Properties

Label 95.2.l.a.12.1
Level $95$
Weight $2$
Character 95.12
Analytic conductor $0.759$
Analytic rank $1$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [95,2,Mod(8,95)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(95, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("95.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 95.l (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.758578819202\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 12.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 95.12
Dual form 95.2.l.a.8.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.36603 - 0.633975i) q^{2} +(-0.633975 + 2.36603i) q^{3} +(3.46410 + 2.00000i) q^{4} +(-1.86603 - 1.23205i) q^{5} +(3.00000 - 5.19615i) q^{6} +(-2.00000 - 2.00000i) q^{7} +(-3.46410 - 3.46410i) q^{8} +(-2.59808 - 1.50000i) q^{9} +(3.63397 + 4.09808i) q^{10} -5.00000 q^{11} +(-6.92820 + 6.92820i) q^{12} +(3.46410 + 6.00000i) q^{14} +(4.09808 - 3.63397i) q^{15} +(2.00000 + 3.46410i) q^{16} +(0.732051 - 2.73205i) q^{17} +(5.19615 + 5.19615i) q^{18} +(-4.33013 - 0.500000i) q^{19} +(-4.00000 - 8.00000i) q^{20} +(6.00000 - 3.46410i) q^{21} +(11.8301 + 3.16987i) q^{22} +(1.09808 + 4.09808i) q^{23} +(10.3923 - 6.00000i) q^{24} +(1.96410 + 4.59808i) q^{25} +(-2.92820 - 10.9282i) q^{28} +(0.866025 - 1.50000i) q^{29} +(-12.0000 + 6.00000i) q^{30} +5.19615i q^{31} +(3.16987 - 11.8301i) q^{33} +(-3.46410 + 6.00000i) q^{34} +(1.26795 + 6.19615i) q^{35} +(-6.00000 - 10.3923i) q^{36} +(-1.73205 + 1.73205i) q^{37} +(9.92820 + 3.92820i) q^{38} +(2.19615 + 10.7321i) q^{40} +(-3.00000 + 1.73205i) q^{41} +(-16.3923 + 4.39230i) q^{42} +(-9.56218 - 2.56218i) q^{43} +(-17.3205 - 10.0000i) q^{44} +(3.00000 + 6.00000i) q^{45} -10.3923i q^{46} +(8.19615 - 2.19615i) q^{47} +(-9.46410 + 2.53590i) q^{48} +1.00000i q^{49} +(-1.73205 - 12.1244i) q^{50} +(6.00000 + 3.46410i) q^{51} +(-7.09808 + 1.90192i) q^{53} +(9.33013 + 6.16025i) q^{55} +13.8564i q^{56} +(3.92820 - 9.92820i) q^{57} +(-3.00000 + 3.00000i) q^{58} +(2.59808 + 4.50000i) q^{59} +(21.4641 - 4.39230i) q^{60} +(2.50000 - 4.33013i) q^{61} +(3.29423 - 12.2942i) q^{62} +(2.19615 + 8.19615i) q^{63} -8.00000i q^{64} +(-15.0000 + 25.9808i) q^{66} +(-2.53590 - 9.46410i) q^{67} +(8.00000 - 8.00000i) q^{68} -10.3923 q^{69} +(0.928203 - 15.4641i) q^{70} +(-4.50000 + 2.59808i) q^{71} +(3.80385 + 14.1962i) q^{72} +(1.36603 + 0.366025i) q^{73} +(5.19615 - 3.00000i) q^{74} +(-12.1244 + 1.73205i) q^{75} +(-14.0000 - 10.3923i) q^{76} +(10.0000 + 10.0000i) q^{77} +(0.866025 + 1.50000i) q^{79} +(0.535898 - 8.92820i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(8.19615 - 2.19615i) q^{82} +(5.00000 - 5.00000i) q^{83} +27.7128 q^{84} +(-4.73205 + 4.19615i) q^{85} +(21.0000 + 12.1244i) q^{86} +(3.00000 + 3.00000i) q^{87} +(17.3205 + 17.3205i) q^{88} +(2.59808 - 4.50000i) q^{89} +(-3.29423 - 16.0981i) q^{90} +(-4.39230 + 16.3923i) q^{92} +(-12.2942 - 3.29423i) q^{93} -20.7846 q^{94} +(7.46410 + 6.26795i) q^{95} +(-7.09808 - 1.90192i) q^{97} +(0.633975 - 2.36603i) q^{98} +(12.9904 + 7.50000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{2} - 6 q^{3} - 4 q^{5} + 12 q^{6} - 8 q^{7} + 18 q^{10} - 20 q^{11} + 6 q^{15} + 8 q^{16} - 4 q^{17} - 16 q^{20} + 24 q^{21} + 30 q^{22} - 6 q^{23} - 6 q^{25} + 16 q^{28} - 48 q^{30} + 30 q^{33}+ \cdots + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/95\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.36603 0.633975i −1.67303 0.448288i −0.707107 0.707107i \(-0.750000\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(3\) −0.633975 + 2.36603i −0.366025 + 1.36603i 0.500000 + 0.866025i \(0.333333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) 3.46410 + 2.00000i 1.73205 + 1.00000i
\(5\) −1.86603 1.23205i −0.834512 0.550990i
\(6\) 3.00000 5.19615i 1.22474 2.12132i
\(7\) −2.00000 2.00000i −0.755929 0.755929i 0.219650 0.975579i \(-0.429509\pi\)
−0.975579 + 0.219650i \(0.929509\pi\)
\(8\) −3.46410 3.46410i −1.22474 1.22474i
\(9\) −2.59808 1.50000i −0.866025 0.500000i
\(10\) 3.63397 + 4.09808i 1.14916 + 1.29593i
\(11\) −5.00000 −1.50756 −0.753778 0.657129i \(-0.771771\pi\)
−0.753778 + 0.657129i \(0.771771\pi\)
\(12\) −6.92820 + 6.92820i −2.00000 + 2.00000i
\(13\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(14\) 3.46410 + 6.00000i 0.925820 + 1.60357i
\(15\) 4.09808 3.63397i 1.05812 0.938288i
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) 0.732051 2.73205i 0.177548 0.662620i −0.818555 0.574428i \(-0.805225\pi\)
0.996104 0.0881917i \(-0.0281088\pi\)
\(18\) 5.19615 + 5.19615i 1.22474 + 1.22474i
\(19\) −4.33013 0.500000i −0.993399 0.114708i
\(20\) −4.00000 8.00000i −0.894427 1.78885i
\(21\) 6.00000 3.46410i 1.30931 0.755929i
\(22\) 11.8301 + 3.16987i 2.52219 + 0.675819i
\(23\) 1.09808 + 4.09808i 0.228965 + 0.854508i 0.980777 + 0.195131i \(0.0625132\pi\)
−0.751812 + 0.659377i \(0.770820\pi\)
\(24\) 10.3923 6.00000i 2.12132 1.22474i
\(25\) 1.96410 + 4.59808i 0.392820 + 0.919615i
\(26\) 0 0
\(27\) 0 0
\(28\) −2.92820 10.9282i −0.553378 2.06524i
\(29\) 0.866025 1.50000i 0.160817 0.278543i −0.774345 0.632764i \(-0.781920\pi\)
0.935162 + 0.354221i \(0.115254\pi\)
\(30\) −12.0000 + 6.00000i −2.19089 + 1.09545i
\(31\) 5.19615i 0.933257i 0.884454 + 0.466628i \(0.154531\pi\)
−0.884454 + 0.466628i \(0.845469\pi\)
\(32\) 0 0
\(33\) 3.16987 11.8301i 0.551804 2.05936i
\(34\) −3.46410 + 6.00000i −0.594089 + 1.02899i
\(35\) 1.26795 + 6.19615i 0.214323 + 1.04734i
\(36\) −6.00000 10.3923i −1.00000 1.73205i
\(37\) −1.73205 + 1.73205i −0.284747 + 0.284747i −0.834999 0.550252i \(-0.814532\pi\)
0.550252 + 0.834999i \(0.314532\pi\)
\(38\) 9.92820 + 3.92820i 1.61057 + 0.637239i
\(39\) 0 0
\(40\) 2.19615 + 10.7321i 0.347242 + 1.69689i
\(41\) −3.00000 + 1.73205i −0.468521 + 0.270501i −0.715621 0.698489i \(-0.753856\pi\)
0.247099 + 0.968990i \(0.420523\pi\)
\(42\) −16.3923 + 4.39230i −2.52939 + 0.677747i
\(43\) −9.56218 2.56218i −1.45822 0.390728i −0.559344 0.828935i \(-0.688947\pi\)
−0.898874 + 0.438207i \(0.855614\pi\)
\(44\) −17.3205 10.0000i −2.61116 1.50756i
\(45\) 3.00000 + 6.00000i 0.447214 + 0.894427i
\(46\) 10.3923i 1.53226i
\(47\) 8.19615 2.19615i 1.19553 0.320342i 0.394462 0.918912i \(-0.370931\pi\)
0.801070 + 0.598571i \(0.204264\pi\)
\(48\) −9.46410 + 2.53590i −1.36603 + 0.366025i
\(49\) 1.00000i 0.142857i
\(50\) −1.73205 12.1244i −0.244949 1.71464i
\(51\) 6.00000 + 3.46410i 0.840168 + 0.485071i
\(52\) 0 0
\(53\) −7.09808 + 1.90192i −0.974996 + 0.261249i −0.710936 0.703257i \(-0.751728\pi\)
−0.264060 + 0.964506i \(0.585062\pi\)
\(54\) 0 0
\(55\) 9.33013 + 6.16025i 1.25807 + 0.830648i
\(56\) 13.8564i 1.85164i
\(57\) 3.92820 9.92820i 0.520303 1.31502i
\(58\) −3.00000 + 3.00000i −0.393919 + 0.393919i
\(59\) 2.59808 + 4.50000i 0.338241 + 0.585850i 0.984102 0.177605i \(-0.0568349\pi\)
−0.645861 + 0.763455i \(0.723502\pi\)
\(60\) 21.4641 4.39230i 2.77100 0.567044i
\(61\) 2.50000 4.33013i 0.320092 0.554416i −0.660415 0.750901i \(-0.729619\pi\)
0.980507 + 0.196485i \(0.0629528\pi\)
\(62\) 3.29423 12.2942i 0.418367 1.56137i
\(63\) 2.19615 + 8.19615i 0.276689 + 1.03262i
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) −15.0000 + 25.9808i −1.84637 + 3.19801i
\(67\) −2.53590 9.46410i −0.309809 1.15622i −0.928726 0.370767i \(-0.879095\pi\)
0.618917 0.785457i \(-0.287572\pi\)
\(68\) 8.00000 8.00000i 0.970143 0.970143i
\(69\) −10.3923 −1.25109
\(70\) 0.928203 15.4641i 0.110942 1.84831i
\(71\) −4.50000 + 2.59808i −0.534052 + 0.308335i −0.742665 0.669663i \(-0.766438\pi\)
0.208613 + 0.977998i \(0.433105\pi\)
\(72\) 3.80385 + 14.1962i 0.448288 + 1.67303i
\(73\) 1.36603 + 0.366025i 0.159881 + 0.0428400i 0.337872 0.941192i \(-0.390293\pi\)
−0.177991 + 0.984032i \(0.556960\pi\)
\(74\) 5.19615 3.00000i 0.604040 0.348743i
\(75\) −12.1244 + 1.73205i −1.40000 + 0.200000i
\(76\) −14.0000 10.3923i −1.60591 1.19208i
\(77\) 10.0000 + 10.0000i 1.13961 + 1.13961i
\(78\) 0 0
\(79\) 0.866025 + 1.50000i 0.0974355 + 0.168763i 0.910622 0.413239i \(-0.135603\pi\)
−0.813187 + 0.582003i \(0.802269\pi\)
\(80\) 0.535898 8.92820i 0.0599153 0.998203i
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 8.19615 2.19615i 0.905114 0.242524i
\(83\) 5.00000 5.00000i 0.548821 0.548821i −0.377279 0.926100i \(-0.623140\pi\)
0.926100 + 0.377279i \(0.123140\pi\)
\(84\) 27.7128 3.02372
\(85\) −4.73205 + 4.19615i −0.513263 + 0.455137i
\(86\) 21.0000 + 12.1244i 2.26449 + 1.30740i
\(87\) 3.00000 + 3.00000i 0.321634 + 0.321634i
\(88\) 17.3205 + 17.3205i 1.84637 + 1.84637i
\(89\) 2.59808 4.50000i 0.275396 0.476999i −0.694839 0.719165i \(-0.744525\pi\)
0.970235 + 0.242166i \(0.0778579\pi\)
\(90\) −3.29423 16.0981i −0.347242 1.69689i
\(91\) 0 0
\(92\) −4.39230 + 16.3923i −0.457929 + 1.70902i
\(93\) −12.2942 3.29423i −1.27485 0.341596i
\(94\) −20.7846 −2.14377
\(95\) 7.46410 + 6.26795i 0.765801 + 0.643078i
\(96\) 0 0
\(97\) −7.09808 1.90192i −0.720700 0.193111i −0.120216 0.992748i \(-0.538359\pi\)
−0.600484 + 0.799637i \(0.705025\pi\)
\(98\) 0.633975 2.36603i 0.0640411 0.239005i
\(99\) 12.9904 + 7.50000i 1.30558 + 0.753778i
\(100\) −2.39230 + 19.8564i −0.239230 + 1.98564i
\(101\) −2.50000 + 4.33013i −0.248759 + 0.430864i −0.963182 0.268851i \(-0.913356\pi\)
0.714423 + 0.699715i \(0.246689\pi\)
\(102\) −12.0000 12.0000i −1.18818 1.18818i
\(103\) 6.92820 + 6.92820i 0.682656 + 0.682656i 0.960598 0.277942i \(-0.0896522\pi\)
−0.277942 + 0.960598i \(0.589652\pi\)
\(104\) 0 0
\(105\) −15.4641 0.928203i −1.50914 0.0905834i
\(106\) 18.0000 1.74831
\(107\) −1.73205 + 1.73205i −0.167444 + 0.167444i −0.785855 0.618411i \(-0.787777\pi\)
0.618411 + 0.785855i \(0.287777\pi\)
\(108\) 0 0
\(109\) 0.866025 + 1.50000i 0.0829502 + 0.143674i 0.904516 0.426440i \(-0.140232\pi\)
−0.821566 + 0.570114i \(0.806899\pi\)
\(110\) −18.1699 20.4904i −1.73243 1.95368i
\(111\) −3.00000 5.19615i −0.284747 0.493197i
\(112\) 2.92820 10.9282i 0.276689 1.03262i
\(113\) −1.73205 1.73205i −0.162938 0.162938i 0.620929 0.783867i \(-0.286755\pi\)
−0.783867 + 0.620929i \(0.786755\pi\)
\(114\) −15.5885 + 21.0000i −1.45999 + 1.96683i
\(115\) 3.00000 9.00000i 0.279751 0.839254i
\(116\) 6.00000 3.46410i 0.557086 0.321634i
\(117\) 0 0
\(118\) −3.29423 12.2942i −0.303258 1.13178i
\(119\) −6.92820 + 4.00000i −0.635107 + 0.366679i
\(120\) −26.7846 1.60770i −2.44509 0.146762i
\(121\) 14.0000 1.27273
\(122\) −8.66025 + 8.66025i −0.784063 + 0.784063i
\(123\) −2.19615 8.19615i −0.198020 0.739022i
\(124\) −10.3923 + 18.0000i −0.933257 + 1.61645i
\(125\) 2.00000 11.0000i 0.178885 0.983870i
\(126\) 20.7846i 1.85164i
\(127\) −2.53590 9.46410i −0.225025 0.839803i −0.982395 0.186817i \(-0.940183\pi\)
0.757370 0.652986i \(-0.226484\pi\)
\(128\) −5.07180 + 18.9282i −0.448288 + 1.67303i
\(129\) 12.1244 21.0000i 1.06749 1.84895i
\(130\) 0 0
\(131\) −5.00000 8.66025i −0.436852 0.756650i 0.560593 0.828092i \(-0.310573\pi\)
−0.997445 + 0.0714417i \(0.977240\pi\)
\(132\) 34.6410 34.6410i 3.01511 3.01511i
\(133\) 7.66025 + 9.66025i 0.664228 + 0.837650i
\(134\) 24.0000i 2.07328i
\(135\) 0 0
\(136\) −12.0000 + 6.92820i −1.02899 + 0.594089i
\(137\) −10.9282 + 2.92820i −0.933659 + 0.250173i −0.693414 0.720539i \(-0.743894\pi\)
−0.240245 + 0.970712i \(0.577228\pi\)
\(138\) 24.5885 + 6.58846i 2.09311 + 0.560847i
\(139\) 15.5885 + 9.00000i 1.32220 + 0.763370i 0.984079 0.177734i \(-0.0568767\pi\)
0.338117 + 0.941104i \(0.390210\pi\)
\(140\) −8.00000 + 24.0000i −0.676123 + 2.02837i
\(141\) 20.7846i 1.75038i
\(142\) 12.2942 3.29423i 1.03171 0.276446i
\(143\) 0 0
\(144\) 12.0000i 1.00000i
\(145\) −3.46410 + 1.73205i −0.287678 + 0.143839i
\(146\) −3.00000 1.73205i −0.248282 0.143346i
\(147\) −2.36603 0.633975i −0.195146 0.0522893i
\(148\) −9.46410 + 2.53590i −0.777944 + 0.208450i
\(149\) 16.4545 9.50000i 1.34800 0.778270i 0.360037 0.932938i \(-0.382764\pi\)
0.987967 + 0.154668i \(0.0494307\pi\)
\(150\) 29.7846 + 3.58846i 2.43190 + 0.292996i
\(151\) 15.5885i 1.26857i −0.773099 0.634285i \(-0.781294\pi\)
0.773099 0.634285i \(-0.218706\pi\)
\(152\) 13.2679 + 16.7321i 1.07617 + 1.35715i
\(153\) −6.00000 + 6.00000i −0.485071 + 0.485071i
\(154\) −17.3205 30.0000i −1.39573 2.41747i
\(155\) 6.40192 9.69615i 0.514215 0.778814i
\(156\) 0 0
\(157\) −2.56218 + 9.56218i −0.204484 + 0.763145i 0.785122 + 0.619341i \(0.212600\pi\)
−0.989606 + 0.143804i \(0.954067\pi\)
\(158\) −1.09808 4.09808i −0.0873583 0.326025i
\(159\) 18.0000i 1.42749i
\(160\) 0 0
\(161\) 6.00000 10.3923i 0.472866 0.819028i
\(162\) 5.70577 + 21.2942i 0.448288 + 1.67303i
\(163\) −11.0000 + 11.0000i −0.861586 + 0.861586i −0.991522 0.129936i \(-0.958523\pi\)
0.129936 + 0.991522i \(0.458523\pi\)
\(164\) −13.8564 −1.08200
\(165\) −20.4904 + 18.1699i −1.59517 + 1.41452i
\(166\) −15.0000 + 8.66025i −1.16423 + 0.672166i
\(167\) 5.07180 + 18.9282i 0.392467 + 1.46471i 0.826051 + 0.563595i \(0.190582\pi\)
−0.433584 + 0.901113i \(0.642751\pi\)
\(168\) −32.7846 8.78461i −2.52939 0.677747i
\(169\) −11.2583 + 6.50000i −0.866025 + 0.500000i
\(170\) 13.8564 6.92820i 1.06274 0.531369i
\(171\) 10.5000 + 7.79423i 0.802955 + 0.596040i
\(172\) −28.0000 28.0000i −2.13498 2.13498i
\(173\) 1.26795 4.73205i 0.0964004 0.359771i −0.900828 0.434177i \(-0.857039\pi\)
0.997228 + 0.0744057i \(0.0237060\pi\)
\(174\) −5.19615 9.00000i −0.393919 0.682288i
\(175\) 5.26795 13.1244i 0.398220 0.992108i
\(176\) −10.0000 17.3205i −0.753778 1.30558i
\(177\) −12.2942 + 3.29423i −0.924091 + 0.247609i
\(178\) −9.00000 + 9.00000i −0.674579 + 0.674579i
\(179\) −19.0526 −1.42406 −0.712028 0.702152i \(-0.752223\pi\)
−0.712028 + 0.702152i \(0.752223\pi\)
\(180\) −1.60770 + 26.7846i −0.119831 + 1.99641i
\(181\) 6.00000 + 3.46410i 0.445976 + 0.257485i 0.706129 0.708083i \(-0.250440\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) 8.66025 + 8.66025i 0.640184 + 0.640184i
\(184\) 10.3923 18.0000i 0.766131 1.32698i
\(185\) 5.36603 1.09808i 0.394518 0.0807322i
\(186\) 27.0000 + 15.5885i 1.97974 + 1.14300i
\(187\) −3.66025 + 13.6603i −0.267664 + 0.998937i
\(188\) 32.7846 + 8.78461i 2.39106 + 0.640684i
\(189\) 0 0
\(190\) −13.6865 19.5622i −0.992925 1.41919i
\(191\) −7.00000 −0.506502 −0.253251 0.967401i \(-0.581500\pi\)
−0.253251 + 0.967401i \(0.581500\pi\)
\(192\) 18.9282 + 5.07180i 1.36603 + 0.366025i
\(193\) −2.53590 + 9.46410i −0.182538 + 0.681241i 0.812606 + 0.582813i \(0.198048\pi\)
−0.995144 + 0.0984278i \(0.968619\pi\)
\(194\) 15.5885 + 9.00000i 1.11919 + 0.646162i
\(195\) 0 0
\(196\) −2.00000 + 3.46410i −0.142857 + 0.247436i
\(197\) −6.00000 6.00000i −0.427482 0.427482i 0.460288 0.887770i \(-0.347746\pi\)
−0.887770 + 0.460288i \(0.847746\pi\)
\(198\) −25.9808 25.9808i −1.84637 1.84637i
\(199\) −12.9904 7.50000i −0.920864 0.531661i −0.0369532 0.999317i \(-0.511765\pi\)
−0.883911 + 0.467656i \(0.845099\pi\)
\(200\) 9.12436 22.7321i 0.645189 1.60740i
\(201\) 24.0000 1.69283
\(202\) 8.66025 8.66025i 0.609333 0.609333i
\(203\) −4.73205 + 1.26795i −0.332125 + 0.0889926i
\(204\) 13.8564 + 24.0000i 0.970143 + 1.68034i
\(205\) 7.73205 + 0.464102i 0.540030 + 0.0324143i
\(206\) −12.0000 20.7846i −0.836080 1.44813i
\(207\) 3.29423 12.2942i 0.228965 0.854508i
\(208\) 0 0
\(209\) 21.6506 + 2.50000i 1.49761 + 0.172929i
\(210\) 36.0000 + 12.0000i 2.48424 + 0.828079i
\(211\) −22.5000 + 12.9904i −1.54896 + 0.894295i −0.550743 + 0.834675i \(0.685655\pi\)
−0.998221 + 0.0596196i \(0.981011\pi\)
\(212\) −28.3923 7.60770i −1.94999 0.522499i
\(213\) −3.29423 12.2942i −0.225717 0.842387i
\(214\) 5.19615 3.00000i 0.355202 0.205076i
\(215\) 14.6865 + 16.5622i 1.00161 + 1.12953i
\(216\) 0 0
\(217\) 10.3923 10.3923i 0.705476 0.705476i
\(218\) −1.09808 4.09808i −0.0743711 0.277557i
\(219\) −1.73205 + 3.00000i −0.117041 + 0.202721i
\(220\) 20.0000 + 40.0000i 1.34840 + 2.69680i
\(221\) 0 0
\(222\) 3.80385 + 14.1962i 0.255298 + 0.952783i
\(223\) 6.97372 26.0263i 0.466995 1.74285i −0.183195 0.983077i \(-0.558644\pi\)
0.650190 0.759772i \(-0.274689\pi\)
\(224\) 0 0
\(225\) 1.79423 14.8923i 0.119615 0.992820i
\(226\) 3.00000 + 5.19615i 0.199557 + 0.345643i
\(227\) −8.66025 + 8.66025i −0.574801 + 0.574801i −0.933466 0.358665i \(-0.883232\pi\)
0.358665 + 0.933466i \(0.383232\pi\)
\(228\) 33.4641 26.5359i 2.21621 1.75738i
\(229\) 9.00000i 0.594737i 0.954763 + 0.297368i \(0.0961089\pi\)
−0.954763 + 0.297368i \(0.903891\pi\)
\(230\) −12.8038 + 19.3923i −0.844261 + 1.27869i
\(231\) −30.0000 + 17.3205i −1.97386 + 1.13961i
\(232\) −8.19615 + 2.19615i −0.538104 + 0.144184i
\(233\) 12.2942 + 3.29423i 0.805422 + 0.215812i 0.637963 0.770067i \(-0.279777\pi\)
0.167459 + 0.985879i \(0.446444\pi\)
\(234\) 0 0
\(235\) −18.0000 6.00000i −1.17419 0.391397i
\(236\) 20.7846i 1.35296i
\(237\) −4.09808 + 1.09808i −0.266199 + 0.0713277i
\(238\) 18.9282 5.07180i 1.22693 0.328756i
\(239\) 11.0000i 0.711531i −0.934575 0.355765i \(-0.884220\pi\)
0.934575 0.355765i \(-0.115780\pi\)
\(240\) 20.7846 + 6.92820i 1.34164 + 0.447214i
\(241\) −10.5000 6.06218i −0.676364 0.390499i 0.122119 0.992515i \(-0.461031\pi\)
−0.798484 + 0.602016i \(0.794364\pi\)
\(242\) −33.1244 8.87564i −2.12931 0.570548i
\(243\) 21.2942 5.70577i 1.36603 0.366025i
\(244\) 17.3205 10.0000i 1.10883 0.640184i
\(245\) 1.23205 1.86603i 0.0787128 0.119216i
\(246\) 20.7846i 1.32518i
\(247\) 0 0
\(248\) 18.0000 18.0000i 1.14300 1.14300i
\(249\) 8.66025 + 15.0000i 0.548821 + 0.950586i
\(250\) −11.7058 + 24.7583i −0.740338 + 1.56585i
\(251\) 2.50000 4.33013i 0.157799 0.273315i −0.776276 0.630393i \(-0.782894\pi\)
0.934075 + 0.357078i \(0.116227\pi\)
\(252\) −8.78461 + 32.7846i −0.553378 + 2.06524i
\(253\) −5.49038 20.4904i −0.345177 1.28822i
\(254\) 24.0000i 1.50589i
\(255\) −6.92820 13.8564i −0.433861 0.867722i
\(256\) 16.0000 27.7128i 1.00000 1.73205i
\(257\) −6.33975 23.6603i −0.395462 1.47589i −0.820991 0.570941i \(-0.806578\pi\)
0.425529 0.904945i \(-0.360088\pi\)
\(258\) −42.0000 + 42.0000i −2.61481 + 2.61481i
\(259\) 6.92820 0.430498
\(260\) 0 0
\(261\) −4.50000 + 2.59808i −0.278543 + 0.160817i
\(262\) 6.33975 + 23.6603i 0.391671 + 1.46174i
\(263\) −17.7583 4.75833i −1.09503 0.293411i −0.334288 0.942471i \(-0.608496\pi\)
−0.760737 + 0.649060i \(0.775163\pi\)
\(264\) −51.9615 + 30.0000i −3.19801 + 1.84637i
\(265\) 15.5885 + 5.19615i 0.957591 + 0.319197i
\(266\) −12.0000 27.7128i −0.735767 1.69918i
\(267\) 9.00000 + 9.00000i 0.550791 + 0.550791i
\(268\) 10.1436 37.8564i 0.619619 2.31245i
\(269\) 0.866025 + 1.50000i 0.0528025 + 0.0914566i 0.891219 0.453574i \(-0.149851\pi\)
−0.838416 + 0.545031i \(0.816518\pi\)
\(270\) 0 0
\(271\) 7.50000 + 12.9904i 0.455593 + 0.789109i 0.998722 0.0505395i \(-0.0160941\pi\)
−0.543130 + 0.839649i \(0.682761\pi\)
\(272\) 10.9282 2.92820i 0.662620 0.177548i
\(273\) 0 0
\(274\) 27.7128 1.67419
\(275\) −9.82051 22.9904i −0.592199 1.38637i
\(276\) −36.0000 20.7846i −2.16695 1.25109i
\(277\) 4.00000 + 4.00000i 0.240337 + 0.240337i 0.816989 0.576653i \(-0.195641\pi\)
−0.576653 + 0.816989i \(0.695641\pi\)
\(278\) −31.1769 31.1769i −1.86987 1.86987i
\(279\) 7.79423 13.5000i 0.466628 0.808224i
\(280\) 17.0718 25.8564i 1.02023 1.54522i
\(281\) −3.00000 1.73205i −0.178965 0.103325i 0.407841 0.913053i \(-0.366282\pi\)
−0.586806 + 0.809727i \(0.699615\pi\)
\(282\) 13.1769 49.1769i 0.784674 2.92844i
\(283\) −5.46410 1.46410i −0.324807 0.0870318i 0.0927310 0.995691i \(-0.470440\pi\)
−0.417538 + 0.908659i \(0.637107\pi\)
\(284\) −20.7846 −1.23334
\(285\) −19.5622 + 13.6865i −1.15876 + 0.810720i
\(286\) 0 0
\(287\) 9.46410 + 2.53590i 0.558648 + 0.149689i
\(288\) 0 0
\(289\) 7.79423 + 4.50000i 0.458484 + 0.264706i
\(290\) 9.29423 1.90192i 0.545776 0.111685i
\(291\) 9.00000 15.5885i 0.527589 0.913812i
\(292\) 4.00000 + 4.00000i 0.234082 + 0.234082i
\(293\) −6.92820 6.92820i −0.404750 0.404750i 0.475153 0.879903i \(-0.342393\pi\)
−0.879903 + 0.475153i \(0.842393\pi\)
\(294\) 5.19615 + 3.00000i 0.303046 + 0.174964i
\(295\) 0.696152 11.5981i 0.0405316 0.675266i
\(296\) 12.0000 0.697486
\(297\) 0 0
\(298\) −44.9545 + 12.0455i −2.60414 + 0.697778i
\(299\) 0 0
\(300\) −45.4641 18.2487i −2.62487 1.05359i
\(301\) 14.0000 + 24.2487i 0.806947 + 1.39767i
\(302\) −9.88269 + 36.8827i −0.568685 + 2.12236i
\(303\) −8.66025 8.66025i −0.497519 0.497519i
\(304\) −6.92820 16.0000i −0.397360 0.917663i
\(305\) −10.0000 + 5.00000i −0.572598 + 0.286299i
\(306\) 18.0000 10.3923i 1.02899 0.594089i
\(307\) 11.8301 + 3.16987i 0.675181 + 0.180914i 0.580088 0.814554i \(-0.303018\pi\)
0.0950935 + 0.995468i \(0.469685\pi\)
\(308\) 14.6410 + 54.6410i 0.834249 + 3.11346i
\(309\) −20.7846 + 12.0000i −1.18240 + 0.682656i
\(310\) −21.2942 + 18.8827i −1.20943 + 1.07246i
\(311\) −20.0000 −1.13410 −0.567048 0.823685i \(-0.691915\pi\)
−0.567048 + 0.823685i \(0.691915\pi\)
\(312\) 0 0
\(313\) 7.32051 + 27.3205i 0.413780 + 1.54425i 0.787268 + 0.616611i \(0.211495\pi\)
−0.373488 + 0.927635i \(0.621838\pi\)
\(314\) 12.1244 21.0000i 0.684217 1.18510i
\(315\) 6.00000 18.0000i 0.338062 1.01419i
\(316\) 6.92820i 0.389742i
\(317\) 5.70577 + 21.2942i 0.320468 + 1.19600i 0.918790 + 0.394747i \(0.129168\pi\)
−0.598322 + 0.801256i \(0.704166\pi\)
\(318\) −11.4115 + 42.5885i −0.639928 + 2.38824i
\(319\) −4.33013 + 7.50000i −0.242441 + 0.419919i
\(320\) −9.85641 + 14.9282i −0.550990 + 0.834512i
\(321\) −3.00000 5.19615i −0.167444 0.290021i
\(322\) −20.7846 + 20.7846i −1.15828 + 1.15828i
\(323\) −4.53590 + 11.4641i −0.252384 + 0.637880i
\(324\) 36.0000i 2.00000i
\(325\) 0 0
\(326\) 33.0000 19.0526i 1.82770 1.05522i
\(327\) −4.09808 + 1.09808i −0.226624 + 0.0607238i
\(328\) 16.3923 + 4.39230i 0.905114 + 0.242524i
\(329\) −20.7846 12.0000i −1.14589 0.661581i
\(330\) 60.0000 30.0000i 3.30289 1.65145i
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 27.3205 7.32051i 1.49941 0.401765i
\(333\) 7.09808 1.90192i 0.388972 0.104225i
\(334\) 48.0000i 2.62644i
\(335\) −6.92820 + 20.7846i −0.378528 + 1.13558i
\(336\) 24.0000 + 13.8564i 1.30931 + 0.755929i
\(337\) −16.5622 4.43782i −0.902199 0.241744i −0.222239 0.974992i \(-0.571336\pi\)
−0.679961 + 0.733249i \(0.738003\pi\)
\(338\) 30.7583 8.24167i 1.67303 0.448288i
\(339\) 5.19615 3.00000i 0.282216 0.162938i
\(340\) −24.7846 + 5.07180i −1.34413 + 0.275057i
\(341\) 25.9808i 1.40694i
\(342\) −19.9019 25.0981i −1.07617 1.35715i
\(343\) −12.0000 + 12.0000i −0.647939 + 0.647939i
\(344\) 24.2487 + 42.0000i 1.30740 + 2.26449i
\(345\) 19.3923 + 12.8038i 1.04405 + 0.689336i
\(346\) −6.00000 + 10.3923i −0.322562 + 0.558694i
\(347\) 2.92820 10.9282i 0.157194 0.586657i −0.841713 0.539925i \(-0.818453\pi\)
0.998907 0.0467319i \(-0.0148807\pi\)
\(348\) 4.39230 + 16.3923i 0.235452 + 0.878720i
\(349\) 18.0000i 0.963518i 0.876304 + 0.481759i \(0.160002\pi\)
−0.876304 + 0.481759i \(0.839998\pi\)
\(350\) −20.7846 + 27.7128i −1.11098 + 1.48131i
\(351\) 0 0
\(352\) 0 0
\(353\) 6.00000 6.00000i 0.319348 0.319348i −0.529169 0.848517i \(-0.677496\pi\)
0.848517 + 0.529169i \(0.177496\pi\)
\(354\) 31.1769 1.65703
\(355\) 11.5981 + 0.696152i 0.615562 + 0.0369479i
\(356\) 18.0000 10.3923i 0.953998 0.550791i
\(357\) −5.07180 18.9282i −0.268428 1.00179i
\(358\) 45.0788 + 12.0788i 2.38249 + 0.638386i
\(359\) −29.4449 + 17.0000i −1.55404 + 0.897226i −0.556234 + 0.831026i \(0.687754\pi\)
−0.997806 + 0.0662000i \(0.978912\pi\)
\(360\) 10.3923 31.1769i 0.547723 1.64317i
\(361\) 18.5000 + 4.33013i 0.973684 + 0.227901i
\(362\) −12.0000 12.0000i −0.630706 0.630706i
\(363\) −8.87564 + 33.1244i −0.465851 + 1.73858i
\(364\) 0 0
\(365\) −2.09808 2.36603i −0.109818 0.123843i
\(366\) −15.0000 25.9808i −0.784063 1.35804i
\(367\) 30.0526 8.05256i 1.56873 0.420340i 0.633316 0.773893i \(-0.281693\pi\)
0.935415 + 0.353553i \(0.115027\pi\)
\(368\) −12.0000 + 12.0000i −0.625543 + 0.625543i
\(369\) 10.3923 0.541002
\(370\) −13.3923 0.803848i −0.696233 0.0417900i
\(371\) 18.0000 + 10.3923i 0.934513 + 0.539542i
\(372\) −36.0000 36.0000i −1.86651 1.86651i
\(373\) 6.92820 + 6.92820i 0.358729 + 0.358729i 0.863344 0.504615i \(-0.168366\pi\)
−0.504615 + 0.863344i \(0.668366\pi\)
\(374\) 17.3205 30.0000i 0.895622 1.55126i
\(375\) 24.7583 + 11.7058i 1.27851 + 0.604483i
\(376\) −36.0000 20.7846i −1.85656 1.07188i
\(377\) 0 0
\(378\) 0 0
\(379\) 32.9090 1.69042 0.845210 0.534434i \(-0.179475\pi\)
0.845210 + 0.534434i \(0.179475\pi\)
\(380\) 13.3205 + 36.6410i 0.683328 + 1.87964i
\(381\) 24.0000 1.22956
\(382\) 16.5622 + 4.43782i 0.847395 + 0.227059i
\(383\) 7.60770 28.3923i 0.388735 1.45078i −0.443459 0.896295i \(-0.646249\pi\)
0.832194 0.554484i \(-0.187084\pi\)
\(384\) −41.5692 24.0000i −2.12132 1.22474i
\(385\) −6.33975 30.9808i −0.323103 1.57893i
\(386\) 12.0000 20.7846i 0.610784 1.05791i
\(387\) 21.0000 + 21.0000i 1.06749 + 1.06749i
\(388\) −20.7846 20.7846i −1.05518 1.05518i
\(389\) 19.9186 + 11.5000i 1.00991 + 0.583073i 0.911166 0.412039i \(-0.135183\pi\)
0.0987463 + 0.995113i \(0.468517\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) 3.46410 3.46410i 0.174964 0.174964i
\(393\) 23.6603 6.33975i 1.19350 0.319798i
\(394\) 10.3923 + 18.0000i 0.523557 + 0.906827i
\(395\) 0.232051 3.86603i 0.0116757 0.194521i
\(396\) 30.0000 + 51.9615i 1.50756 + 2.61116i
\(397\) 1.46410 5.46410i 0.0734812 0.274235i −0.919403 0.393316i \(-0.871328\pi\)
0.992885 + 0.119080i \(0.0379946\pi\)
\(398\) 25.9808 + 25.9808i 1.30230 + 1.30230i
\(399\) −27.7128 + 12.0000i −1.38738 + 0.600751i
\(400\) −12.0000 + 16.0000i −0.600000 + 0.800000i
\(401\) −31.5000 + 18.1865i −1.57303 + 0.908192i −0.577241 + 0.816574i \(0.695871\pi\)
−0.995794 + 0.0916181i \(0.970796\pi\)
\(402\) −56.7846 15.2154i −2.83216 0.758875i
\(403\) 0 0
\(404\) −17.3205 + 10.0000i −0.861727 + 0.497519i
\(405\) −1.20577 + 20.0885i −0.0599153 + 0.998203i
\(406\) 12.0000 0.595550
\(407\) 8.66025 8.66025i 0.429273 0.429273i
\(408\) −8.78461 32.7846i −0.434903 1.62308i
\(409\) −16.4545 + 28.5000i −0.813622 + 1.40923i 0.0966915 + 0.995314i \(0.469174\pi\)
−0.910313 + 0.413920i \(0.864159\pi\)
\(410\) −18.0000 6.00000i −0.888957 0.296319i
\(411\) 27.7128i 1.36697i
\(412\) 10.1436 + 37.8564i 0.499739 + 1.86505i
\(413\) 3.80385 14.1962i 0.187175 0.698547i
\(414\) −15.5885 + 27.0000i −0.766131 + 1.32698i
\(415\) −15.4904 + 3.16987i −0.760393 + 0.155603i
\(416\) 0 0
\(417\) −31.1769 + 31.1769i −1.52674 + 1.52674i
\(418\) −49.6410 19.6410i −2.42802 0.960674i
\(419\) 31.0000i 1.51445i −0.653155 0.757225i \(-0.726555\pi\)
0.653155 0.757225i \(-0.273445\pi\)
\(420\) −51.7128 34.1436i −2.52333 1.66604i
\(421\) −10.5000 + 6.06218i −0.511739 + 0.295452i −0.733548 0.679638i \(-0.762137\pi\)
0.221809 + 0.975090i \(0.428804\pi\)
\(422\) 61.4711 16.4711i 2.99237 0.801803i
\(423\) −24.5885 6.58846i −1.19553 0.320342i
\(424\) 31.1769 + 18.0000i 1.51408 + 0.874157i
\(425\) 14.0000 2.00000i 0.679100 0.0970143i
\(426\) 31.1769i 1.51053i
\(427\) −13.6603 + 3.66025i −0.661066 + 0.177132i
\(428\) −9.46410 + 2.53590i −0.457465 + 0.122577i
\(429\) 0 0
\(430\) −24.2487 48.4974i −1.16938 2.33875i
\(431\) 19.5000 + 11.2583i 0.939282 + 0.542295i 0.889735 0.456477i \(-0.150889\pi\)
0.0495468 + 0.998772i \(0.484222\pi\)
\(432\) 0 0
\(433\) −9.46410 + 2.53590i −0.454816 + 0.121867i −0.478952 0.877841i \(-0.658983\pi\)
0.0241361 + 0.999709i \(0.492316\pi\)
\(434\) −31.1769 + 18.0000i −1.49654 + 0.864028i
\(435\) −1.90192 9.29423i −0.0911903 0.445624i
\(436\) 6.92820i 0.331801i
\(437\) −2.70577 18.2942i −0.129435 0.875132i
\(438\) 6.00000 6.00000i 0.286691 0.286691i
\(439\) −14.7224 25.5000i −0.702663 1.21705i −0.967528 0.252763i \(-0.918661\pi\)
0.264865 0.964286i \(-0.414673\pi\)
\(440\) −10.9808 53.6603i −0.523487 2.55815i
\(441\) 1.50000 2.59808i 0.0714286 0.123718i
\(442\) 0 0
\(443\) 2.19615 + 8.19615i 0.104342 + 0.389411i 0.998270 0.0588009i \(-0.0187277\pi\)
−0.893927 + 0.448212i \(0.852061\pi\)
\(444\) 24.0000i 1.13899i
\(445\) −10.3923 + 5.19615i −0.492642 + 0.246321i
\(446\) −33.0000 + 57.1577i −1.56260 + 2.70649i
\(447\) 12.0455 + 44.9545i 0.569733 + 2.12627i
\(448\) −16.0000 + 16.0000i −0.755929 + 0.755929i
\(449\) −15.5885 −0.735665 −0.367832 0.929892i \(-0.619900\pi\)
−0.367832 + 0.929892i \(0.619900\pi\)
\(450\) −13.6865 + 34.0981i −0.645189 + 1.60740i
\(451\) 15.0000 8.66025i 0.706322 0.407795i
\(452\) −2.53590 9.46410i −0.119279 0.445154i
\(453\) 36.8827 + 9.88269i 1.73290 + 0.464329i
\(454\) 25.9808 15.0000i 1.21934 0.703985i
\(455\) 0 0
\(456\) −48.0000 + 20.7846i −2.24781 + 0.973329i
\(457\) −10.0000 10.0000i −0.467780 0.467780i 0.433414 0.901195i \(-0.357309\pi\)
−0.901195 + 0.433414i \(0.857309\pi\)
\(458\) 5.70577 21.2942i 0.266613 0.995014i
\(459\) 0 0
\(460\) 28.3923 25.1769i 1.32380 1.17388i
\(461\) 2.50000 + 4.33013i 0.116437 + 0.201674i 0.918353 0.395762i \(-0.129519\pi\)
−0.801917 + 0.597436i \(0.796186\pi\)
\(462\) 81.9615 21.9615i 3.81320 1.02174i
\(463\) 8.00000 8.00000i 0.371792 0.371792i −0.496338 0.868129i \(-0.665322\pi\)
0.868129 + 0.496338i \(0.165322\pi\)
\(464\) 6.92820 0.321634
\(465\) 18.8827 + 21.2942i 0.875664 + 0.987496i
\(466\) −27.0000 15.5885i −1.25075 0.722121i
\(467\) 9.00000 + 9.00000i 0.416470 + 0.416470i 0.883985 0.467515i \(-0.154851\pi\)
−0.467515 + 0.883985i \(0.654851\pi\)
\(468\) 0 0
\(469\) −13.8564 + 24.0000i −0.639829 + 1.10822i
\(470\) 38.7846 + 25.6077i 1.78900 + 1.18119i
\(471\) −21.0000 12.1244i −0.967629 0.558661i
\(472\) 6.58846 24.5885i 0.303258 1.13178i
\(473\) 47.8109 + 12.8109i 2.19835 + 0.589045i
\(474\) 10.3923 0.477334
\(475\) −6.20577 20.8923i −0.284740 0.958605i
\(476\) −32.0000 −1.46672
\(477\) 21.2942 + 5.70577i 0.974996 + 0.261249i
\(478\) −6.97372 + 26.0263i −0.318971 + 1.19041i
\(479\) −11.2583 6.50000i −0.514406 0.296993i 0.220237 0.975446i \(-0.429317\pi\)
−0.734643 + 0.678454i \(0.762650\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 21.0000 + 21.0000i 0.956524 + 0.956524i
\(483\) 20.7846 + 20.7846i 0.945732 + 0.945732i
\(484\) 48.4974 + 28.0000i 2.20443 + 1.27273i
\(485\) 10.9019 + 12.2942i 0.495031 + 0.558252i
\(486\) −54.0000 −2.44949
\(487\) −6.92820 + 6.92820i −0.313947 + 0.313947i −0.846437 0.532490i \(-0.821257\pi\)
0.532490 + 0.846437i \(0.321257\pi\)
\(488\) −23.6603 + 6.33975i −1.07105 + 0.286987i
\(489\) −19.0526 33.0000i −0.861586 1.49231i
\(490\) −4.09808 + 3.63397i −0.185132 + 0.164166i
\(491\) −18.5000 32.0429i −0.834893 1.44608i −0.894117 0.447833i \(-0.852196\pi\)
0.0592240 0.998245i \(-0.481137\pi\)
\(492\) 8.78461 32.7846i 0.396041 1.47804i
\(493\) −3.46410 3.46410i −0.156015 0.156015i
\(494\) 0 0
\(495\) −15.0000 30.0000i −0.674200 1.34840i
\(496\) −18.0000 + 10.3923i −0.808224 + 0.466628i
\(497\) 14.1962 + 3.80385i 0.636784 + 0.170626i
\(498\) −10.9808 40.9808i −0.492060 1.83639i
\(499\) 5.19615 3.00000i 0.232612 0.134298i −0.379165 0.925329i \(-0.623789\pi\)
0.611776 + 0.791031i \(0.290455\pi\)
\(500\) 28.9282 34.1051i 1.29371 1.52523i
\(501\) −48.0000 −2.14448
\(502\) −8.66025 + 8.66025i −0.386526 + 0.386526i
\(503\) −3.66025 13.6603i −0.163203 0.609081i −0.998263 0.0589217i \(-0.981234\pi\)
0.835060 0.550159i \(-0.185433\pi\)
\(504\) 20.7846 36.0000i 0.925820 1.60357i
\(505\) 10.0000 5.00000i 0.444994 0.222497i
\(506\) 51.9615i 2.30997i
\(507\) −8.24167 30.7583i −0.366025 1.36603i
\(508\) 10.1436 37.8564i 0.450049 1.67961i
\(509\) −15.5885 + 27.0000i −0.690946 + 1.19675i 0.280582 + 0.959830i \(0.409473\pi\)
−0.971528 + 0.236924i \(0.923861\pi\)
\(510\) 7.60770 + 37.1769i 0.336874 + 1.64622i
\(511\) −2.00000 3.46410i −0.0884748 0.153243i
\(512\) −27.7128 + 27.7128i −1.22474 + 1.22474i
\(513\) 0 0
\(514\) 60.0000i 2.64649i
\(515\) −4.39230 21.4641i −0.193548 0.945821i
\(516\) 84.0000 48.4974i 3.69789 2.13498i
\(517\) −40.9808 + 10.9808i −1.80233 + 0.482933i
\(518\) −16.3923 4.39230i −0.720237 0.192987i
\(519\) 10.3923 + 6.00000i 0.456172 + 0.263371i
\(520\) 0 0
\(521\) 1.73205i 0.0758825i −0.999280 0.0379413i \(-0.987920\pi\)
0.999280 0.0379413i \(-0.0120800\pi\)
\(522\) 12.2942 3.29423i 0.538104 0.144184i
\(523\) −11.8301 + 3.16987i −0.517295 + 0.138609i −0.508015 0.861348i \(-0.669621\pi\)
−0.00928008 + 0.999957i \(0.502954\pi\)
\(524\) 40.0000i 1.74741i
\(525\) 27.7128 + 20.7846i 1.20949 + 0.907115i
\(526\) 39.0000 + 22.5167i 1.70048 + 0.981773i
\(527\) 14.1962 + 3.80385i 0.618394 + 0.165698i
\(528\) 47.3205 12.6795i 2.05936 0.551804i
\(529\) 4.33013 2.50000i 0.188266 0.108696i
\(530\) −33.5885 22.1769i −1.45899 0.963304i
\(531\) 15.5885i 0.676481i
\(532\) 7.21539 + 48.7846i 0.312827 + 2.11508i
\(533\) 0 0
\(534\) −15.5885 27.0000i −0.674579 1.16840i
\(535\) 5.36603 1.09808i 0.231994 0.0474740i
\(536\) −24.0000 + 41.5692i −1.03664 + 1.79552i
\(537\) 12.0788 45.0788i 0.521240 1.94530i
\(538\) −1.09808 4.09808i −0.0473414 0.176681i
\(539\) 5.00000i 0.215365i
\(540\) 0 0
\(541\) 16.5000 28.5788i 0.709390 1.22870i −0.255693 0.966758i \(-0.582304\pi\)
0.965084 0.261942i \(-0.0843630\pi\)
\(542\) −9.50962 35.4904i −0.408473 1.52444i
\(543\) −12.0000 + 12.0000i −0.514969 + 0.514969i
\(544\) 0 0
\(545\) 0.232051 3.86603i 0.00993996 0.165602i
\(546\) 0 0
\(547\) −9.50962 35.4904i −0.406602 1.51746i −0.801082 0.598555i \(-0.795742\pi\)
0.394480 0.918905i \(-0.370925\pi\)
\(548\) −43.7128 11.7128i −1.86732 0.500347i
\(549\) −12.9904 + 7.50000i −0.554416 + 0.320092i
\(550\) 8.66025 + 60.6218i 0.369274 + 2.58492i
\(551\) −4.50000 + 6.06218i −0.191706 + 0.258257i
\(552\) 36.0000 + 36.0000i 1.53226 + 1.53226i
\(553\) 1.26795 4.73205i 0.0539187 0.201227i
\(554\) −6.92820 12.0000i −0.294351 0.509831i
\(555\) −0.803848 + 13.3923i −0.0341214 + 0.568472i
\(556\) 36.0000 + 62.3538i 1.52674 + 2.64439i
\(557\) −45.0788 + 12.0788i −1.91005 + 0.511797i −0.916253 + 0.400599i \(0.868802\pi\)
−0.993798 + 0.111198i \(0.964531\pi\)
\(558\) −27.0000 + 27.0000i −1.14300 + 1.14300i
\(559\) 0 0
\(560\) −18.9282 + 16.7846i −0.799863 + 0.709279i
\(561\) −30.0000 17.3205i −1.26660 0.731272i
\(562\) 6.00000 + 6.00000i 0.253095 + 0.253095i
\(563\) 19.0526 + 19.0526i 0.802970 + 0.802970i 0.983559 0.180589i \(-0.0578004\pi\)
−0.180589 + 0.983559i \(0.557800\pi\)
\(564\) −41.5692 + 72.0000i −1.75038 + 3.03175i
\(565\) 1.09808 + 5.36603i 0.0461964 + 0.225750i
\(566\) 12.0000 + 6.92820i 0.504398 + 0.291214i
\(567\) −6.58846 + 24.5885i −0.276689 + 1.03262i
\(568\) 24.5885 + 6.58846i 1.03171 + 0.276446i
\(569\) −1.73205 −0.0726113 −0.0363057 0.999341i \(-0.511559\pi\)
−0.0363057 + 0.999341i \(0.511559\pi\)
\(570\) 54.9615 19.9808i 2.30208 0.836902i
\(571\) 9.00000 0.376638 0.188319 0.982108i \(-0.439696\pi\)
0.188319 + 0.982108i \(0.439696\pi\)
\(572\) 0 0
\(573\) 4.43782 16.5622i 0.185393 0.691895i
\(574\) −20.7846 12.0000i −0.867533 0.500870i
\(575\) −16.6865 + 13.0981i −0.695877 + 0.546228i
\(576\) −12.0000 + 20.7846i −0.500000 + 0.866025i
\(577\) −7.00000 7.00000i −0.291414 0.291414i 0.546225 0.837639i \(-0.316064\pi\)
−0.837639 + 0.546225i \(0.816064\pi\)
\(578\) −15.5885 15.5885i −0.648394 0.648394i
\(579\) −20.7846 12.0000i −0.863779 0.498703i
\(580\) −15.4641 0.928203i −0.642112 0.0385415i
\(581\) −20.0000 −0.829740
\(582\) −31.1769 + 31.1769i −1.29232 + 1.29232i
\(583\) 35.4904 9.50962i 1.46986 0.393848i
\(584\) −3.46410 6.00000i −0.143346 0.248282i
\(585\) 0 0
\(586\) 12.0000 + 20.7846i 0.495715 + 0.858604i
\(587\) 6.58846 24.5885i 0.271935 1.01487i −0.685933 0.727665i \(-0.740606\pi\)
0.957868 0.287210i \(-0.0927276\pi\)
\(588\) −6.92820 6.92820i −0.285714 0.285714i
\(589\) 2.59808 22.5000i 0.107052 0.927096i
\(590\) −9.00000 + 27.0000i −0.370524 + 1.11157i
\(591\) 18.0000 10.3923i 0.740421 0.427482i
\(592\) −9.46410 2.53590i −0.388972 0.104225i
\(593\) 10.2487 + 38.2487i 0.420864 + 1.57069i 0.772792 + 0.634659i \(0.218860\pi\)
−0.351928 + 0.936027i \(0.614474\pi\)
\(594\) 0 0
\(595\) 17.8564 + 1.07180i 0.732041 + 0.0439394i
\(596\) 76.0000 3.11308
\(597\) 25.9808 25.9808i 1.06332 1.06332i
\(598\) 0 0
\(599\) 13.8564 24.0000i 0.566157 0.980613i −0.430784 0.902455i \(-0.641763\pi\)
0.996941 0.0781581i \(-0.0249039\pi\)
\(600\) 48.0000 + 36.0000i 1.95959 + 1.46969i
\(601\) 22.5167i 0.918474i −0.888314 0.459237i \(-0.848123\pi\)
0.888314 0.459237i \(-0.151877\pi\)
\(602\) −17.7513 66.2487i −0.723489 2.70010i
\(603\) −7.60770 + 28.3923i −0.309809 + 1.15622i
\(604\) 31.1769 54.0000i 1.26857 2.19723i
\(605\) −26.1244 17.2487i −1.06211 0.701260i
\(606\) 15.0000 + 25.9808i 0.609333 + 1.05540i
\(607\) 3.46410 3.46410i 0.140604 0.140604i −0.633302 0.773905i \(-0.718301\pi\)
0.773905 + 0.633302i \(0.218301\pi\)
\(608\) 0 0
\(609\) 12.0000i 0.486265i
\(610\) 26.8301 5.49038i 1.08632 0.222299i
\(611\) 0 0
\(612\) −32.7846 + 8.78461i −1.32524 + 0.355097i
\(613\) −15.0263 4.02628i −0.606906 0.162620i −0.0577376 0.998332i \(-0.518389\pi\)
−0.549168 + 0.835712i \(0.685055\pi\)
\(614\) −25.9808 15.0000i −1.04850 0.605351i
\(615\) −6.00000 + 18.0000i −0.241943 + 0.725830i
\(616\) 69.2820i 2.79145i
\(617\) 6.83013 1.83013i 0.274971 0.0736781i −0.118699 0.992930i \(-0.537872\pi\)
0.393669 + 0.919252i \(0.371206\pi\)
\(618\) 56.7846 15.2154i 2.28421 0.612053i
\(619\) 30.0000i 1.20580i 0.797816 + 0.602901i \(0.205989\pi\)
−0.797816 + 0.602901i \(0.794011\pi\)
\(620\) 41.5692 20.7846i 1.66946 0.834730i
\(621\) 0 0
\(622\) 47.3205 + 12.6795i 1.89738 + 0.508401i
\(623\) −14.1962 + 3.80385i −0.568757 + 0.152398i
\(624\) 0 0
\(625\) −17.2846 + 18.0622i −0.691384 + 0.722487i
\(626\) 69.2820i 2.76907i
\(627\) −19.6410 + 49.6410i −0.784387 + 1.98247i
\(628\) −28.0000 + 28.0000i −1.11732 + 1.11732i
\(629\) 3.46410 + 6.00000i 0.138123 + 0.239236i
\(630\) −25.6077 + 38.7846i −1.02023 + 1.54522i
\(631\) −20.5000 + 35.5070i −0.816092 + 1.41351i 0.0924489 + 0.995717i \(0.470531\pi\)
−0.908541 + 0.417796i \(0.862803\pi\)
\(632\) 2.19615 8.19615i 0.0873583 0.326025i
\(633\) −16.4711 61.4711i −0.654669 2.44326i
\(634\) 54.0000i 2.14461i
\(635\) −6.92820 + 20.7846i −0.274937 + 0.824812i
\(636\) 36.0000 62.3538i 1.42749 2.47249i
\(637\) 0 0
\(638\) 15.0000 15.0000i 0.593856 0.593856i
\(639\) 15.5885 0.616670
\(640\) 32.7846 29.0718i 1.29593 1.14916i
\(641\) −7.50000 + 4.33013i −0.296232 + 0.171030i −0.640749 0.767750i \(-0.721376\pi\)
0.344517 + 0.938780i \(0.388043\pi\)
\(642\) 3.80385 + 14.1962i 0.150126 + 0.560277i
\(643\) −27.3205 7.32051i −1.07742 0.288693i −0.323879 0.946099i \(-0.604987\pi\)
−0.753537 + 0.657406i \(0.771654\pi\)
\(644\) 41.5692 24.0000i 1.63806 0.945732i
\(645\) −48.4974 + 24.2487i −1.90958 + 0.954792i
\(646\) 18.0000 24.2487i 0.708201 0.954053i
\(647\) 10.0000 + 10.0000i 0.393141 + 0.393141i 0.875805 0.482665i \(-0.160331\pi\)
−0.482665 + 0.875805i \(0.660331\pi\)
\(648\) −11.4115 + 42.5885i −0.448288 + 1.67303i
\(649\) −12.9904 22.5000i −0.509917 0.883202i
\(650\) 0 0
\(651\) 18.0000 + 31.1769i 0.705476 + 1.22192i
\(652\) −60.1051 + 16.1051i −2.35390 + 0.630725i
\(653\) −23.0000 + 23.0000i −0.900060 + 0.900060i −0.995441 0.0953813i \(-0.969593\pi\)
0.0953813 + 0.995441i \(0.469593\pi\)
\(654\) 10.3923 0.406371
\(655\) −1.33975 + 22.3205i −0.0523482 + 0.872134i
\(656\) −12.0000 6.92820i −0.468521 0.270501i
\(657\) −3.00000 3.00000i −0.117041 0.117041i
\(658\) 41.5692 + 41.5692i 1.62054 + 1.62054i
\(659\) 1.73205 3.00000i 0.0674711 0.116863i −0.830316 0.557292i \(-0.811840\pi\)
0.897787 + 0.440429i \(0.145174\pi\)
\(660\) −107.321 + 21.9615i −4.17745 + 0.854851i
\(661\) 25.5000 + 14.7224i 0.991835 + 0.572636i 0.905822 0.423658i \(-0.139254\pi\)
0.0860127 + 0.996294i \(0.472587\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −34.6410 −1.34433
\(665\) −2.39230 27.4641i −0.0927696 1.06501i
\(666\) −18.0000 −0.697486
\(667\) 7.09808 + 1.90192i 0.274839 + 0.0736428i
\(668\) −20.2872 + 75.7128i −0.784935 + 2.92942i
\(669\) 57.1577 + 33.0000i 2.20984 + 1.27585i
\(670\) 29.5692 44.7846i 1.14236 1.73018i
\(671\) −12.5000 + 21.6506i −0.482557 + 0.835813i
\(672\) 0 0
\(673\) −13.8564 13.8564i −0.534125 0.534125i 0.387672 0.921797i \(-0.373279\pi\)
−0.921797 + 0.387672i \(0.873279\pi\)
\(674\) 36.3731 + 21.0000i 1.40104 + 0.808890i
\(675\) 0 0
\(676\) −52.0000 −2.00000
\(677\) 31.1769 31.1769i 1.19823 1.19823i 0.223529 0.974697i \(-0.428242\pi\)
0.974697 0.223529i \(-0.0717577\pi\)
\(678\) −14.1962 + 3.80385i −0.545200 + 0.146086i
\(679\) 10.3923 + 18.0000i 0.398820 + 0.690777i
\(680\) 30.9282 + 1.85641i 1.18604 + 0.0711899i
\(681\) −15.0000 25.9808i −0.574801 0.995585i
\(682\) −16.4711 + 61.4711i −0.630713 + 2.35385i
\(683\) 27.7128 + 27.7128i 1.06040 + 1.06040i 0.998055 + 0.0623468i \(0.0198585\pi\)
0.0623468 + 0.998055i \(0.480142\pi\)
\(684\) 20.7846 + 48.0000i 0.794719 + 1.83533i
\(685\) 24.0000 + 8.00000i 0.916993 + 0.305664i
\(686\) 36.0000 20.7846i 1.37449 0.793560i
\(687\) −21.2942 5.70577i −0.812425 0.217689i
\(688\) −10.2487 38.2487i −0.390728 1.45822i
\(689\) 0 0
\(690\) −37.7654 42.5885i −1.43770 1.62131i
\(691\) 15.0000 0.570627 0.285313 0.958434i \(-0.407902\pi\)
0.285313 + 0.958434i \(0.407902\pi\)
\(692\) 13.8564 13.8564i 0.526742 0.526742i
\(693\) −10.9808 40.9808i −0.417125 1.55673i
\(694\) −13.8564 + 24.0000i −0.525982 + 0.911028i
\(695\) −18.0000 36.0000i −0.682779 1.36556i
\(696\) 20.7846i 0.787839i
\(697\) 2.53590 + 9.46410i 0.0960540 + 0.358478i
\(698\) 11.4115 42.5885i 0.431933 1.61200i
\(699\) −15.5885 + 27.0000i −0.589610 + 1.02123i
\(700\) 44.4974 34.9282i 1.68184 1.32016i
\(701\) 11.0000 + 19.0526i 0.415464 + 0.719605i 0.995477 0.0950021i \(-0.0302858\pi\)
−0.580013 + 0.814607i \(0.696952\pi\)
\(702\) 0 0
\(703\) 8.36603 6.63397i 0.315531 0.250205i
\(704\) 40.0000i 1.50756i
\(705\) 25.6077 38.7846i 0.964442 1.46071i
\(706\) −18.0000 + 10.3923i −0.677439 + 0.391120i
\(707\) 13.6603 3.66025i 0.513747 0.137658i
\(708\) −49.1769 13.1769i −1.84818 0.495219i
\(709\) −12.9904 7.50000i −0.487864 0.281668i 0.235824 0.971796i \(-0.424221\pi\)
−0.723688 + 0.690127i \(0.757554\pi\)
\(710\) −27.0000 9.00000i −1.01329 0.337764i
\(711\) 5.19615i 0.194871i
\(712\) −24.5885 + 6.58846i −0.921491 + 0.246913i
\(713\) −21.2942 + 5.70577i −0.797475 + 0.213683i
\(714\) 48.0000i 1.79635i
\(715\) 0 0
\(716\) −66.0000 38.1051i −2.46654 1.42406i
\(717\) 26.0263 + 6.97372i 0.971969 + 0.260438i
\(718\) 80.4449 21.5551i 3.00218 0.804431i
\(719\) 6.06218 3.50000i 0.226081 0.130528i −0.382682 0.923880i \(-0.624999\pi\)
0.608763 + 0.793352i \(0.291666\pi\)
\(720\) −14.7846 + 22.3923i −0.550990 + 0.834512i
\(721\) 27.7128i 1.03208i
\(722\) −41.0263 21.9737i −1.52684 0.817777i
\(723\) 21.0000 21.0000i 0.780998 0.780998i
\(724\) 13.8564 + 24.0000i 0.514969 + 0.891953i
\(725\) 8.59808 + 1.03590i 0.319325 + 0.0384723i
\(726\) 42.0000 72.7461i 1.55877 2.69986i
\(727\) 6.95448 25.9545i 0.257927 0.962598i −0.708511 0.705700i \(-0.750633\pi\)
0.966438 0.256899i \(-0.0827006\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 3.46410 + 6.92820i 0.128212 + 0.256424i
\(731\) −14.0000 + 24.2487i −0.517809 + 0.896871i
\(732\) 12.6795 + 47.3205i 0.468648 + 1.74902i
\(733\) 19.0000 19.0000i 0.701781 0.701781i −0.263012 0.964793i \(-0.584716\pi\)
0.964793 + 0.263012i \(0.0847158\pi\)
\(734\) −76.2102 −2.81297
\(735\) 3.63397 + 4.09808i 0.134041 + 0.151160i
\(736\) 0 0
\(737\) 12.6795 + 47.3205i 0.467055 + 1.74307i
\(738\) −24.5885 6.58846i −0.905114 0.242524i
\(739\) 16.4545 9.50000i 0.605288 0.349463i −0.165831 0.986154i \(-0.553031\pi\)
0.771119 + 0.636691i \(0.219697\pi\)
\(740\) 20.7846 + 6.92820i 0.764057 + 0.254686i
\(741\) 0 0
\(742\) −36.0000 36.0000i −1.32160 1.32160i
\(743\) −5.70577 + 21.2942i −0.209324 + 0.781209i 0.778763 + 0.627318i \(0.215847\pi\)
−0.988088 + 0.153892i \(0.950819\pi\)
\(744\) 31.1769 + 54.0000i 1.14300 + 1.97974i
\(745\) −42.4090 2.54552i −1.55374 0.0932605i
\(746\) −12.0000 20.7846i −0.439351 0.760979i
\(747\) −20.4904 + 5.49038i −0.749704 + 0.200883i
\(748\) −40.0000 + 40.0000i −1.46254 + 1.46254i
\(749\) 6.92820 0.253151
\(750\) −51.1577 43.3923i −1.86801 1.58446i
\(751\) 7.50000 + 4.33013i 0.273679 + 0.158009i 0.630558 0.776142i \(-0.282826\pi\)
−0.356879 + 0.934150i \(0.616159\pi\)
\(752\) 24.0000 + 24.0000i 0.875190 + 0.875190i
\(753\) 8.66025 + 8.66025i 0.315597 + 0.315597i
\(754\) 0 0
\(755\) −19.2058 + 29.0885i −0.698970 + 1.05864i
\(756\) 0 0
\(757\) 5.12436 19.1244i 0.186248 0.695087i −0.808112 0.589029i \(-0.799510\pi\)
0.994360 0.106058i \(-0.0338229\pi\)
\(758\) −77.8634 20.8634i −2.82813 0.757795i
\(759\) 51.9615 1.88608
\(760\) −4.14359 47.5692i −0.150304 1.72552i
\(761\) 34.0000 1.23250 0.616250 0.787551i \(-0.288651\pi\)
0.616250 + 0.787551i \(0.288651\pi\)
\(762\) −56.7846 15.2154i −2.05709 0.551195i
\(763\) 1.26795 4.73205i 0.0459028 0.171312i
\(764\) −24.2487 14.0000i −0.877288 0.506502i
\(765\) 18.5885 3.80385i 0.672067 0.137528i
\(766\) −36.0000 + 62.3538i −1.30073 + 2.25294i
\(767\) 0 0
\(768\) 55.4256 + 55.4256i 2.00000 + 2.00000i
\(769\) −18.1865 10.5000i −0.655823 0.378640i 0.134860 0.990865i \(-0.456941\pi\)
−0.790684 + 0.612225i \(0.790275\pi\)
\(770\) −4.64102 + 77.3205i −0.167251 + 2.78644i
\(771\) 60.0000 2.16085
\(772\) −27.7128 + 27.7128i −0.997406 + 0.997406i
\(773\) 9.46410 2.53590i 0.340400 0.0912099i −0.0845694 0.996418i \(-0.526951\pi\)
0.424970 + 0.905208i \(0.360285\pi\)
\(774\) −36.3731 63.0000i −1.30740 2.26449i
\(775\) −23.8923 + 10.2058i −0.858237 + 0.366602i
\(776\) 18.0000 + 31.1769i 0.646162 + 1.11919i
\(777\) −4.39230 + 16.3923i −0.157573 + 0.588071i
\(778\) −39.8372 39.8372i −1.42823 1.42823i
\(779\) 13.8564 6.00000i 0.496457 0.214972i
\(780\) 0 0
\(781\) 22.5000 12.9904i 0.805113 0.464832i
\(782\) −28.3923 7.60770i −1.01531 0.272051i
\(783\) 0 0
\(784\) −3.46410 + 2.00000i −0.123718 + 0.0714286i
\(785\) 16.5622 14.6865i 0.591129 0.524185i
\(786\) −60.0000 −2.14013
\(787\) −24.2487 + 24.2487i −0.864373 + 0.864373i −0.991843 0.127469i \(-0.959315\pi\)
0.127469 + 0.991843i \(0.459315\pi\)
\(788\) −8.78461 32.7846i −0.312939 1.16790i
\(789\) 22.5167 39.0000i 0.801614 1.38844i
\(790\) −3.00000 + 9.00000i −0.106735 + 0.320206i
\(791\) 6.92820i 0.246339i
\(792\) −19.0192 70.9808i −0.675819 2.52219i
\(793\) 0 0
\(794\) −6.92820 + 12.0000i −0.245873 + 0.425864i
\(795\) −22.1769 + 33.5885i −0.786534 + 1.19126i
\(796\) −30.0000 51.9615i −1.06332 1.84173i
\(797\) 1.73205 1.73205i 0.0613524 0.0613524i −0.675765 0.737117i \(-0.736187\pi\)
0.737117 + 0.675765i \(0.236187\pi\)
\(798\) 73.1769 10.8231i 2.59043 0.383133i
\(799\) 24.0000i 0.849059i
\(800\) 0 0
\(801\) −13.5000 + 7.79423i −0.476999 + 0.275396i
\(802\) 86.0596 23.0596i 3.03887 0.814263i
\(803\) −6.83013 1.83013i −0.241030 0.0645838i
\(804\) 83.1384 + 48.0000i 2.93207 + 1.69283i
\(805\) −24.0000 + 12.0000i −0.845889 + 0.422944i
\(806\) 0 0
\(807\) −4.09808 + 1.09808i −0.144259 + 0.0386541i
\(808\) 23.6603 6.33975i 0.832365 0.223031i
\(809\) 35.0000i 1.23053i 0.788319 + 0.615267i \(0.210952\pi\)
−0.788319 + 0.615267i \(0.789048\pi\)
\(810\) 15.5885 46.7654i 0.547723 1.64317i
\(811\) −34.5000 19.9186i −1.21146 0.699436i −0.248382 0.968662i \(-0.579899\pi\)
−0.963077 + 0.269226i \(0.913232\pi\)
\(812\) −18.9282 5.07180i −0.664250 0.177985i
\(813\) −35.4904 + 9.50962i −1.24470 + 0.333517i
\(814\) −25.9808 + 15.0000i −0.910625 + 0.525750i
\(815\) 34.0788 6.97372i 1.19373 0.244279i
\(816\) 27.7128i 0.970143i
\(817\) 40.1244 + 15.8756i 1.40377 + 0.555418i
\(818\) 57.0000 57.0000i 1.99296 1.99296i
\(819\) 0 0
\(820\) 25.8564 + 17.0718i 0.902945 + 0.596173i
\(821\) 14.5000 25.1147i 0.506053 0.876510i −0.493922 0.869506i \(-0.664437\pi\)
0.999975 0.00700413i \(-0.00222950\pi\)
\(822\) −17.5692 + 65.5692i −0.612797 + 2.28699i
\(823\) −0.732051 2.73205i −0.0255177 0.0952333i 0.951993 0.306121i \(-0.0990312\pi\)
−0.977510 + 0.210888i \(0.932365\pi\)
\(824\) 48.0000i 1.67216i
\(825\) 60.6218 8.66025i 2.11058 0.301511i
\(826\) −18.0000 + 31.1769i −0.626300 + 1.08478i
\(827\) 6.33975 + 23.6603i 0.220455 + 0.822748i 0.984175 + 0.177200i \(0.0567040\pi\)
−0.763720 + 0.645547i \(0.776629\pi\)
\(828\) 36.0000 36.0000i 1.25109 1.25109i
\(829\) 17.3205 0.601566 0.300783 0.953693i \(-0.402752\pi\)
0.300783 + 0.953693i \(0.402752\pi\)
\(830\) 38.6603 + 2.32051i 1.34192 + 0.0805460i
\(831\) −12.0000 + 6.92820i −0.416275 + 0.240337i
\(832\) 0 0
\(833\) 2.73205 + 0.732051i 0.0946600 + 0.0253641i
\(834\) 93.5307 54.0000i 3.23870 1.86987i
\(835\) 13.8564 41.5692i 0.479521 1.43856i
\(836\) 70.0000 + 51.9615i 2.42100 + 1.79713i
\(837\) 0 0
\(838\) −19.6532 + 73.3468i −0.678909 + 2.53372i
\(839\) 13.8564 + 24.0000i 0.478376 + 0.828572i 0.999693 0.0247915i \(-0.00789218\pi\)
−0.521316 + 0.853363i \(0.674559\pi\)
\(840\) 50.3538 + 56.7846i 1.73737 + 1.95926i
\(841\) 13.0000 + 22.5167i 0.448276 + 0.776437i
\(842\) 28.6865 7.68653i 0.988603 0.264895i
\(843\) 6.00000 6.00000i 0.206651 0.206651i
\(844\) −103.923 −3.57718
\(845\) 29.0167 + 1.74167i 0.998203 + 0.0599153i
\(846\) 54.0000 + 31.1769i 1.85656 + 1.07188i
\(847\) −28.0000 28.0000i −0.962091 0.962091i
\(848\) −20.7846 20.7846i −0.713746 0.713746i
\(849\) 6.92820 12.0000i 0.237775 0.411839i
\(850\) −34.3923 4.14359i −1.17965 0.142124i
\(851\) −9.00000 5.19615i −0.308516 0.178122i
\(852\) 13.1769 49.1769i 0.451434 1.68477i
\(853\) −23.2224 6.22243i −0.795121 0.213052i −0.161680 0.986843i \(-0.551691\pi\)
−0.633441 + 0.773791i \(0.718358\pi\)
\(854\) 34.6410 1.18539
\(855\) −9.99038 27.4808i −0.341664 0.939822i
\(856\) 12.0000 0.410152
\(857\) −54.4186 14.5814i −1.85890 0.498092i −0.859000 0.511976i \(-0.828914\pi\)
−0.999904 + 0.0138842i \(0.995580\pi\)
\(858\) 0 0
\(859\) −45.8993 26.5000i −1.56607 0.904168i −0.996621 0.0821386i \(-0.973825\pi\)
−0.569445 0.822030i \(-0.692842\pi\)
\(860\) 17.7513 + 86.7461i 0.605314 + 2.95802i
\(861\) −12.0000 + 20.7846i −0.408959 + 0.708338i
\(862\) −39.0000 39.0000i −1.32835 1.32835i
\(863\) −22.5167 22.5167i −0.766476 0.766476i 0.211008 0.977484i \(-0.432325\pi\)
−0.977484 + 0.211008i \(0.932325\pi\)
\(864\) 0 0
\(865\) −8.19615 + 7.26795i −0.278678 + 0.247118i
\(866\) 24.0000 0.815553
\(867\) −15.5885 + 15.5885i −0.529412 + 0.529412i
\(868\) 56.7846 15.2154i 1.92740 0.516444i
\(869\) −4.33013 7.50000i −0.146889 0.254420i
\(870\) −1.39230 + 23.1962i −0.0472036 + 0.786423i
\(871\) 0 0
\(872\) 2.19615 8.19615i 0.0743711 0.277557i
\(873\) 15.5885 + 15.5885i 0.527589 + 0.527589i
\(874\) −5.19615 + 45.0000i −0.175762 + 1.52215i
\(875\) −26.0000 + 18.0000i −0.878960 + 0.608511i
\(876\) −12.0000 + 6.92820i −0.405442 + 0.234082i
\(877\) 7.09808 + 1.90192i 0.239685 + 0.0642234i 0.376662 0.926351i \(-0.377072\pi\)
−0.136977 + 0.990574i \(0.543739\pi\)
\(878\) 18.6673 + 69.6673i 0.629991 + 2.35116i
\(879\) 20.7846 12.0000i 0.701047 0.404750i
\(880\) −2.67949 + 44.6410i −0.0903257 + 1.50485i
\(881\) 47.0000 1.58347 0.791735 0.610865i \(-0.209178\pi\)
0.791735 + 0.610865i \(0.209178\pi\)
\(882\) −5.19615 + 5.19615i −0.174964 + 0.174964i
\(883\) 5.12436 + 19.1244i 0.172448 + 0.643586i 0.996972 + 0.0777587i \(0.0247764\pi\)
−0.824524 + 0.565827i \(0.808557\pi\)
\(884\) 0 0
\(885\) 27.0000 + 9.00000i 0.907595 + 0.302532i
\(886\) 20.7846i 0.698273i
\(887\) 11.4115 + 42.5885i 0.383162 + 1.42998i 0.841044 + 0.540967i \(0.181942\pi\)
−0.457882 + 0.889013i \(0.651392\pi\)
\(888\) −7.60770 + 28.3923i −0.255298 + 0.952783i
\(889\) −13.8564 + 24.0000i −0.464729 + 0.804934i
\(890\) 27.8827 5.70577i 0.934630 0.191258i
\(891\) 22.5000 + 38.9711i 0.753778 + 1.30558i
\(892\) 76.2102 76.2102i 2.55171 2.55171i
\(893\) −36.5885 + 5.41154i −1.22439 + 0.181090i
\(894\) 114.000i 3.81273i
\(895\) 35.5526 + 23.4737i 1.18839 + 0.784640i
\(896\) 48.0000 27.7128i 1.60357 0.925820i
\(897\) 0 0
\(898\) 36.8827 + 9.88269i 1.23079 + 0.329789i
\(899\) 7.79423 + 4.50000i 0.259952 + 0.150083i
\(900\) 36.0000 48.0000i 1.20000 1.60000i
\(901\) 20.7846i 0.692436i
\(902\) −40.9808 + 10.9808i −1.36451 + 0.365619i
\(903\) −66.2487 + 17.7513i −2.20462 + 0.590726i
\(904\) 12.0000i 0.399114i
\(905\) −6.92820 13.8564i −0.230301 0.460603i
\(906\) −81.0000 46.7654i −2.69104 1.55368i
\(907\) −4.73205 1.26795i −0.157125 0.0421016i 0.179399 0.983776i \(-0.442585\pi\)
−0.336524 + 0.941675i \(0.609251\pi\)
\(908\) −47.3205 + 12.6795i −1.57039 + 0.420784i
\(909\) 12.9904 7.50000i 0.430864 0.248759i
\(910\) 0 0
\(911\) 29.4449i 0.975552i 0.872969 + 0.487776i \(0.162192\pi\)
−0.872969 + 0.487776i \(0.837808\pi\)
\(912\) 42.2487 6.24871i 1.39899 0.206916i
\(913\) −25.0000 + 25.0000i −0.827379 + 0.827379i
\(914\) 17.3205 + 30.0000i 0.572911 + 0.992312i
\(915\) −5.49038 26.8301i −0.181506 0.886977i
\(916\) −18.0000 + 31.1769i −0.594737 + 1.03011i
\(917\) −7.32051 + 27.3205i −0.241744 + 0.902203i
\(918\) 0 0
\(919\) 22.0000i 0.725713i −0.931845 0.362857i \(-0.881802\pi\)
0.931845 0.362857i \(-0.118198\pi\)
\(920\) −41.5692 + 20.7846i −1.37050 + 0.685248i
\(921\) −15.0000 + 25.9808i −0.494267 + 0.856095i
\(922\) −3.16987 11.8301i −0.104394 0.389604i
\(923\) 0 0
\(924\) −138.564 −4.55842
\(925\) −11.3660 4.56218i −0.373713 0.150003i
\(926\) −24.0000 + 13.8564i −0.788689 + 0.455350i
\(927\) −7.60770 28.3923i −0.249869 0.932526i
\(928\) 0 0
\(929\) 6.06218 3.50000i 0.198894 0.114831i −0.397246 0.917712i \(-0.630034\pi\)
0.596139 + 0.802881i \(0.296701\pi\)
\(930\) −31.1769 62.3538i −1.02233 2.04466i
\(931\) 0.500000 4.33013i 0.0163868 0.141914i
\(932\) 36.0000 + 36.0000i 1.17922 + 1.17922i
\(933\) 12.6795 47.3205i 0.415108 1.54920i
\(934\) −15.5885 27.0000i −0.510070 0.883467i
\(935\) 23.6603 20.9808i 0.773773 0.686144i
\(936\) 0 0
\(937\) −23.2224 + 6.22243i −0.758644 + 0.203278i −0.617349 0.786690i \(-0.711793\pi\)
−0.141295 + 0.989968i \(0.545127\pi\)
\(938\) 48.0000 48.0000i 1.56726 1.56726i
\(939\) −69.2820 −2.26093
\(940\) −50.3538 56.7846i −1.64236 1.85211i
\(941\) −28.5000 16.4545i −0.929073 0.536401i −0.0425550 0.999094i \(-0.513550\pi\)
−0.886518 + 0.462693i \(0.846883\pi\)
\(942\) 42.0000 + 42.0000i 1.36843 + 1.36843i
\(943\) −10.3923 10.3923i −0.338420 0.338420i
\(944\) −10.3923 + 18.0000i −0.338241 + 0.585850i
\(945\) 0 0
\(946\) −105.000 60.6218i −3.41384 1.97098i
\(947\) −1.46410 + 5.46410i −0.0475769 + 0.177559i −0.985626 0.168944i \(-0.945964\pi\)
0.938049 + 0.346503i \(0.112631\pi\)
\(948\) −16.3923 4.39230i −0.532397 0.142655i
\(949\) 0 0
\(950\) 1.43782 + 53.3660i 0.0466491 + 1.73142i
\(951\) −54.0000 −1.75107
\(952\) 37.8564 + 10.1436i 1.22693 + 0.328756i
\(953\) −8.87564 + 33.1244i −0.287510 + 1.07300i 0.659475 + 0.751726i \(0.270779\pi\)
−0.946985 + 0.321277i \(0.895888\pi\)
\(954\) −46.7654 27.0000i −1.51408 0.874157i
\(955\) 13.0622 + 8.62436i 0.422682 + 0.279078i
\(956\) 22.0000 38.1051i 0.711531 1.23241i
\(957\) −15.0000 15.0000i −0.484881 0.484881i
\(958\) 22.5167 + 22.5167i 0.727480 + 0.727480i
\(959\) 27.7128 + 16.0000i 0.894893 + 0.516667i
\(960\) −29.0718 32.7846i −0.938288 1.05812i
\(961\) 4.00000 0.129032
\(962\) 0 0
\(963\) 7.09808 1.90192i 0.228732 0.0612886i
\(964\) −24.2487 42.0000i −0.780998 1.35273i
\(965\) 16.3923 14.5359i 0.527687 0.467927i
\(966\) −36.0000 62.3538i −1.15828 2.00620i
\(967\) 9.15064 34.1506i 0.294265 1.09821i −0.647535 0.762036i \(-0.724200\pi\)
0.941800 0.336175i \(-0.109133\pi\)
\(968\) −48.4974 48.4974i −1.55877 1.55877i
\(969\) −24.2487 18.0000i −0.778981 0.578243i
\(970\) −18.0000 36.0000i −0.577945 1.15589i
\(971\) −45.0000 + 25.9808i −1.44412 + 0.833762i −0.998121 0.0612718i \(-0.980484\pi\)
−0.445998 + 0.895034i \(0.647151\pi\)
\(972\) 85.1769 + 22.8231i 2.73205 + 0.732051i
\(973\) −13.1769 49.1769i −0.422432 1.57654i
\(974\) 20.7846 12.0000i 0.665982 0.384505i
\(975\) 0 0
\(976\) 20.0000 0.640184
\(977\) 31.1769 31.1769i 0.997438 0.997438i −0.00255886 0.999997i \(-0.500815\pi\)
0.999997 + 0.00255886i \(0.000814512\pi\)
\(978\) 24.1577 + 90.1577i 0.772477 + 2.88292i
\(979\) −12.9904 + 22.5000i −0.415174 + 0.719103i
\(980\) 8.00000 4.00000i 0.255551 0.127775i
\(981\) 5.19615i 0.165900i
\(982\) 23.4571 + 87.5429i 0.748545 + 2.79361i
\(983\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(984\) −20.7846 + 36.0000i −0.662589 + 1.14764i
\(985\) 3.80385 + 18.5885i 0.121201 + 0.592277i
\(986\) 6.00000 + 10.3923i 0.191079 + 0.330958i
\(987\) 41.5692 41.5692i 1.32316 1.32316i
\(988\) 0 0
\(989\) 42.0000i 1.33552i
\(990\) 16.4711 + 80.4904i 0.523487 + 2.55815i
\(991\) −18.0000 + 10.3923i −0.571789 + 0.330122i −0.757863 0.652413i \(-0.773757\pi\)
0.186075 + 0.982536i \(0.440423\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −31.1769 18.0000i −0.988872 0.570925i
\(995\) 15.0000 + 30.0000i 0.475532 + 0.951064i
\(996\) 69.2820i 2.19529i
\(997\) 10.9282 2.92820i 0.346100 0.0927371i −0.0815818 0.996667i \(-0.525997\pi\)
0.427681 + 0.903930i \(0.359331\pi\)
\(998\) −14.1962 + 3.80385i −0.449371 + 0.120409i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 95.2.l.a.12.1 yes 4
3.2 odd 2 855.2.cj.d.487.1 4
5.2 odd 4 475.2.p.d.468.1 4
5.3 odd 4 inner 95.2.l.a.88.1 yes 4
5.4 even 2 475.2.p.d.107.1 4
15.8 even 4 855.2.cj.d.658.1 4
19.8 odd 6 inner 95.2.l.a.27.1 yes 4
57.8 even 6 855.2.cj.d.217.1 4
95.8 even 12 inner 95.2.l.a.8.1 4
95.27 even 12 475.2.p.d.293.1 4
95.84 odd 6 475.2.p.d.407.1 4
285.8 odd 12 855.2.cj.d.388.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.l.a.8.1 4 95.8 even 12 inner
95.2.l.a.12.1 yes 4 1.1 even 1 trivial
95.2.l.a.27.1 yes 4 19.8 odd 6 inner
95.2.l.a.88.1 yes 4 5.3 odd 4 inner
475.2.p.d.107.1 4 5.4 even 2
475.2.p.d.293.1 4 95.27 even 12
475.2.p.d.407.1 4 95.84 odd 6
475.2.p.d.468.1 4 5.2 odd 4
855.2.cj.d.217.1 4 57.8 even 6
855.2.cj.d.388.1 4 285.8 odd 12
855.2.cj.d.487.1 4 3.2 odd 2
855.2.cj.d.658.1 4 15.8 even 4