0.0527559i −0.942120 0.335276i \(-0.891170\pi\)
0.959261 + 0.282520i \(0.0911704\pi\)
\(164\) −1.02234 1.13542i −0.0798314 0.0886617i
\(165\) −1.82709 + 0.813473i −0.142239 + 0.0633288i
\(166\) −11.2214 2.38519i −0.870953 0.185127i
\(167\) 0.497966 4.73783i 0.0385338 0.366625i −0.958215 0.286050i \(-0.907658\pi\)
0.996749 0.0805749i \(-0.0256756\pi\)
\(168\) −0.701198 6.67146i −0.0540986 0.514714i
\(169\) 9.35335 1.98812i 0.719488 0.152932i
\(170\) −2.11803 + 1.53884i −0.162446 + 0.118024i
\(171\) 8.09017 5.87785i 0.618671 0.449491i
\(172\) 1.43997 0.306074i 0.109796 0.0233379i
\(173\) −1.26377 12.0239i −0.0960824 0.914163i −0.931302 0.364247i \(-0.881326\pi\)
0.835220 0.549916i \(-0.185340\pi\)
\(174\) −1.07939 + 10.2697i −0.0818280 + 0.778542i
\(175\) 14.2441 + 3.02767i 1.07675 + 0.228871i
\(176\) 23.2190 10.3378i 1.75020 0.779240i
\(177\) −0.353210 0.392279i −0.0265489 0.0294855i
\(178\) −4.30902 + 13.2618i −0.322974 + 0.994013i
\(179\) −3.21074 + 3.56589i −0.239982 + 0.266527i −0.851089 0.525021i \(-0.824058\pi\)
0.611108 + 0.791548i \(0.290724\pi\)
\(180\) −0.236068 0.408882i −0.0175955 0.0304762i
\(181\) −8.50000 + 14.7224i −0.631800 + 1.09431i 0.355383 + 0.934721i \(0.384350\pi\)
−0.987184 + 0.159589i \(0.948983\pi\)
\(182\) −2.78115 8.55951i −0.206153 0.634473i
\(183\) −9.99809 4.45144i −0.739080 0.329060i
\(184\) 6.28115 + 4.56352i 0.463053 + 0.336428i
\(185\) 1.61803 0.118960
\(186\) 0 0
\(187\) 22.1803 1.62199
\(188\) 2.80902 + 2.04087i 0.204869 + 0.148846i
\(189\) 13.7032 + 6.10105i 0.996760 + 0.443786i
\(190\) −0.954915 2.93893i −0.0692768 0.213212i
\(191\) 2.45492 4.25204i 0.177631 0.307667i −0.763437 0.645882i \(-0.776490\pi\)
0.941069 + 0.338215i \(0.109823\pi\)
\(192\) 2.11803 + 3.66854i 0.152856 + 0.264754i
\(193\) −3.09007 + 3.43187i −0.222428 + 0.247031i −0.844022 0.536308i \(-0.819819\pi\)
0.621594 + 0.783339i \(0.286485\pi\)
\(194\) −9.35410 + 28.7890i −0.671585 + 2.06693i
\(195\) −0.473881 0.526298i −0.0339353 0.0376890i
\(196\) 1.12920 0.502754i 0.0806574 0.0359110i
\(197\) 10.1888 + 2.16569i 0.725921 + 0.154299i 0.556028 0.831163i \(-0.312325\pi\)
0.169893 + 0.985463i \(0.445658\pi\)
\(198\) −1.77116 + 16.8514i −0.125871 + 1.19758i
\(199\) 1.38937 + 13.2190i 0.0984899 + 0.937069i 0.926485 + 0.376333i \(0.122815\pi\)
−0.827995 + 0.560736i \(0.810518\pi\)
\(200\) −10.6169 + 2.25669i −0.750729 + 0.159572i
\(201\) 0.190983 0.138757i 0.0134709 0.00978718i
\(202\) −12.0902 + 8.78402i −0.850661 + 0.618042i
\(203\) 18.7275 3.98066i 1.31441 0.279387i
\(204\) −0.273659 2.60369i −0.0191600 0.182295i
\(205\) −0.0987033 + 0.939099i −0.00689374 + 0.0655895i
\(206\) 10.8478 + 2.30578i 0.755804 + 0.160651i
\(207\) −6.34391 + 2.82449i −0.440932 + 0.196316i
\(208\) 6.02218 + 6.68830i 0.417563 + 0.463750i
\(209\) −8.09017 + 24.8990i −0.559609 + 1.72230i
\(210\) 1.24064 1.37787i 0.0856120 0.0950818i
\(211\) 4.00000 + 6.92820i 0.275371 + 0.476957i 0.970229 0.242190i \(-0.0778659\pi\)
−0.694857 + 0.719148i \(0.744533\pi\)
\(212\) −0.218847 + 0.379054i −0.0150305 + 0.0260336i
\(213\) 3.42705 + 10.5474i 0.234818 + 0.722694i
\(214\) −14.9148 6.64048i −1.01955 0.453934i
\(215\) −0.736068 0.534785i −0.0501994 0.0364720i
\(216\) −11.1803 −0.760726
\(217\) 0 0
\(218\) 29.7984 2.01820
\(219\) 9.35410 + 6.79615i 0.632092 + 0.459241i
\(220\) 1.12920 + 0.502754i 0.0761309 + 0.0338957i
\(221\) 2.42705 + 7.46969i 0.163261 + 0.502466i
\(222\) −3.42705 + 5.93583i −0.230009 + 0.398387i
\(223\) 6.35410 + 11.0056i 0.425502 + 0.736991i 0.996467 0.0839830i \(-0.0267642\pi\)
−0.570965 + 0.820974i \(0.693431\pi\)
\(224\) −6.78893 + 7.53987i −0.453605 + 0.503779i
\(225\) 3.00000 9.23305i 0.200000 0.615537i
\(226\) 5.25542 + 5.83674i 0.349585 + 0.388254i
\(227\) 19.8629 8.84353i 1.31835 0.586966i 0.377566 0.925983i \(-0.376761\pi\)
0.940780 + 0.339017i \(0.110094\pi\)
\(228\) 3.02264 + 0.642482i 0.200179 + 0.0425494i
\(229\) 0.288910 2.74879i 0.0190917 0.181645i −0.980820 0.194914i \(-0.937557\pi\)
0.999912 + 0.0132691i \(0.00422380\pi\)
\(230\) 0.224307 + 2.13414i 0.0147904 + 0.140721i
\(231\) −15.3649 + 3.26592i −1.01094 + 0.214882i
\(232\) −11.5451 + 8.38800i −0.757972 + 0.550699i
\(233\) 4.69098 3.40820i 0.307317 0.223279i −0.423428 0.905930i \(-0.639173\pi\)
0.730744 + 0.682651i \(0.239173\pi\)
\(234\) −5.86889 + 1.24747i −0.383661 + 0.0815497i
\(235\) −0.224307 2.13414i −0.0146322 0.139216i
\(236\) −0.0341011 + 0.324451i −0.00221980 + 0.0211199i
\(237\) 0 0
\(238\) −18.7846 + 8.36344i −1.21762 + 0.542122i
\(239\) 8.97733 + 9.97033i 0.580695 + 0.644927i 0.959886 0.280391i \(-0.0904642\pi\)
−0.379191 + 0.925319i \(0.623798\pi\)
\(240\) −0.572949 + 1.76336i −0.0369837 + 0.113824i
\(241\) −11.6911 + 12.9843i −0.753093 + 0.836394i −0.990855 0.134929i \(-0.956919\pi\)
0.237763 + 0.971323i \(0.423586\pi\)
\(242\) −13.2812 23.0036i −0.853745 1.47873i
\(243\) 8.00000 13.8564i 0.513200 0.888889i
\(244\) 2.09017 + 6.43288i 0.133809 + 0.411823i
\(245\) −0.697887 0.310719i −0.0445863 0.0198511i
\(246\) −3.23607 2.35114i −0.206324 0.149903i
\(247\) −9.27051 −0.589868
\(248\) 0 0
\(249\) −7.09017 −0.449321
\(250\) −4.92705 3.57971i −0.311614 0.226401i
\(251\) −15.4794 6.89186i −0.977049 0.435010i −0.144829 0.989457i \(-0.546263\pi\)
−0.832219 + 0.554447i \(0.812930\pi\)
\(252\) −1.14590 3.52671i −0.0721848 0.222162i
\(253\) 9.09017 15.7446i 0.571494 0.989857i
\(254\) −4.66312 8.07676i −0.292590 0.506781i
\(255\) −1.08268 + 1.20243i −0.0677998 + 0.0752993i
\(256\) 4.19098 12.8985i 0.261936 0.806157i
\(257\) −17.0069 18.8881i −1.06086 1.17821i −0.983445 0.181207i \(-0.942000\pi\)
−0.0774160 0.996999i \(-0.524667\pi\)
\(258\) 3.52090 1.56760i 0.219201 0.0975948i
\(259\) 12.4305 + 2.64218i 0.772394 + 0.164177i
\(260\) −0.0457515 + 0.435296i −0.00283739 + 0.0269959i
\(261\) −1.33419 12.6940i −0.0825845 0.785739i
\(262\) 17.5521 3.73082i 1.08438 0.230491i
\(263\) −11.1631 + 8.11048i −0.688347 + 0.500114i −0.876116 0.482100i \(-0.839874\pi\)
0.187769 + 0.982213i \(0.439874\pi\)
\(264\) 9.47214 6.88191i 0.582970 0.423552i
\(265\) 0.264599 0.0562422i 0.0162542 0.00345493i
\(266\) −2.53696 24.1376i −0.155551 1.47997i
\(267\) −0.900830 + 8.57082i −0.0551299 + 0.524526i
\(268\) −0.142710 0.0303339i −0.00871739 0.00185294i
\(269\) −3.30524 + 1.47159i −0.201524 + 0.0897242i −0.505017 0.863109i \(-0.668514\pi\)
0.303493 + 0.952834i \(0.401847\pi\)
\(270\) −2.06773 2.29644i −0.125838 0.139757i
\(271\) −3.26393 + 10.0453i −0.198270 + 0.610212i 0.801653 + 0.597790i \(0.203954\pi\)
−0.999923 + 0.0124220i \(0.996046\pi\)
\(272\) 13.7589 15.2808i 0.834254 0.926533i
\(273\) −2.78115 4.81710i −0.168323 0.291544i
\(274\) −2.00000 + 3.46410i −0.120824 + 0.209274i
\(275\) 7.85410 + 24.1724i 0.473620 + 1.45765i
\(276\) −1.96038 0.872815i −0.118001 0.0525373i
\(277\) 1.88197 + 1.36733i 0.113076 + 0.0821548i 0.642886 0.765962i \(-0.277737\pi\)
−0.529810 + 0.848116i \(0.677737\pi\)
\(278\) −1.38197 −0.0828848
\(279\) 0 0
\(280\) 2.56231 0.153127
\(281\) 8.11803 + 5.89810i 0.484281 + 0.351851i 0.802981 0.596005i \(-0.203246\pi\)
−0.318700 + 0.947856i \(0.603246\pi\)
\(282\) 8.30428 + 3.69731i 0.494513 + 0.220171i
\(283\) −4.19098 12.8985i −0.249128 0.766737i −0.994930 0.100570i \(-0.967933\pi\)
0.745802 0.666168i \(-0.232067\pi\)
\(284\) 3.42705 5.93583i 0.203358 0.352226i
\(285\) −0.954915 1.65396i −0.0565643 0.0979722i
\(286\) 10.5108 11.6735i 0.621519 0.690267i
\(287\) −2.29180 + 7.05342i −0.135280 + 0.416350i
\(288\) 4.52595 + 5.02658i 0.266694 + 0.296194i
\(289\) 0.862635 0.384070i 0.0507433 0.0225924i
\(290\) −3.85808 0.820060i −0.226554 0.0481556i
\(291\) −1.95554 + 18.6057i −0.114636 + 1.09069i
\(292\) −0.746950 7.10675i −0.0437119 0.415891i
\(293\) 3.68168 0.782565i 0.215086 0.0457180i −0.0991082 0.995077i \(-0.531599\pi\)
0.314194 + 0.949359i \(0.398266\pi\)
\(294\) 2.61803 1.90211i 0.152687 0.110933i
\(295\) 0.163119 0.118513i 0.00949715 0.00690009i
\(296\) −9.26515 + 1.96937i −0.538526 + 0.114467i
\(297\) 2.73659 + 26.0369i 0.158793 + 1.51082i
\(298\) −2.03539 + 19.3655i −0.117907 + 1.12181i
\(299\) 6.29702 + 1.33847i 0.364166 + 0.0774058i
\(300\) 2.74064 1.22021i 0.158231 0.0704489i
\(301\) −4.78154 5.31044i −0.275603 0.306089i
\(302\) 9.25329 28.4787i 0.532467 1.63876i
\(303\) −6.18014 + 6.86374i −0.355040 + 0.394311i
\(304\) 12.1353 + 21.0189i 0.696005 + 1.20552i
\(305\) 2.09017 3.62028i 0.119683 0.207297i
\(306\) 4.23607 + 13.0373i 0.242160 + 0.745292i
\(307\) −4.65010 2.07036i −0.265395 0.118162i 0.269725 0.962937i \(-0.413067\pi\)
−0.535121 + 0.844776i \(0.679734\pi\)
\(308\) 7.85410 + 5.70634i 0.447529 + 0.325149i
\(309\) 6.85410 0.389916
\(310\) 0 0
\(311\) 7.52786 0.426866 0.213433 0.976958i \(-0.431535\pi\)
0.213433 + 0.976958i \(0.431535\pi\)
\(312\) 3.35410 + 2.43690i 0.189889 + 0.137962i
\(313\) −2.95630 1.31623i −0.167100 0.0743976i 0.321482 0.946916i \(-0.395819\pi\)
−0.488582 + 0.872518i \(0.662486\pi\)
\(314\) −1.85410 5.70634i −0.104633 0.322027i
\(315\) −1.14590 + 1.98475i −0.0645640 + 0.111828i
\(316\) 0 0
\(317\) −6.61673 + 7.34862i −0.371632 + 0.412740i −0.899732 0.436443i \(-0.856238\pi\)
0.528100 + 0.849182i \(0.322905\pi\)
\(318\) −0.354102 + 1.08981i −0.0198571 + 0.0611137i
\(319\) 22.3599 + 24.8332i 1.25192 + 1.39039i
\(320\) −1.47815 + 0.658114i −0.0826310 + 0.0367897i
\(321\) −9.86968 2.09786i −0.550872 0.117091i
\(322\) −1.76173 + 16.7618i −0.0981776 + 0.934097i
\(323\) 2.21395 + 21.0643i 0.123187 + 1.17205i
\(324\) −0.604528 + 0.128496i −0.0335849 + 0.00713869i
\(325\) −7.28115 + 5.29007i −0.403886 + 0.293440i
\(326\) −0.927051 + 0.673542i −0.0513446 + 0.0373040i
\(327\) 18.0140 3.82899i 0.996175 0.211743i
\(328\) −0.577819 5.49758i −0.0319047 0.303553i
\(329\) 1.76173 16.7618i 0.0971275 0.924106i
\(330\) 3.16535 + 0.672816i 0.174247 + 0.0370373i
\(331\) −20.3451 + 9.05823i −1.11827 + 0.497885i −0.880790 0.473507i \(-0.842988\pi\)
−0.237479 + 0.971393i \(0.576321\pi\)
\(332\) 2.93211 + 3.25644i 0.160920 + 0.178720i
\(333\) 2.61803 8.05748i 0.143467 0.441547i
\(334\) −5.15780 + 5.72831i −0.282222 + 0.313439i
\(335\) 0.0450850 + 0.0780895i 0.00246326 + 0.00426648i
\(336\) −7.28115 + 12.6113i −0.397219 + 0.688004i
\(337\) −8.64590 26.6093i −0.470972 1.44950i −0.851314 0.524657i \(-0.824194\pi\)
0.380342 0.924846i \(-0.375806\pi\)
\(338\) −14.1345 6.29308i −0.768815 0.342299i
\(339\) 3.92705 + 2.85317i 0.213288 + 0.154963i
\(340\) 1.00000 0.0542326
\(341\) 0 0
\(342\) −16.1803 −0.874933
\(343\) 12.1353 + 8.81678i 0.655242 + 0.476061i
\(344\) 4.86576 + 2.16638i 0.262344 + 0.116803i
\(345\) 0.409830 + 1.26133i 0.0220645 + 0.0679076i
\(346\) −9.78115 + 16.9415i −0.525838 + 0.910778i
\(347\) 16.0623 + 27.8207i 0.862270 + 1.49350i 0.869733 + 0.493523i \(0.164291\pi\)
−0.00746305 + 0.999972i \(0.502376\pi\)
\(348\) 2.63923 2.93117i 0.141478 0.157127i
\(349\) −1.01722 + 3.13068i −0.0544506 + 0.167582i −0.974584 0.224025i \(-0.928080\pi\)
0.920133 + 0.391606i \(0.128080\pi\)
\(350\) −15.7663 17.5102i −0.842742 0.935960i
\(351\) −8.46903 + 3.77066i −0.452043 + 0.201263i
\(352\) −17.3212 3.68174i −0.923225 0.196238i
\(353\) 3.61857 34.4284i 0.192597 1.83244i −0.290504 0.956874i \(-0.593823\pi\)
0.483101 0.875565i \(-0.339510\pi\)
\(354\) 0.0892780 + 0.849423i 0.00474507 + 0.0451463i
\(355\) −4.14350 + 0.880728i −0.219914 + 0.0467442i
\(356\) 4.30902 3.13068i 0.228377 0.165926i
\(357\) −10.2812 + 7.46969i −0.544136 + 0.395338i
\(358\) 7.59427 1.61421i 0.401370 0.0853138i
\(359\) 1.01118 + 9.62077i 0.0533682 + 0.507765i 0.988254 + 0.152817i \(0.0488346\pi\)
−0.934886 + 0.354947i \(0.884499\pi\)
\(360\) 0.178556 1.69885i 0.00941072 0.0895371i
\(361\) −5.86889 1.24747i −0.308889 0.0656563i
\(362\) 25.1285 11.1879i 1.32073 0.588025i
\(363\) −10.9847 12.1998i −0.576548 0.640322i
\(364\) −1.06231 + 3.26944i −0.0556800 + 0.171365i
\(365\) −2.95515 + 3.28203i −0.154680 + 0.171789i
\(366\) 8.85410 + 15.3358i 0.462811 + 0.801613i
\(367\) 1.36475 2.36381i 0.0712391 0.123390i −0.828206 0.560425i \(-0.810638\pi\)
0.899445 + 0.437035i \(0.143971\pi\)
\(368\) −5.20820 16.0292i −0.271496 0.835580i
\(369\) 4.51682 + 2.01102i 0.235136 + 0.104689i
\(370\) −2.11803 1.53884i −0.110111 0.0800006i
\(371\) 2.12461 0.110304
\(372\) 0 0
\(373\) −31.6525 −1.63890 −0.819452 0.573148i \(-0.805722\pi\)
−0.819452 + 0.573148i \(0.805722\pi\)
\(374\) −29.0344 21.0948i −1.50134 1.09078i
\(375\) −3.43852 1.53093i −0.177565 0.0790568i
\(376\) 3.88197 + 11.9475i 0.200197 + 0.616143i
\(377\) −5.91641 + 10.2475i −0.304711 + 0.527774i
\(378\) −12.1353 21.0189i −0.624170 1.08109i
\(379\) 5.63168 6.25461i 0.289280 0.321278i −0.580935 0.813950i \(-0.697313\pi\)
0.870215 + 0.492672i \(0.163980\pi\)
\(380\) −0.364745 + 1.12257i −0.0187110 + 0.0575866i
\(381\) −3.85682 4.28344i −0.197591 0.219447i
\(382\) −7.25745 + 3.23123i −0.371324 + 0.165324i
\(383\) 9.92419 + 2.10945i 0.507102 + 0.107788i 0.454356 0.890820i \(-0.349869\pi\)
0.0527459 + 0.998608i \(0.483203\pi\)
\(384\) 1.42347 13.5434i 0.0726413 0.691135i
\(385\) −0.627171 5.96713i −0.0319636 0.304113i
\(386\) 7.30885 1.55354i 0.372011 0.0790733i
\(387\) −3.85410 + 2.80017i −0.195915 + 0.142341i
\(388\) 9.35410 6.79615i 0.474883 0.345022i
\(389\) −28.4337 + 6.04376i −1.44164 + 0.306431i −0.861365 0.507987i \(-0.830390\pi\)
−0.580279 + 0.814418i \(0.697056\pi\)
\(390\) 0.119779 + 1.13962i 0.00606524 + 0.0577069i
\(391\) 1.53743 14.6276i 0.0777510 0.739751i
\(392\) 4.37441 + 0.929809i 0.220941 + 0.0469625i
\(393\) 10.1314 4.51078i 0.511060 0.227539i
\(394\) −11.2776 12.5250i −0.568157 0.631002i
\(395\) 0 0
\(396\) 4.33070 4.80973i 0.217626 0.241698i
\(397\) −14.8541 25.7281i −0.745506 1.29125i −0.949958 0.312378i \(-0.898875\pi\)
0.204452 0.978877i \(-0.434459\pi\)
\(398\) 10.7533 18.6252i 0.539014 0.933599i
\(399\) −4.63525 14.2658i −0.232053 0.714186i
\(400\) 21.5252 + 9.58365i 1.07626 + 0.479183i
\(401\) −19.2812 14.0086i −0.962855 0.699555i −0.00904282 0.999959i \(-0.502878\pi\)
−0.953812 + 0.300404i \(0.902878\pi\)
\(402\) −0.381966 −0.0190507
\(403\) 0 0
\(404\) 5.70820 0.283994
\(405\) 0.309017 + 0.224514i 0.0153552 + 0.0111562i
\(406\) −28.3005 12.6002i −1.40453 0.625336i
\(407\) 6.85410 + 21.0948i 0.339745 + 1.04563i
\(408\) 4.73607 8.20311i 0.234470 0.406114i
\(409\) −8.09017 14.0126i −0.400033 0.692878i 0.593696 0.804689i \(-0.297668\pi\)
−0.993729 + 0.111811i \(0.964335\pi\)
\(410\) 1.02234 1.13542i 0.0504898 0.0560746i
\(411\) −0.763932 + 2.35114i −0.0376820 + 0.115973i
\(412\) −2.83448 3.14801i −0.139645 0.155091i
\(413\) 1.44668 0.644105i 0.0711866 0.0316943i
\(414\) 10.9905 + 2.33611i 0.540155 + 0.114814i
\(415\) 0.283084 2.69337i 0.0138961 0.132212i
\(416\) −0.655447 6.23616i −0.0321359 0.305753i
\(417\) −0.835438 + 0.177578i −0.0409116 + 0.00869602i
\(418\) 34.2705 24.8990i 1.67623 1.21785i
\(419\) 3.61803 2.62866i 0.176753 0.128418i −0.495891 0.868385i \(-0.665159\pi\)
0.672644 + 0.739966i \(0.265159\pi\)
\(420\) −0.692728 + 0.147244i −0.0338017 + 0.00718477i
\(421\) −2.01072 19.1307i −0.0979963 0.932373i −0.927488 0.373853i \(-0.878036\pi\)
0.829491 0.558519i \(-0.188630\pi\)
\(422\) 1.35304 12.8734i 0.0658652 0.626665i
\(423\) −10.9905 2.33611i −0.534378 0.113586i
\(424\) −1.44668 + 0.644105i −0.0702572 + 0.0312805i
\(425\) 13.7589 + 15.2808i 0.667403 + 0.741226i
\(426\) 5.54508 17.0660i 0.268660 0.826851i
\(427\) 21.9694 24.3995i 1.06318 1.18078i
\(428\) 3.11803 + 5.40059i 0.150716 + 0.261048i
\(429\) 4.85410 8.40755i 0.234358 0.405920i
\(430\) 0.454915 + 1.40008i 0.0219380 + 0.0675181i
\(431\) 22.6230 + 10.0724i 1.08971 + 0.485170i 0.871332 0.490694i \(-0.163257\pi\)
0.218378 + 0.975864i \(0.429923\pi\)
\(432\) 19.6353 + 14.2658i 0.944702 + 0.686366i
\(433\) 27.4164 1.31755 0.658774 0.752341i \(-0.271075\pi\)
0.658774 + 0.752341i \(0.271075\pi\)
\(434\) 0 0
\(435\) −2.43769 −0.116878
\(436\) −9.20820 6.69015i −0.440993 0.320400i
\(437\) 15.8598 + 7.06122i 0.758676 + 0.337784i
\(438\) −5.78115 17.7926i −0.276234 0.850161i
\(439\) 5.91641 10.2475i 0.282375 0.489087i −0.689594 0.724196i \(-0.742211\pi\)
0.971969 + 0.235108i \(0.0755445\pi\)
\(440\) 2.23607 + 3.87298i 0.106600 + 0.184637i
\(441\) −2.67652 + 2.97258i −0.127453 + 0.141551i
\(442\) 3.92705 12.0862i 0.186791 0.574883i
\(443\) −0.585749 0.650540i −0.0278298 0.0309081i 0.729069 0.684440i \(-0.239953\pi\)
−0.756899 + 0.653532i \(0.773287\pi\)
\(444\) 2.39169 1.06485i 0.113505 0.0505356i
\(445\) −3.21986 0.684403i −0.152636 0.0324438i
\(446\) 2.14935 20.4497i 0.101774 0.968320i
\(447\) 1.25794 + 11.9685i 0.0594986 + 0.566091i
\(448\) −12.4305 + 2.64218i −0.587286 + 0.124831i
\(449\) 27.5623 20.0252i 1.30075 0.945047i 0.300783 0.953693i \(-0.402752\pi\)
0.999963 + 0.00864558i \(0.00275201\pi\)
\(450\) −12.7082 + 9.23305i −0.599070 + 0.435250i
\(451\) −12.6614 + 2.69127i −0.596202 + 0.126727i
\(452\) −0.313585 2.98357i −0.0147498 0.140335i
\(453\) 1.93446 18.4052i 0.0908891 0.864752i
\(454\) −34.4116 7.31440i −1.61501 0.343282i
\(455\) 1.94093 0.864157i 0.0909922 0.0405123i
\(456\) 7.48111 + 8.30861i 0.350335 + 0.389086i
\(457\) 8.26393 25.4338i 0.386570 1.18974i −0.548764 0.835977i \(-0.684902\pi\)
0.935335 0.353764i \(-0.115098\pi\)
\(458\) −2.99244 + 3.32344i −0.139828 + 0.155294i
\(459\) 10.5902 + 18.3427i 0.494307 + 0.856164i
\(460\) 0.409830 0.709846i 0.0191084 0.0330968i
\(461\) −9.80902 30.1891i −0.456851 1.40604i −0.868948 0.494904i \(-0.835203\pi\)
0.412096 0.911140i \(-0.364797\pi\)
\(462\) 23.2190 + 10.3378i 1.08025 + 0.480957i
\(463\) −7.38197 5.36331i −0.343069 0.249254i 0.402887 0.915250i \(-0.368007\pi\)
−0.745956 + 0.665996i \(0.768007\pi\)
\(464\) 30.9787 1.43815
\(465\) 0 0
\(466\) −9.38197 −0.434611
\(467\) −31.3713 22.7926i −1.45169 1.05472i −0.985432 0.170068i \(-0.945601\pi\)
−0.466259 0.884648i \(-0.654399\pi\)
\(468\) 2.09366 + 0.932157i 0.0967795 + 0.0430890i
\(469\) 0.218847 + 0.673542i 0.0101054 + 0.0311013i
\(470\) −1.73607 + 3.00696i −0.0800788 + 0.138701i
\(471\) −1.85410 3.21140i −0.0854325 0.147973i
\(472\) −0.789802 + 0.877163i −0.0363536 + 0.0403747i
\(473\) 3.85410 11.8617i 0.177212 0.545402i
\(474\) 0 0
\(475\) −22.1722 + 9.87171i −1.01733 + 0.452945i
\(476\) 7.68247 + 1.63296i 0.352125 + 0.0748466i
\(477\) 0.148055 1.40865i 0.00677897 0.0644976i
\(478\) −2.26913 21.5893i −0.103787 0.987471i
\(479\) −8.74882 + 1.85962i −0.399744 + 0.0849681i −0.403397 0.915025i \(-0.632171\pi\)
0.00365302 + 0.999993i \(0.498837\pi\)
\(480\) 1.04508 0.759299i 0.0477014 0.0346571i
\(481\) −6.35410 + 4.61653i −0.289722 + 0.210495i
\(482\) 27.6527 5.87777i 1.25955 0.267725i
\(483\) 1.08881 + 10.3593i 0.0495426 + 0.471367i
\(484\) −1.06054 + 10.0903i −0.0482061 + 0.458651i
\(485\) −6.98974 1.48572i −0.317388 0.0674629i
\(486\) −23.6504 + 10.5298i −1.07280 + 0.477642i
\(487\) −28.0520 31.1548i −1.27116 1.41176i −0.867950 0.496651i \(-0.834563\pi\)
−0.403205 0.915110i \(-0.632104\pi\)
\(488\) −7.56231 + 23.2744i −0.342330 + 1.05358i
\(489\) −0.473881 + 0.526298i −0.0214296 + 0.0238000i
\(490\) 0.618034 + 1.07047i 0.0279199 + 0.0483587i
\(491\) −10.7984 + 18.7033i −0.487324 + 0.844070i −0.999894 0.0145759i \(-0.995360\pi\)
0.512570 + 0.858645i \(0.328694\pi\)
\(492\) 0.472136 + 1.45309i 0.0212855 + 0.0655101i
\(493\) 24.6972 + 10.9959i 1.11231 + 0.495230i
\(494\) 12.1353 + 8.81678i 0.545991 + 0.396686i
\(495\) −4.00000 −0.179787
\(496\) 0 0
\(497\) −33.2705 −1.49239
\(498\) 9.28115 + 6.74315i 0.415898 + 0.302168i
\(499\) 9.91572 + 4.41476i 0.443888 + 0.197632i 0.616495 0.787359i \(-0.288552\pi\)
−0.172606 + 0.984991i \(0.555219\pi\)
\(500\) 0.718847 + 2.21238i 0.0321478 + 0.0989408i
\(501\) −2.38197 + 4.12569i −0.106418 + 0.184322i
\(502\) 13.7082 + 23.7433i 0.611827 + 1.05972i
\(503\) 13.2850 14.7545i 0.592348 0.657869i −0.370209 0.928949i \(-0.620714\pi\)
0.962557 + 0.271079i \(0.0873805\pi\)
\(504\) 4.14590 12.7598i 0.184673 0.568365i
\(505\) −2.36060 2.62171i −0.105045 0.116665i
\(506\) −26.8732 + 11.9647i −1.19466 + 0.531897i
\(507\) −9.35335 1.98812i −0.415397 0.0882953i
\(508\) −0.372362 + 3.54279i −0.0165209 + 0.157186i
\(509\) 1.36830 + 13.0185i 0.0606486 + 0.577033i 0.982076 + 0.188483i \(0.0603572\pi\)
−0.921428 + 0.388550i \(0.872976\pi\)
\(510\) 2.56082 0.544320i 0.113395 0.0241029i
\(511\) −28.0623 + 20.3885i −1.24140 + 0.901932i
\(512\) 4.28115 3.11044i 0.189202 0.137463i
\(513\) −24.4537 + 5.19779i −1.07966 + 0.229488i
\(514\) 4.29869 + 40.8993i 0.189607 + 1.80399i
\(515\) −0.273659 + 2.60369i −0.0120589 + 0.114732i
\(516\) −1.43997 0.306074i −0.0633910 0.0134742i
\(517\) 26.8732 11.9647i 1.18188 0.526208i
\(518\) −13.7589 15.2808i −0.604530 0.671399i
\(519\) −3.73607 + 11.4984i −0.163995 + 0.504725i
\(520\) −1.05963 + 1.17684i −0.0464678 + 0.0516078i
\(521\) 13.5344 + 23.4423i 0.592955 + 1.02703i 0.993832 + 0.110896i \(0.0353720\pi\)
−0.400877 + 0.916132i \(0.631295\pi\)
\(522\) −10.3262 + 17.8856i −0.451967 + 0.782830i
\(523\) −1.89261 5.82485i −0.0827580 0.254703i 0.901112 0.433586i \(-0.142752\pi\)
−0.983870 + 0.178883i \(0.942752\pi\)
\(524\) −6.26153 2.78781i −0.273536 0.121786i
\(525\) −11.7812 8.55951i −0.514172 0.373568i
\(526\) 22.3262 0.973470
\(527\) 0 0
\(528\) −25.4164 −1.10611
\(529\) 8.85410 + 6.43288i 0.384961 + 0.279691i
\(530\) −0.399853 0.178026i −0.0173685 0.00773297i
\(531\) −0.326238 1.00406i −0.0141575 0.0435724i
\(532\) −4.63525 + 8.02850i −0.200964 + 0.348079i
\(533\) −2.29180 3.96951i −0.0992687 0.171938i
\(534\) 9.33054 10.3626i 0.403772 0.448434i
\(535\) 1.19098 3.66547i 0.0514907 0.158472i
\(536\) −0.353210 0.392279i −0.0152563 0.0169439i
\(537\) 4.38353 1.95167i 0.189163 0.0842210i
\(538\) 5.72618 + 1.21714i 0.246873 + 0.0524745i
\(539\) 1.09464 10.4148i 0.0471493 0.448596i
\(540\) 0.123379 + 1.17387i 0.00530939 + 0.0505155i
\(541\) −21.5192 + 4.57406i −0.925185 + 0.196654i −0.645784 0.763520i \(-0.723469\pi\)
−0.279401 + 0.960175i \(0.590136\pi\)
\(542\) 13.8262 10.0453i 0.593888 0.431485i
\(543\) 13.7533 9.99235i 0.590210 0.428813i
\(544\) −14.0132 + 2.97859i −0.600810 + 0.127706i
\(545\) 0.735299 + 6.99591i 0.0314968 + 0.299672i
\(546\) −0.940756 + 8.95070i −0.0402606 + 0.383054i
\(547\) 10.0669 + 2.13978i 0.430429 + 0.0914906i 0.418031 0.908433i \(-0.362720\pi\)
0.0123979 + 0.999923i \(0.496054\pi\)
\(548\) 1.39577 0.621438i 0.0596245 0.0265465i
\(549\) −14.6463 16.2664i −0.625089 0.694231i
\(550\) 12.7082 39.1118i 0.541880 1.66773i
\(551\) −21.3518 + 23.7136i −0.909619 + 1.01023i
\(552\) −3.88197 6.72376i −0.165227 0.286182i
\(553\) 0 0
\(554\) −1.16312 3.57971i −0.0494162 0.152087i
\(555\) −1.47815 0.658114i −0.0627439 0.0279354i
\(556\) 0.427051 + 0.310271i 0.0181110 + 0.0131584i
\(557\) 0.111456 0.00472255 0.00236127 0.999997i \(-0.499248\pi\)
0.00236127 + 0.999997i \(0.499248\pi\)
\(558\) 0 0
\(559\) 4.41641 0.186794
\(560\) −4.50000 3.26944i −0.190160 0.138159i
\(561\) −20.2627 9.02156i −0.855494 0.380890i
\(562\) −5.01722 15.4414i −0.211639 0.651357i
\(563\) −5.78115 + 10.0133i −0.243647 + 0.422008i −0.961750 0.273928i \(-0.911677\pi\)
0.718104 + 0.695936i \(0.245010\pi\)
\(564\) −1.73607 3.00696i −0.0731016 0.126616i
\(565\) −1.24064 + 1.37787i −0.0521940 + 0.0579673i
\(566\) −6.78115 + 20.8702i −0.285033 + 0.877242i
\(567\) 2.00739 + 2.22943i 0.0843025 + 0.0936274i
\(568\) 22.6544 10.0864i 0.950559 0.423216i
\(569\) −23.9374 5.08804i −1.00351 0.213302i −0.323280 0.946304i \(-0.604785\pi\)
−0.680227 + 0.733002i \(0.738119\pi\)
\(570\) −0.323011 + 3.07324i −0.0135294 + 0.128724i
\(571\) −0.731699 6.96165i −0.0306207 0.291336i −0.999106 0.0422669i \(-0.986542\pi\)
0.968486 0.249069i \(-0.0801247\pi\)
\(572\) −5.86889 + 1.24747i −0.245390 + 0.0521593i
\(573\) −3.97214 + 2.88593i −0.165938 + 0.120561i
\(574\) 9.70820 7.05342i 0.405213 0.294404i
\(575\) 16.4858 3.50416i 0.687505 0.146134i
\(576\) 0.885579 + 8.42572i 0.0368991 + 0.351072i
\(577\) 0.834003 7.93501i 0.0347200 0.330339i −0.963350 0.268246i \(-0.913556\pi\)
0.998070 0.0620925i \(-0.0197774\pi\)
\(578\) −1.49448 0.317661i −0.0621620 0.0132129i
\(579\) 4.21878 1.87832i 0.175327 0.0780605i
\(580\) 1.00810 + 1.11961i 0.0418590 + 0.0464891i
\(581\) 6.57295 20.2295i 0.272692 0.839259i
\(582\) 20.2549 22.4954i 0.839594 0.932463i
\(583\) 1.85410 + 3.21140i 0.0767891 + 0.133003i
\(584\) 12.9271 22.3903i 0.534925 0.926518i
\(585\) −0.437694 1.34708i −0.0180964 0.0556951i
\(586\) −5.56365 2.47710i −0.229832 0.102328i
\(587\) 32.3713 + 23.5191i 1.33611 + 0.970739i 0.999577 + 0.0290662i \(0.00925335\pi\)
0.336530 + 0.941673i \(0.390747\pi\)
\(588\) −1.23607 −0.0509746
\(589\) 0 0
\(590\) −0.326238 −0.0134310
\(591\) −8.42705 6.12261i −0.346643 0.251851i
\(592\) 18.7846 + 8.36344i 0.772042 + 0.343735i
\(593\) 12.9443 + 39.8384i 0.531558 + 1.63597i 0.750972 + 0.660334i \(0.229585\pi\)
−0.219414 + 0.975632i \(0.570415\pi\)
\(594\) 21.1803 36.6854i 0.869040 1.50522i
\(595\) −2.42705 4.20378i −0.0994994 0.172338i
\(596\) 4.97679 5.52728i 0.203857 0.226406i
\(597\) 4.10739 12.6412i 0.168104 0.517372i
\(598\) −6.96994 7.74090i −0.285022 0.316549i
\(599\) 4.75192 2.11569i 0.194158 0.0864448i −0.307354 0.951595i \(-0.599444\pi\)
0.501513 + 0.865150i \(0.332777\pi\)
\(600\) 10.6169 + 2.25669i 0.433434 + 0.0921292i
\(601\) −2.29963 + 21.8795i −0.0938037 + 0.892483i 0.841885 + 0.539657i \(0.181446\pi\)
−0.935689 + 0.352826i \(0.885221\pi\)
\(602\) 1.20859 + 11.4990i 0.0492585 + 0.468663i
\(603\) 0.461819 0.0981626i 0.0188067 0.00399749i
\(604\) −9.25329 + 6.72291i −0.376511 + 0.273551i
\(605\) 5.07295 3.68571i 0.206245 0.149846i
\(606\) 14.6177 3.10709i 0.593804 0.126217i
\(607\) −0.148055 1.40865i −0.00600936 0.0571753i 0.991106 0.133073i \(-0.0424844\pi\)
−0.997116 + 0.0758976i \(0.975818\pi\)
\(608\) 1.76756 16.8172i 0.0716840 0.682027i
\(609\) −18.7275 3.98066i −0.758877 0.161304i
\(610\) −6.17916 + 2.75114i −0.250187 + 0.111390i
\(611\) 6.96994 + 7.74090i 0.281973 + 0.313163i
\(612\) 1.61803 4.97980i 0.0654051 0.201296i
\(613\) 28.7353 31.9138i 1.16061 1.28899i 0.210315 0.977634i \(-0.432551\pi\)
0.950294 0.311353i \(-0.100782\pi\)
\(614\) 4.11803 + 7.13264i 0.166190 + 0.287850i
\(615\) 0.472136 0.817763i 0.0190384 0.0329754i
\(616\) 10.8541 + 33.4055i 0.437324 + 1.34595i
\(617\) −8.91980 3.97135i −0.359097 0.159880i 0.219255 0.975668i \(-0.429637\pi\)
−0.578352 + 0.815787i \(0.696304\pi\)
\(618\) −8.97214 6.51864i −0.360912 0.262218i
\(619\) −40.0000 −1.60774 −0.803868 0.594808i \(-0.797228\pi\)
−0.803868 + 0.594808i \(0.797228\pi\)
\(620\) 0 0
\(621\) 17.3607 0.696660
\(622\) −9.85410 7.15942i −0.395113 0.287067i
\(623\) −23.6189 10.5158i −0.946271 0.421307i
\(624\) −2.78115 8.55951i −0.111335 0.342655i
\(625\) −11.4164 + 19.7738i −0.456656 + 0.790952i
\(626\) 2.61803 + 4.53457i 0.104638 + 0.181238i
\(627\) 17.5181 19.4558i 0.699604 0.776989i
\(628\) −0.708204 + 2.17963i −0.0282604 + 0.0869766i
\(629\) 12.0071 + 13.3352i 0.478753 + 0.531709i
\(630\) 3.38761 1.50826i 0.134966 0.0600906i
\(631\) 41.3468 + 8.78853i 1.64599 + 0.349866i 0.935359 0.353699i \(-0.115076\pi\)
0.710631 + 0.703565i \(0.248410\pi\)
\(632\) 0 0
\(633\) −0.836228 7.95618i −0.0332371 0.316230i
\(634\) 15.6504 3.32659i 0.621555 0.132116i
\(635\) 1.78115 1.29408i 0.0706829 0.0513541i
\(636\) 0.354102 0.257270i 0.0140411 0.0102014i
\(637\) 3.62717 0.770979i 0.143714 0.0305473i
\(638\) −5.65174 53.7727i −0.223754 2.12888i
\(639\) −2.31848 + 22.0588i −0.0917175 + 0.872634i
\(640\) 5.08796 + 1.08148i 0.201119 + 0.0427492i
\(641\) −27.3240 + 12.1654i −1.07923 + 0.480505i −0.867813 0.496890i \(-0.834475\pi\)
−0.211419 + 0.977395i \(0.567809\pi\)
\(642\) 10.9244 + 12.1328i 0.431151 + 0.478842i
\(643\) 4.59017 14.1271i 0.181019 0.557118i −0.818838 0.574024i \(-0.805382\pi\)
0.999857 + 0.0169060i \(0.00538159\pi\)
\(644\) 4.30766 4.78414i 0.169746 0.188521i
\(645\) 0.454915 + 0.787936i 0.0179123 + 0.0310249i
\(646\) 17.1353 29.6791i 0.674178 1.16771i
\(647\) 1.81966 + 5.60034i 0.0715382 + 0.220172i 0.980433 0.196854i \(-0.0630724\pi\)
−0.908895 + 0.417026i \(0.863072\pi\)
\(648\) −2.04275 0.909491i −0.0802468 0.0357282i
\(649\) 2.23607 + 1.62460i 0.0877733 + 0.0637711i
\(650\) 14.5623 0.571181
\(651\) 0 0
\(652\) 0.437694 0.0171414
\(653\) −6.75329 4.90655i −0.264277 0.192008i 0.447754 0.894157i \(-0.352224\pi\)
−0.712030 + 0.702149i \(0.752224\pi\)
\(654\) −27.2222 12.1201i −1.06447 0.473933i
\(655\) 1.30902 + 4.02874i 0.0511475 + 0.157416i
\(656\) −6.00000 + 10.3923i −0.234261 + 0.405751i
\(657\) 11.5623 + 20.0265i 0.451089 + 0.781308i
\(658\) −18.2475 + 20.2659i −0.711363 + 0.790049i
\(659\) −11.6459 + 35.8424i −0.453660 + 1.39622i 0.419042 + 0.907967i \(0.362366\pi\)
−0.872701 + 0.488254i \(0.837634\pi\)
\(660\) −0.827091 0.918578i −0.0321945 0.0357556i
\(661\) −13.1386 + 5.84967i −0.511032 + 0.227526i −0.646019 0.763321i \(-0.723567\pi\)
0.134987 + 0.990847i \(0.456901\pi\)
\(662\) 35.2470 + 7.49198i 1.36991 + 0.291184i
\(663\) 0.820977 7.81108i 0.0318841 0.303357i
\(664\) 1.65720 + 15.7673i 0.0643120 + 0.611888i
\(665\) 5.60429 1.19123i 0.217325 0.0461938i
\(666\) −11.0902 + 8.05748i −0.429735 + 0.312221i
\(667\) 17.9271 13.0248i 0.694138 0.504321i
\(668\) 2.87993 0.612149i 0.111428 0.0236847i
\(669\) −1.32837 12.6386i −0.0513577 0.488636i
\(670\) 0.0152505 0.145099i 0.000589178 0.00560566i
\(671\) 56.0527 + 11.9144i 2.16389 + 0.459949i
\(672\) 9.26874 4.12671i 0.357549 0.159191i
\(673\) 14.9995 + 16.6586i 0.578188 + 0.642143i 0.959301 0.282385i \(-0.0911257\pi\)
−0.381113 + 0.924529i \(0.624459\pi\)
\(674\) −13.9894 + 43.0548i −0.538850 + 1.65841i
\(675\) −16.2401 + 18.0365i −0.625083 + 0.694225i
\(676\) 2.95492 + 5.11806i 0.113651 + 0.196849i
\(677\) 1.32624 2.29711i 0.0509715 0.0882852i −0.839414 0.543493i \(-0.817102\pi\)
0.890385 + 0.455207i \(0.150435\pi\)
\(678\) −2.42705 7.46969i −0.0932103 0.286872i
\(679\) −51.2724 22.8279i −1.96765 0.876056i
\(680\) 2.92705 + 2.12663i 0.112247 + 0.0815524i
\(681\) −21.7426 −0.833180
\(682\) 0 0
\(683\) 27.9443 1.06926 0.534629 0.845087i \(-0.320451\pi\)
0.534629 + 0.845087i \(0.320451\pi\)
\(684\) 5.00000 + 3.63271i 0.191180 + 0.138900i
\(685\) −0.862635 0.384070i −0.0329596 0.0146746i
\(686\) −7.50000 23.0826i −0.286351 0.881299i
\(687\) −1.38197 + 2.39364i −0.0527253 + 0.0913229i
\(688\) −5.78115 10.0133i −0.220404 0.381752i
\(689\) −0.878624 + 0.975810i −0.0334729 + 0.0371754i
\(690\) 0.663119 2.04087i 0.0252445 0.0776946i
\(691\) −33.3447 37.0330i −1.26849 1.40880i −0.871065 0.491167i \(-0.836570\pi\)
−0.397425 0.917634i \(-0.630096\pi\)
\(692\) 6.82614 3.03919i 0.259491 0.115533i
\(693\) −30.7299 6.53184i −1.16733 0.248124i
\(694\) 5.43326 51.6940i 0.206244 1.96228i
\(695\) −0.0341011 0.324451i −0.00129353 0.0123071i
\(696\) 13.9587 2.96701i 0.529102 0.112464i
\(697\) −8.47214 + 6.15537i −0.320905 + 0.233151i
\(698\) 4.30902 3.13068i 0.163099 0.118498i
\(699\) −5.67167 + 1.20555i −0.214522 + 0.0455981i
\(700\) 0.940756 + 8.95070i 0.0355572 + 0.338305i
\(701\) 0.100928 0.960269i 0.00381201 0.0362688i −0.992451 0.122646i \(-0.960862\pi\)
0.996263 + 0.0863767i \(0.0275288\pi\)
\(702\) 14.6722 + 3.11868i 0.553767 + 0.117707i
\(703\) −19.3492 + 8.61482i −0.729769 + 0.324914i
\(704\) −14.8415 16.4832i −0.559362 0.621234i
\(705\) −0.663119 + 2.04087i −0.0249745 + 0.0768636i
\(706\) −37.4801 + 41.6259i −1.41058 + 1.56661i
\(707\) −13.8541 23.9960i −0.521037 0.902463i
\(708\) 0.163119 0.282530i 0.00613039 0.0106181i
\(709\) 3.35410 + 10.3229i 0.125966 + 0.387683i 0.994076 0.108689i \(-0.0346652\pi\)
−0.868110 + 0.496372i \(0.834665\pi\)
\(710\) 6.26153 + 2.78781i 0.234991 + 0.104625i
\(711\) 0 0
\(712\) 19.2705 0.722193
\(713\) 0 0
\(714\) 20.5623 0.769525
\(715\) 3.00000 + 2.17963i 0.112194 + 0.0815134i
\(716\) −2.70917 1.20620i −0.101247 0.0450779i
\(717\) −4.14590 12.7598i −0.154831 0.476522i
\(718\) 7.82624 13.5554i 0.292073 0.505885i
\(719\) 21.8090 + 37.7743i 0.813339 + 1.40874i 0.910514 + 0.413477i \(0.135686\pi\)
−0.0971753 + 0.995267i \(0.530981\pi\)
\(720\) −2.48127 + 2.75573i −0.0924716 + 0.102700i
\(721\) −6.35410 + 19.5559i −0.236639 + 0.728300i
\(722\) 6.49606 + 7.21460i 0.241758 + 0.268500i
\(723\) 15.9616 7.10656i 0.593618 0.264296i
\(724\) −10.2770 2.18444i −0.381941 0.0811841i
\(725\) −3.23816 + 30.8090i −0.120262 + 1.14422i
\(726\) 2.77652 + 26.4168i 0.103046 + 0.980419i
\(727\) −29.1809 + 6.20259i −1.08226 + 0.230041i −0.714328 0.699811i \(-0.753267\pi\)
−0.367932 + 0.929853i \(0.619934\pi\)
\(728\) −10.0623 + 7.31069i −0.372934 + 0.270952i
\(729\) −10.5172 + 7.64121i −0.389527 + 0.283008i
\(730\) 6.98974 1.48572i 0.258702 0.0549888i
\(731\) −1.05471 10.0349i −0.0390099 0.371154i
\(732\) 0.707023 6.72688i 0.0261323 0.248633i
\(733\) −9.83599 2.09070i −0.363300 0.0772219i 0.0226448 0.999744i \(-0.492791\pi\)
−0.385945 + 0.922522i \(0.626125\pi\)
\(734\) −4.03459 + 1.79631i −0.148919 + 0.0663032i
\(735\) 0.511170 + 0.567712i 0.0188548 + 0.0209404i
\(736\) −3.62868 + 11.1679i −0.133755 + 0.411655i
\(737\) −0.827091 + 0.918578i −0.0304663 + 0.0338362i
\(738\) −4.00000 6.92820i −0.147242 0.255031i
\(739\) −4.14590 + 7.18091i −0.152509 + 0.264154i −0.932149 0.362074i \(-0.882069\pi\)
0.779640 + 0.626228i \(0.215402\pi\)
\(740\) 0.309017 + 0.951057i 0.0113597 + 0.0349615i
\(741\) 8.46903 + 3.77066i 0.311118 + 0.138519i
\(742\) −2.78115 2.02063i −0.102099 0.0741795i
\(743\) −23.5623 −0.864417 −0.432209 0.901774i \(-0.642266\pi\)
−0.432209 + 0.901774i \(0.642266\pi\)
\(744\) 0 0
\(745\) −4.59675 −0.168412
\(746\) 41.4336 + 30.1033i 1.51699 + 1.10216i
\(747\) −12.9544 5.76766i −0.473976 0.211028i
\(748\) 4.23607 + 13.0373i 0.154886 + 0.476690i
\(749\) 15.1353 26.2150i 0.553030 0.957876i
\(750\) 3.04508 + 5.27424i 0.111191 + 0.192588i
\(751\) 9.25596 10.2798i 0.337755 0.375115i −0.550210 0.835026i \(-0.685452\pi\)
0.887965 + 0.459912i \(0.152119\pi\)
\(752\) 8.42705 25.9358i 0.307303 0.945781i
\(753\) 11.3379 + 12.5920i 0.413177 + 0.458880i
\(754\) 17.4906 7.78734i 0.636972 0.283598i
\(755\) 6.91441 + 1.46970i 0.251641 + 0.0534880i
\(756\) −0.969032 + 9.21973i −0.0352434 + 0.335318i
\(757\) −0.300560 2.85964i −0.0109240 0.103935i 0.987701 0.156353i \(-0.0499738\pi\)
−0.998625 + 0.0524180i \(0.983307\pi\)
\(758\) −13.3204 + 2.83135i −0.483820 + 0.102839i
\(759\) −14.7082 + 10.6861i −0.533874 + 0.387882i
\(760\) −3.45492 + 2.51014i −0.125323 + 0.0910524i
\(761\) 33.7525 7.17432i 1.22353 0.260069i 0.449535 0.893263i \(-0.351590\pi\)
0.773993 + 0.633194i \(0.218256\pi\)
\(762\) 0.974857 + 9.27515i 0.0353154 + 0.336003i
\(763\) −5.77512 + 54.9466i −0.209073 + 1.98920i
\(764\) 2.96813 + 0.630896i 0.107383 + 0.0228250i
\(765\) −2.95630 + 1.31623i −0.106885 + 0.0475883i
\(766\) −10.9847 12.1998i −0.396894 0.440796i
\(767\) −0.302439 + 0.930812i −0.0109204 + 0.0336097i
\(768\) −9.07495 + 10.0788i −0.327464 + 0.363686i
\(769\) 5.62868 + 9.74915i 0.202975 + 0.351564i 0.949486 0.313810i \(-0.101606\pi\)
−0.746510 + 0.665374i \(0.768272\pi\)
\(770\) −4.85410 + 8.40755i −0.174930 + 0.302987i
\(771\) 7.85410 + 24.1724i 0.282859 + 0.870549i
\(772\) −2.60735 1.16087i −0.0938406 0.0417805i
\(773\) 6.39919 + 4.64928i 0.230163 + 0.167223i 0.696889 0.717179i \(-0.254567\pi\)
−0.466727 + 0.884402i \(0.654567\pi\)
\(774\) 7.70820 0.277066
\(775\) 0 0
\(776\) 41.8328 1.50171
\(777\) −10.2812 7.46969i −0.368834 0.267974i
\(778\) 42.9681 + 19.1306i 1.54048 + 0.685866i
\(779\) −3.81966 11.7557i −0.136854 0.421192i
\(780\) 0.218847 0.379054i 0.00783598 0.0135723i
\(781\) −29.0344 50.2891i −1.03893 1.79949i
\(782\) −15.9242 + 17.6856i −0.569449 + 0.632437i
\(783\) −9.86068 + 30.3481i −0.352392 + 1.08455i
\(784\) −6.49606 7.21460i −0.232002 0.257664i
\(785\) 1.29395 0.576105i 0.0461832 0.0205621i
\(786\) −17.5521 3.73082i −0.626064 0.133074i
\(787\) −4.67328 + 44.4633i −0.166584 + 1.58495i 0.517591 + 0.855628i \(0.326829\pi\)
−0.684176 + 0.729317i \(0.739838\pi\)
\(788\) 0.672922 + 6.40243i 0.0239719 + 0.228077i
\(789\) 13.4968 2.86884i 0.480500 0.102134i
\(790\) 0 0
\(791\) −11.7812 + 8.55951i −0.418890 + 0.304341i
\(792\) 22.9047 4.86854i 0.813883 0.172996i
\(793\) 2.12107 + 20.1806i 0.0753214 + 0.716635i
\(794\) −5.02457 + 47.8056i −0.178315 + 1.69656i
\(795\) −0.264599 0.0562422i −0.00938434 0.00199470i
\(796\) −7.50458 + 3.34125i −0.265993 + 0.118428i
\(797\) 18.0292 + 20.0235i 0.638628 + 0.709269i 0.972383 0.233391i \(-0.0749823\pi\)
−0.333755 + 0.942660i \(0.608316\pi\)
\(798\) −7.50000 + 23.0826i −0.265497 + 0.817116i
\(799\) 15.9242 17.6856i 0.563358 0.625673i
\(800\) −8.20820 14.2170i −0.290204 0.502648i
\(801\) −8.61803 + 14.9269i −0.304503 + 0.527415i
\(802\) 11.9164 + 36.6749i 0.420783 + 1.29504i
\(803\) −55.3070 24.6243i −1.95174 0.868971i
\(804\) 0.118034 + 0.0857567i 0.00416274 + 0.00302441i
\(805\) −3.97871 −0.140231
\(806\) 0 0
\(807\) 3.61803 0.127361
\(808\) 16.7082 + 12.1392i 0.587793 + 0.427056i
\(809\) 27.5906 + 12.2841i 0.970032 + 0.431886i 0.829695 0.558217i \(-0.188515\pi\)
0.140338 + 0.990104i \(0.455181\pi\)
\(810\) −0.190983 0.587785i −0.00671046 0.0206527i
\(811\) 14.3885 24.9217i 0.505250 0.875119i −0.494731 0.869046i \(-0.664734\pi\)
0.999982 0.00607295i \(-0.00193309\pi\)
\(812\) 5.91641 + 10.2475i 0.207625 + 0.359617i
\(813\) 7.06756 7.84932i 0.247870 0.275288i
\(814\) 11.0902 34.1320i 0.388710 1.19633i
\(815\) −0.181006 0.201028i −0.00634038 0.00704170i
\(816\) −18.7846 + 8.36344i −0.657593 + 0.292779i
\(817\) 11.6496 + 2.47619i 0.407567 + 0.0866310i
\(818\) −2.73659 + 26.0369i −0.0956826 + 0.910360i
\(819\) −1.16284 11.0637i −0.0406329 0.386596i
\(820\) −0.570839 + 0.121336i −0.0199346 + 0.00423722i
\(821\) 19.0344 13.8293i 0.664307 0.482647i −0.203808 0.979011i \(-0.565332\pi\)
0.868115 + 0.496364i \(0.165332\pi\)
\(822\) 3.23607 2.35114i 0.112871 0.0820055i
\(823\) −33.3789 + 7.09491i −1.16352 + 0.247313i −0.748900 0.662684i \(-0.769417\pi\)
−0.414616 + 0.909996i \(0.636084\pi\)
\(824\) −1.60203 15.2423i −0.0558093 0.530990i
\(825\) 2.65674 25.2772i 0.0924957 0.880038i
\(826\) −2.50631 0.532733i −0.0872058 0.0185362i
\(827\) 16.7419 7.45395i 0.582171 0.259199i −0.0944512 0.995529i \(-0.530110\pi\)
0.676622 + 0.736330i \(0.263443\pi\)
\(828\) −2.87177 3.18943i −0.0998010 0.110840i
\(829\) −2.56231 + 7.88597i −0.0889926 + 0.273891i −0.985642 0.168851i \(-0.945994\pi\)
0.896649 + 0.442742i \(0.145994\pi\)
\(830\) −2.93211 + 3.25644i −0.101775 + 0.113033i
\(831\) −1.16312 2.01458i −0.0403481 0.0698850i
\(832\) 3.92705 6.80185i 0.136146 0.235812i
\(833\) −2.61803 8.05748i −0.0907095 0.279175i
\(834\) 1.26249 + 0.562096i 0.0437164 + 0.0194638i
\(835\) −1.47214 1.06957i −0.0509454 0.0370140i
\(836\) −16.1803 −0.559609
\(837\) 0 0
\(838\) −7.23607 −0.249966
\(839\) 9.04508 + 6.57164i 0.312271 + 0.226878i 0.732870 0.680368i \(-0.238180\pi\)
−0.420599 + 0.907246i \(0.638180\pi\)
\(840\) −2.34078 1.04218i −0.0807647 0.0359588i
\(841\) 3.62461 + 11.1554i 0.124987 + 0.384669i
\(842\) −15.5623 + 26.9547i −0.536312 + 0.928920i
\(843\) −5.01722 8.69008i −0.172802 0.299302i
\(844\) −3.30836 + 3.67431i −0.113879 + 0.126475i
\(845\) 1.12868 3.47371i 0.0388277 0.119499i
\(846\) 12.1650 + 13.5106i 0.418242 + 0.464505i
\(847\) 44.9914 20.0315i 1.54592 0.688289i
\(848\) 3.36257 + 0.714737i 0.115471 + 0.0245442i
\(849\) −1.41765 + 13.4880i −0.0486535 + 0.462907i
\(850\) −3.47772 33.0883i −0.119285 1.13492i
\(851\) 14.3868 3.05801i 0.493173 0.104827i
\(852\) −5.54508 + 4.02874i −0.189971 + 0.138022i
\(853\) −3.23607 + 2.35114i −0.110801 + 0.0805015i −0.641806 0.766867i \(-0.721815\pi\)
0.531005 + 0.847369i \(0.321815\pi\)
\(854\) −51.9637 + 11.0452i −1.77816 + 0.377960i
\(855\) −0.399263 3.79874i −0.0136545 0.129914i
\(856\) −2.35840 + 22.4387i −0.0806086 + 0.766939i
\(857\) −13.8705 2.94826i −0.473806 0.100711i −0.0351814 0.999381i \(-0.511201\pi\)
−0.438625 + 0.898670i \(0.644534\pi\)
\(858\) −14.3502 + 6.38910i −0.489906 + 0.218120i
\(859\) 37.9452 + 42.1424i 1.29467 + 1.43788i 0.835457 + 0.549556i \(0.185203\pi\)
0.459216 + 0.888324i \(0.348130\pi\)
\(860\) 0.173762 0.534785i 0.00592524 0.0182360i
\(861\) 4.96255 5.51147i 0.169123 0.187830i
\(862\) −20.0344 34.7007i −0.682376 1.18191i
\(863\) −20.2533 + 35.0797i −0.689430 + 1.19413i 0.282593 + 0.959240i \(0.408806\pi\)
−0.972023 + 0.234888i \(0.924528\pi\)
\(864\) −5.22542 16.0822i −0.177773 0.547128i
\(865\) −4.21878 1.87832i −0.143443 0.0638649i
\(866\) −35.8885 26.0746i −1.21954 0.886049i
\(867\) −0.944272 −0.0320692
\(868\) 0 0
\(869\) 0 0
\(870\) 3.19098 + 2.31838i 0.108184 + 0.0786006i
\(871\) −0.399853 0.178026i −0.0135485 0.00603219i
\(872\) −12.7254 39.1648i −0.430937 1.32629i
\(873\) −18.7082 + 32.4036i −0.633177 + 1.09669i
\(874\) −14.0451 24.3268i −0.475082 0.822866i
\(875\) 7.55569 8.39144i 0.255429 0.283682i
\(876\) −2.20820 + 6.79615i −0.0746083 + 0.229621i
\(877\) 19.8787 + 22.0775i 0.671255 + 0.745504i 0.978527 0.206117i \(-0.0660829\pi\)
−0.307272 + 0.951622i \(0.599416\pi\)
\(878\) −17.4906 + 7.78734i −0.590281 + 0.262810i
\(879\) −3.68168 0.782565i −0.124180 0.0263953i
\(880\) 1.01478 9.65502i 0.0342083 0.325471i
\(881\) −3.06903 29.1998i −0.103398 0.983768i −0.916063 0.401036i \(-0.868650\pi\)
0.812664 0.582732i \(-0.198016\pi\)
\(882\) 6.33070 1.34563i 0.213166 0.0453098i
\(883\) 0.809017 0.587785i 0.0272256 0.0197805i −0.574089 0.818793i \(-0.694644\pi\)
0.601315 + 0.799012i \(0.294644\pi\)
\(884\) −3.92705 + 2.85317i −0.132081 + 0.0959625i
\(885\) −0.197220 + 0.0419204i −0.00662948 + 0.00140914i
\(886\) 0.148055 + 1.40865i 0.00497400 + 0.0473245i
\(887\) 5.02817 47.8398i 0.168829 1.60630i −0.502118 0.864799i \(-0.667446\pi\)
0.670948 0.741505i \(-0.265888\pi\)
\(888\) 9.26515 + 1.96937i 0.310918 + 0.0660877i
\(889\) 15.7968 7.03321i 0.529809 0.235886i
\(890\) 3.56395 + 3.95817i 0.119464 + 0.132678i
\(891\) −1.61803 + 4.97980i −0.0542062 + 0.166829i
\(892\) −5.25542 + 5.83674i −0.175964 + 0.195428i
\(893\) 14.0451 + 24.3268i 0.470001 + 0.814065i
\(894\) 9.73607 16.8634i 0.325623 0.563995i
\(895\) 0.566371 + 1.74311i 0.0189317 + 0.0582658i
\(896\) 37.3221 + 16.6169i 1.24684 + 0.555130i
\(897\) −5.20820 3.78398i −0.173897 0.126343i
\(898\) −55.1246 −1.83953
\(899\) 0 0
\(900\) 6.00000 0.200000
\(901\) 2.42705 + 1.76336i 0.0808568 + 0.0587459i
\(902\) 19.1335 + 8.51880i 0.637077 + 0.283645i
\(903\) 2.20820 + 6.79615i 0.0734844 + 0.226162i
\(904\) 5.42705 9.39993i 0.180501 0.312637i
\(905\) 3.24671 + 5.62347i 0.107924 + 0.186930i
\(906\) −20.0366 + 22.2529i −0.665672 + 0.739304i
\(907\) −3.68441 + 11.3394i −0.122339 + 0.376520i −0.993407 0.114642i \(-0.963428\pi\)
0.871068 + 0.491162i \(0.163428\pi\)
\(908\) 8.99157 + 9.98615i 0.298396 + 0.331402i
\(909\) −16.8751 + 7.51329i −0.559713 + 0.249200i
\(910\) −3.36257 0.714737i −0.111468 0.0236933i
\(911\) 1.48225 14.1027i 0.0491091 0.467242i −0.942138 0.335224i \(-0.891188\pi\)
0.991247 0.132017i \(-0.0421455\pi\)
\(912\) −2.53696 24.1376i −0.0840071 0.799274i
\(913\) 36.3133 7.71864i 1.20180 0.255450i
\(914\) −35.0066 + 25.4338i −1.15791 + 0.841274i
\(915\) −3.38197 + 2.45714i −0.111804 + 0.0812306i
\(916\) 1.67088 0.355156i 0.0552073 0.0117347i
\(917\) 3.47772 + 33.0883i 0.114844 + 1.09267i
\(918\) 3.58224 34.0828i 0.118232 1.12490i
\(919\) −49.0293 10.4215i −1.61733 0.343773i −0.691692 0.722193i \(-0.743134\pi\)
−0.925634 + 0.378419i \(0.876468\pi\)
\(920\) 2.70917 1.20620i 0.0893188 0.0397673i
\(921\) 3.40599 + 3.78273i 0.112231 + 0.124645i
\(922\) −15.8713 + 48.8469i −0.522694 + 1.60869i
\(923\) 13.7589 15.2808i 0.452879 0.502973i
\(924\) −4.85410 8.40755i −0.159688 0.276588i
\(925\) −10.2812 + 17.8075i −0.338042 + 0.585506i
\(926\) 4.56231 + 14.0413i 0.149927 + 0.461427i
\(927\) 12.5231 + 5.57563i 0.411311 + 0.183128i
\(928\) −17.4615 12.6865i −0.573202 0.416455i
\(929\) −33.5410 −1.10045 −0.550223 0.835018i \(-0.685457\pi\)
−0.550223 + 0.835018i \(0.685457\pi\)
\(930\) 0 0
\(931\) 10.0000 0.327737
\(932\) 2.89919 + 2.10638i 0.0949660 + 0.0689969i
\(933\) −6.87705 3.06186i −0.225144 0.100241i
\(934\) 19.3885 + 59.6718i 0.634413 + 1.95252i
\(935\) 4.23607 7.33708i 0.138534 0.239948i
\(936\) 4.14590 + 7.18091i 0.135513 + 0.234715i
\(937\) −29.7665 + 33.0590i −0.972428 + 1.07999i 0.0243436 + 0.999704i \(0.492250\pi\)
−0.996772 + 0.0802873i \(0.974416\pi\)
\(938\) 0.354102 1.08981i 0.0115618 0.0355837i
\(939\) 2.16535 + 2.40487i 0.0706636 + 0.0784799i
\(940\) 1.21158 0.539430i 0.0395173 0.0175943i
\(941\) −54.2054 11.5217i −1.76705 0.375597i −0.794310 0.607512i \(-0.792168\pi\)
−0.972736 + 0.231915i \(0.925501\pi\)
\(942\) −0.627171 + 5.96713i −0.0204343 + 0.194420i
\(943\) 0.897230 + 8.53657i 0.0292178 + 0.277989i
\(944\) 2.50631 0.532733i 0.0815736 0.0173390i
\(945\) 4.63525 3.36771i 0.150785 0.109552i
\(946\) −16.3262 + 11.8617i −0.530812 + 0.385657i
\(947\) 35.2807 7.49914i 1.14647 0.243689i 0.404767 0.914420i \(-0.367353\pi\)
0.741701 + 0.670730i \(0.234019\pi\)
\(948\) 0 0
\(949\) 2.24085 21.3203i 0.0727410 0.692085i
\(950\) 38.4124 + 8.16480i 1.24626 + 0.264901i
\(951\) 9.03363 4.02203i 0.292936 0.130423i
\(952\) 19.0143 + 21.1175i 0.616257 + 0.684422i
\(953\) −2.84752 + 8.76378i −0.0922404 + 0.283887i −0.986525 0.163613i \(-0.947685\pi\)
0.894284 + 0.447499i \(0.147685\pi\)
\(954\) −1.53351 + 1.70314i −0.0496492 + 0.0551411i
\(955\) −0.937694 1.62413i −0.0303431 0.0525557i
\(956\) −4.14590 + 7.18091i −0.134088 + 0.232247i
\(957\) −10.3262 31.7809i −0.333800 1.02733i
\(958\) 13.2210 + 5.88635i 0.427150 + 0.190179i
\(959\) −6.00000 4.35926i −0.193750 0.140768i
\(960\) 1.61803 0.0522218
\(961\) 0 0
\(962\) 12.7082 0.409729
\(963\) −16.3262 11.8617i −0.526106 0.382238i
\(964\) −9.86481 4.39209i −0.317724 0.141460i
\(965\) 0.545085 + 1.67760i 0.0175469 + 0.0540038i
\(966\) 8.42705 14.5961i 0.271136 0.469621i
\(967\) −6.17376 10.6933i −0.198535 0.343872i 0.749519 0.661983i \(-0.230285\pi\)
−0.948054 + 0.318111i \(0.896952\pi\)
\(968\) −24.5626 + 27.2795i −0.789471 + 0.876797i
\(969\) 6.54508 20.1437i 0.210258 0.647109i
\(970\) 7.73669 + 8.59247i 0.248410 + 0.275888i
\(971\) −0.399853 + 0.178026i −0.0128319 + 0.00571313i −0.413143 0.910666i \(-0.635569\pi\)
0.400311 + 0.916379i \(0.368902\pi\)
\(972\) 9.67246 + 2.05594i 0.310244 + 0.0659444i
\(973\) 0.267834 2.54827i 0.00858636 0.0816938i
\(974\) 7.09046 + 67.4612i 0.227193 + 2.16160i
\(975\) 8.80333 1.87121i 0.281932 0.0599265i
\(976\) 42.9787 31.2259i 1.37572 0.999516i
\(977\) −42.1246 + 30.6053i −1.34769 + 0.979151i −0.348562 + 0.937286i \(0.613330\pi\)
−0.999123 + 0.0418654i \(0.986670\pi\)
\(978\) 1.12086 0.238246i 0.0358411 0.00761825i
\(979\) −4.71681 44.8774i −0.150750 1.43429i
\(980\) 0.0493516 0.469550i 0.00157648 0.0149992i
\(981\) 36.0279 + 7.65797i 1.15028 + 0.244500i
\(982\) 31.9232 14.2131i 1.01871 0.453559i
\(983\) −5.37609 5.97075i −0.171471 0.190437i 0.651284 0.758834i \(-0.274231\pi\)
−0.822755 + 0.568397i \(0.807564\pi\)
\(984\) −1.70820 + 5.25731i −0.0544556 + 0.167597i
\(985\) 2.66228 2.95676i 0.0848273 0.0942102i
\(986\) −21.8713 37.8822i −0.696525 1.20642i
\(987\) −8.42705 + 14.5961i −0.268236 + 0.464598i
\(988\) −1.77051 5.44907i −0.0563274 0.173358i
\(989\) −7.55549 3.36392i −0.240250 0.106966i
\(990\) 5.23607 + 3.80423i 0.166413 + 0.120906i
\(991\) 16.2705 0.516850 0.258425 0.966031i \(-0.416797\pi\)
0.258425 + 0.966031i \(0.416797\pi\)
\(992\) 0 0
\(993\) 22.2705 0.706733
\(994\) 43.5517 + 31.6421i 1.38137 + 1.00363i
\(995\) 4.63808 + 2.06501i 0.147037 + 0.0654651i
\(996\) −1.35410 4.16750i −0.0429064 0.132052i
\(997\) −26.6246 + 46.1152i −0.843210 + 1.46048i 0.0439568 + 0.999033i \(0.486004\pi\)
−0.887167 + 0.461449i \(0.847330\pi\)
\(998\) −8.78115 15.2094i −0.277963 0.481445i
\(999\) −14.1724 + 15.7401i −0.448395 + 0.497993i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 961.2.g.b.732.1 8
31.2 even 5 961.2.g.f.448.1 8
31.3 odd 30 961.2.d.b.388.1 4
31.4 even 5 961.2.c.f.521.2 4
31.5 even 3 inner 961.2.g.b.816.1 8
31.6 odd 6 961.2.d.b.374.1 4
31.7 even 15 961.2.a.d.1.2 2
31.8 even 5 961.2.g.f.844.1 8
31.9 even 15 961.2.g.f.547.1 8
31.10 even 15 961.2.g.f.846.1 8
31.11 odd 30 961.2.c.d.439.2 4
31.12 odd 30 961.2.d.e.628.1 4
31.13 odd 30 961.2.g.c.235.1 8
31.14 even 15 961.2.d.f.531.1 4
31.15 odd 10 961.2.g.c.338.1 8
31.16 even 5 inner 961.2.g.b.338.1 8
31.17 odd 30 961.2.d.e.531.1 4
31.18 even 15 inner 961.2.g.b.235.1 8
31.19 even 15 961.2.d.f.628.1 4
31.20 even 15 961.2.c.f.439.2 4
31.21 odd 30 961.2.g.g.846.1 8
31.22 odd 30 961.2.g.g.547.1 8
31.23 odd 10 961.2.g.g.844.1 8
31.24 odd 30 961.2.a.e.1.2 2
31.25 even 3 31.2.d.a.2.1 4
31.26 odd 6 961.2.g.c.816.1 8
31.27 odd 10 961.2.c.d.521.2 4
31.28 even 15 31.2.d.a.16.1 yes 4
31.29 odd 10 961.2.g.g.448.1 8
31.30 odd 2 961.2.g.c.732.1 8
93.38 odd 30 8649.2.a.g.1.1 2
93.56 odd 6 279.2.i.a.64.1 4
93.59 odd 30 279.2.i.a.109.1 4
93.86 even 30 8649.2.a.f.1.1 2
124.59 odd 30 496.2.n.b.481.1 4
124.87 odd 6 496.2.n.b.33.1 4
155.28 odd 60 775.2.bf.a.574.2 8
155.59 even 30 775.2.k.c.326.1 4
155.87 odd 12 775.2.bf.a.374.2 8
155.118 odd 12 775.2.bf.a.374.1 8
155.149 even 6 775.2.k.c.126.1 4
155.152 odd 60 775.2.bf.a.574.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.d.a.2.1 4 31.25 even 3
31.2.d.a.16.1 yes 4 31.28 even 15
279.2.i.a.64.1 4 93.56 odd 6
279.2.i.a.109.1 4 93.59 odd 30
496.2.n.b.33.1 4 124.87 odd 6
496.2.n.b.481.1 4 124.59 odd 30
775.2.k.c.126.1 4 155.149 even 6
775.2.k.c.326.1 4 155.59 even 30
775.2.bf.a.374.1 8 155.118 odd 12
775.2.bf.a.374.2 8 155.87 odd 12
775.2.bf.a.574.1 8 155.152 odd 60
775.2.bf.a.574.2 8 155.28 odd 60
961.2.a.d.1.2 2 31.7 even 15
961.2.a.e.1.2 2 31.24 odd 30
961.2.c.d.439.2 4 31.11 odd 30
961.2.c.d.521.2 4 31.27 odd 10
961.2.c.f.439.2 4 31.20 even 15
961.2.c.f.521.2 4 31.4 even 5
961.2.d.b.374.1 4 31.6 odd 6
961.2.d.b.388.1 4 31.3 odd 30
961.2.d.e.531.1 4 31.17 odd 30
961.2.d.e.628.1 4 31.12 odd 30
961.2.d.f.531.1 4 31.14 even 15
961.2.d.f.628.1 4 31.19 even 15
961.2.g.b.235.1 8 31.18 even 15 inner
961.2.g.b.338.1 8 31.16 even 5 inner
961.2.g.b.732.1 8 1.1 even 1 trivial
961.2.g.b.816.1 8 31.5 even 3 inner
961.2.g.c.235.1 8 31.13 odd 30
961.2.g.c.338.1 8 31.15 odd 10
961.2.g.c.732.1 8 31.30 odd 2
961.2.g.c.816.1 8 31.26 odd 6
961.2.g.f.448.1 8 31.2 even 5
961.2.g.f.547.1 8 31.9 even 15
961.2.g.f.844.1 8 31.8 even 5
961.2.g.f.846.1 8 31.10 even 15
961.2.g.g.448.1 8 31.29 odd 10
961.2.g.g.547.1 8 31.22 odd 30
961.2.g.g.844.1 8 31.23 odd 10
961.2.g.g.846.1 8 31.21 odd 30
8649.2.a.f.1.1 2 93.86 even 30
8649.2.a.g.1.1 2 93.38 odd 30