Properties

Label 475.2.p.d.293.1
Level $475$
Weight $2$
Character 475.293
Analytic conductor $3.793$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [475,2,Mod(107,475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(475, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("475.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.p (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,6,6,0,0,12,8,0,0,0,-20,0,0,0,0,8,4,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 293.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 475.293
Dual form 475.2.p.d.107.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.36603 - 0.633975i) q^{2} +(0.633975 + 2.36603i) q^{3} +(3.46410 - 2.00000i) q^{4} +(3.00000 + 5.19615i) q^{6} +(2.00000 - 2.00000i) q^{7} +(3.46410 - 3.46410i) q^{8} +(-2.59808 + 1.50000i) q^{9} -5.00000 q^{11} +(6.92820 + 6.92820i) q^{12} +(3.46410 - 6.00000i) q^{14} +(2.00000 - 3.46410i) q^{16} +(-0.732051 - 2.73205i) q^{17} +(-5.19615 + 5.19615i) q^{18} +(-4.33013 + 0.500000i) q^{19} +(6.00000 + 3.46410i) q^{21} +(-11.8301 + 3.16987i) q^{22} +(-1.09808 + 4.09808i) q^{23} +(10.3923 + 6.00000i) q^{24} +(2.92820 - 10.9282i) q^{28} +(0.866025 + 1.50000i) q^{29} -5.19615i q^{31} +(-3.16987 - 11.8301i) q^{33} +(-3.46410 - 6.00000i) q^{34} +(-6.00000 + 10.3923i) q^{36} +(1.73205 + 1.73205i) q^{37} +(-9.92820 + 3.92820i) q^{38} +(-3.00000 - 1.73205i) q^{41} +(16.3923 + 4.39230i) q^{42} +(9.56218 - 2.56218i) q^{43} +(-17.3205 + 10.0000i) q^{44} +10.3923i q^{46} +(-8.19615 - 2.19615i) q^{47} +(9.46410 + 2.53590i) q^{48} -1.00000i q^{49} +(6.00000 - 3.46410i) q^{51} +(7.09808 + 1.90192i) q^{53} -13.8564i q^{56} +(-3.92820 - 9.92820i) q^{57} +(3.00000 + 3.00000i) q^{58} +(2.59808 - 4.50000i) q^{59} +(2.50000 + 4.33013i) q^{61} +(-3.29423 - 12.2942i) q^{62} +(-2.19615 + 8.19615i) q^{63} +8.00000i q^{64} +(-15.0000 - 25.9808i) q^{66} +(2.53590 - 9.46410i) q^{67} +(-8.00000 - 8.00000i) q^{68} -10.3923 q^{69} +(-4.50000 - 2.59808i) q^{71} +(-3.80385 + 14.1962i) q^{72} +(-1.36603 + 0.366025i) q^{73} +(5.19615 + 3.00000i) q^{74} +(-14.0000 + 10.3923i) q^{76} +(-10.0000 + 10.0000i) q^{77} +(0.866025 - 1.50000i) q^{79} +(-4.50000 + 7.79423i) q^{81} +(-8.19615 - 2.19615i) q^{82} +(-5.00000 - 5.00000i) q^{83} +27.7128 q^{84} +(21.0000 - 12.1244i) q^{86} +(-3.00000 + 3.00000i) q^{87} +(-17.3205 + 17.3205i) q^{88} +(2.59808 + 4.50000i) q^{89} +(4.39230 + 16.3923i) q^{92} +(12.2942 - 3.29423i) q^{93} -20.7846 q^{94} +(7.09808 - 1.90192i) q^{97} +(-0.633975 - 2.36603i) q^{98} +(12.9904 - 7.50000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{2} + 6 q^{3} + 12 q^{6} + 8 q^{7} - 20 q^{11} + 8 q^{16} + 4 q^{17} + 24 q^{21} - 30 q^{22} + 6 q^{23} - 16 q^{28} - 30 q^{33} - 24 q^{36} - 12 q^{38} - 12 q^{41} + 24 q^{42} + 14 q^{43} - 12 q^{47}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.36603 0.633975i 1.67303 0.448288i 0.707107 0.707107i \(-0.250000\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(3\) 0.633975 + 2.36603i 0.366025 + 1.36603i 0.866025 + 0.500000i \(0.166667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(4\) 3.46410 2.00000i 1.73205 1.00000i
\(5\) 0 0
\(6\) 3.00000 + 5.19615i 1.22474 + 2.12132i
\(7\) 2.00000 2.00000i 0.755929 0.755929i −0.219650 0.975579i \(-0.570491\pi\)
0.975579 + 0.219650i \(0.0704915\pi\)
\(8\) 3.46410 3.46410i 1.22474 1.22474i
\(9\) −2.59808 + 1.50000i −0.866025 + 0.500000i
\(10\) 0 0
\(11\) −5.00000 −1.50756 −0.753778 0.657129i \(-0.771771\pi\)
−0.753778 + 0.657129i \(0.771771\pi\)
\(12\) 6.92820 + 6.92820i 2.00000 + 2.00000i
\(13\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(14\) 3.46410 6.00000i 0.925820 1.60357i
\(15\) 0 0
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) −0.732051 2.73205i −0.177548 0.662620i −0.996104 0.0881917i \(-0.971891\pi\)
0.818555 0.574428i \(-0.194775\pi\)
\(18\) −5.19615 + 5.19615i −1.22474 + 1.22474i
\(19\) −4.33013 + 0.500000i −0.993399 + 0.114708i
\(20\) 0 0
\(21\) 6.00000 + 3.46410i 1.30931 + 0.755929i
\(22\) −11.8301 + 3.16987i −2.52219 + 0.675819i
\(23\) −1.09808 + 4.09808i −0.228965 + 0.854508i 0.751812 + 0.659377i \(0.229180\pi\)
−0.980777 + 0.195131i \(0.937487\pi\)
\(24\) 10.3923 + 6.00000i 2.12132 + 1.22474i
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 2.92820 10.9282i 0.553378 2.06524i
\(29\) 0.866025 + 1.50000i 0.160817 + 0.278543i 0.935162 0.354221i \(-0.115254\pi\)
−0.774345 + 0.632764i \(0.781920\pi\)
\(30\) 0 0
\(31\) 5.19615i 0.933257i −0.884454 0.466628i \(-0.845469\pi\)
0.884454 0.466628i \(-0.154531\pi\)
\(32\) 0 0
\(33\) −3.16987 11.8301i −0.551804 2.05936i
\(34\) −3.46410 6.00000i −0.594089 1.02899i
\(35\) 0 0
\(36\) −6.00000 + 10.3923i −1.00000 + 1.73205i
\(37\) 1.73205 + 1.73205i 0.284747 + 0.284747i 0.834999 0.550252i \(-0.185468\pi\)
−0.550252 + 0.834999i \(0.685468\pi\)
\(38\) −9.92820 + 3.92820i −1.61057 + 0.637239i
\(39\) 0 0
\(40\) 0 0
\(41\) −3.00000 1.73205i −0.468521 0.270501i 0.247099 0.968990i \(-0.420523\pi\)
−0.715621 + 0.698489i \(0.753856\pi\)
\(42\) 16.3923 + 4.39230i 2.52939 + 0.677747i
\(43\) 9.56218 2.56218i 1.45822 0.390728i 0.559344 0.828935i \(-0.311053\pi\)
0.898874 + 0.438207i \(0.144386\pi\)
\(44\) −17.3205 + 10.0000i −2.61116 + 1.50756i
\(45\) 0 0
\(46\) 10.3923i 1.53226i
\(47\) −8.19615 2.19615i −1.19553 0.320342i −0.394462 0.918912i \(-0.629069\pi\)
−0.801070 + 0.598571i \(0.795736\pi\)
\(48\) 9.46410 + 2.53590i 1.36603 + 0.366025i
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 6.00000 3.46410i 0.840168 0.485071i
\(52\) 0 0
\(53\) 7.09808 + 1.90192i 0.974996 + 0.261249i 0.710936 0.703257i \(-0.248272\pi\)
0.264060 + 0.964506i \(0.414938\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 13.8564i 1.85164i
\(57\) −3.92820 9.92820i −0.520303 1.31502i
\(58\) 3.00000 + 3.00000i 0.393919 + 0.393919i
\(59\) 2.59808 4.50000i 0.338241 0.585850i −0.645861 0.763455i \(-0.723502\pi\)
0.984102 + 0.177605i \(0.0568349\pi\)
\(60\) 0 0
\(61\) 2.50000 + 4.33013i 0.320092 + 0.554416i 0.980507 0.196485i \(-0.0629528\pi\)
−0.660415 + 0.750901i \(0.729619\pi\)
\(62\) −3.29423 12.2942i −0.418367 1.56137i
\(63\) −2.19615 + 8.19615i −0.276689 + 1.03262i
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) −15.0000 25.9808i −1.84637 3.19801i
\(67\) 2.53590 9.46410i 0.309809 1.15622i −0.618917 0.785457i \(-0.712428\pi\)
0.928726 0.370767i \(-0.120905\pi\)
\(68\) −8.00000 8.00000i −0.970143 0.970143i
\(69\) −10.3923 −1.25109
\(70\) 0 0
\(71\) −4.50000 2.59808i −0.534052 0.308335i 0.208613 0.977998i \(-0.433105\pi\)
−0.742665 + 0.669663i \(0.766438\pi\)
\(72\) −3.80385 + 14.1962i −0.448288 + 1.67303i
\(73\) −1.36603 + 0.366025i −0.159881 + 0.0428400i −0.337872 0.941192i \(-0.609707\pi\)
0.177991 + 0.984032i \(0.443040\pi\)
\(74\) 5.19615 + 3.00000i 0.604040 + 0.348743i
\(75\) 0 0
\(76\) −14.0000 + 10.3923i −1.60591 + 1.19208i
\(77\) −10.0000 + 10.0000i −1.13961 + 1.13961i
\(78\) 0 0
\(79\) 0.866025 1.50000i 0.0974355 0.168763i −0.813187 0.582003i \(-0.802269\pi\)
0.910622 + 0.413239i \(0.135603\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) −8.19615 2.19615i −0.905114 0.242524i
\(83\) −5.00000 5.00000i −0.548821 0.548821i 0.377279 0.926100i \(-0.376860\pi\)
−0.926100 + 0.377279i \(0.876860\pi\)
\(84\) 27.7128 3.02372
\(85\) 0 0
\(86\) 21.0000 12.1244i 2.26449 1.30740i
\(87\) −3.00000 + 3.00000i −0.321634 + 0.321634i
\(88\) −17.3205 + 17.3205i −1.84637 + 1.84637i
\(89\) 2.59808 + 4.50000i 0.275396 + 0.476999i 0.970235 0.242166i \(-0.0778579\pi\)
−0.694839 + 0.719165i \(0.744525\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.39230 + 16.3923i 0.457929 + 1.70902i
\(93\) 12.2942 3.29423i 1.27485 0.341596i
\(94\) −20.7846 −2.14377
\(95\) 0 0
\(96\) 0 0
\(97\) 7.09808 1.90192i 0.720700 0.193111i 0.120216 0.992748i \(-0.461641\pi\)
0.600484 + 0.799637i \(0.294975\pi\)
\(98\) −0.633975 2.36603i −0.0640411 0.239005i
\(99\) 12.9904 7.50000i 1.30558 0.753778i
\(100\) 0 0
\(101\) −2.50000 4.33013i −0.248759 0.430864i 0.714423 0.699715i \(-0.246689\pi\)
−0.963182 + 0.268851i \(0.913356\pi\)
\(102\) 12.0000 12.0000i 1.18818 1.18818i
\(103\) −6.92820 + 6.92820i −0.682656 + 0.682656i −0.960598 0.277942i \(-0.910348\pi\)
0.277942 + 0.960598i \(0.410348\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 18.0000 1.74831
\(107\) 1.73205 + 1.73205i 0.167444 + 0.167444i 0.785855 0.618411i \(-0.212223\pi\)
−0.618411 + 0.785855i \(0.712223\pi\)
\(108\) 0 0
\(109\) 0.866025 1.50000i 0.0829502 0.143674i −0.821566 0.570114i \(-0.806899\pi\)
0.904516 + 0.426440i \(0.140232\pi\)
\(110\) 0 0
\(111\) −3.00000 + 5.19615i −0.284747 + 0.493197i
\(112\) −2.92820 10.9282i −0.276689 1.03262i
\(113\) 1.73205 1.73205i 0.162938 0.162938i −0.620929 0.783867i \(-0.713245\pi\)
0.783867 + 0.620929i \(0.213245\pi\)
\(114\) −15.5885 21.0000i −1.45999 1.96683i
\(115\) 0 0
\(116\) 6.00000 + 3.46410i 0.557086 + 0.321634i
\(117\) 0 0
\(118\) 3.29423 12.2942i 0.303258 1.13178i
\(119\) −6.92820 4.00000i −0.635107 0.366679i
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 8.66025 + 8.66025i 0.784063 + 0.784063i
\(123\) 2.19615 8.19615i 0.198020 0.739022i
\(124\) −10.3923 18.0000i −0.933257 1.61645i
\(125\) 0 0
\(126\) 20.7846i 1.85164i
\(127\) 2.53590 9.46410i 0.225025 0.839803i −0.757370 0.652986i \(-0.773516\pi\)
0.982395 0.186817i \(-0.0598173\pi\)
\(128\) 5.07180 + 18.9282i 0.448288 + 1.67303i
\(129\) 12.1244 + 21.0000i 1.06749 + 1.84895i
\(130\) 0 0
\(131\) −5.00000 + 8.66025i −0.436852 + 0.756650i −0.997445 0.0714417i \(-0.977240\pi\)
0.560593 + 0.828092i \(0.310573\pi\)
\(132\) −34.6410 34.6410i −3.01511 3.01511i
\(133\) −7.66025 + 9.66025i −0.664228 + 0.837650i
\(134\) 24.0000i 2.07328i
\(135\) 0 0
\(136\) −12.0000 6.92820i −1.02899 0.594089i
\(137\) 10.9282 + 2.92820i 0.933659 + 0.250173i 0.693414 0.720539i \(-0.256106\pi\)
0.240245 + 0.970712i \(0.422772\pi\)
\(138\) −24.5885 + 6.58846i −2.09311 + 0.560847i
\(139\) 15.5885 9.00000i 1.32220 0.763370i 0.338117 0.941104i \(-0.390210\pi\)
0.984079 + 0.177734i \(0.0568767\pi\)
\(140\) 0 0
\(141\) 20.7846i 1.75038i
\(142\) −12.2942 3.29423i −1.03171 0.276446i
\(143\) 0 0
\(144\) 12.0000i 1.00000i
\(145\) 0 0
\(146\) −3.00000 + 1.73205i −0.248282 + 0.143346i
\(147\) 2.36603 0.633975i 0.195146 0.0522893i
\(148\) 9.46410 + 2.53590i 0.777944 + 0.208450i
\(149\) 16.4545 + 9.50000i 1.34800 + 0.778270i 0.987967 0.154668i \(-0.0494307\pi\)
0.360037 + 0.932938i \(0.382764\pi\)
\(150\) 0 0
\(151\) 15.5885i 1.26857i 0.773099 + 0.634285i \(0.218706\pi\)
−0.773099 + 0.634285i \(0.781294\pi\)
\(152\) −13.2679 + 16.7321i −1.07617 + 1.35715i
\(153\) 6.00000 + 6.00000i 0.485071 + 0.485071i
\(154\) −17.3205 + 30.0000i −1.39573 + 2.41747i
\(155\) 0 0
\(156\) 0 0
\(157\) 2.56218 + 9.56218i 0.204484 + 0.763145i 0.989606 + 0.143804i \(0.0459335\pi\)
−0.785122 + 0.619341i \(0.787400\pi\)
\(158\) 1.09808 4.09808i 0.0873583 0.326025i
\(159\) 18.0000i 1.42749i
\(160\) 0 0
\(161\) 6.00000 + 10.3923i 0.472866 + 0.819028i
\(162\) −5.70577 + 21.2942i −0.448288 + 1.67303i
\(163\) 11.0000 + 11.0000i 0.861586 + 0.861586i 0.991522 0.129936i \(-0.0414772\pi\)
−0.129936 + 0.991522i \(0.541477\pi\)
\(164\) −13.8564 −1.08200
\(165\) 0 0
\(166\) −15.0000 8.66025i −1.16423 0.672166i
\(167\) −5.07180 + 18.9282i −0.392467 + 1.46471i 0.433584 + 0.901113i \(0.357249\pi\)
−0.826051 + 0.563595i \(0.809418\pi\)
\(168\) 32.7846 8.78461i 2.52939 0.677747i
\(169\) −11.2583 6.50000i −0.866025 0.500000i
\(170\) 0 0
\(171\) 10.5000 7.79423i 0.802955 0.596040i
\(172\) 28.0000 28.0000i 2.13498 2.13498i
\(173\) −1.26795 4.73205i −0.0964004 0.359771i 0.900828 0.434177i \(-0.142961\pi\)
−0.997228 + 0.0744057i \(0.976294\pi\)
\(174\) −5.19615 + 9.00000i −0.393919 + 0.682288i
\(175\) 0 0
\(176\) −10.0000 + 17.3205i −0.753778 + 1.30558i
\(177\) 12.2942 + 3.29423i 0.924091 + 0.247609i
\(178\) 9.00000 + 9.00000i 0.674579 + 0.674579i
\(179\) −19.0526 −1.42406 −0.712028 0.702152i \(-0.752223\pi\)
−0.712028 + 0.702152i \(0.752223\pi\)
\(180\) 0 0
\(181\) 6.00000 3.46410i 0.445976 0.257485i −0.260153 0.965567i \(-0.583773\pi\)
0.706129 + 0.708083i \(0.250440\pi\)
\(182\) 0 0
\(183\) −8.66025 + 8.66025i −0.640184 + 0.640184i
\(184\) 10.3923 + 18.0000i 0.766131 + 1.32698i
\(185\) 0 0
\(186\) 27.0000 15.5885i 1.97974 1.14300i
\(187\) 3.66025 + 13.6603i 0.267664 + 0.998937i
\(188\) −32.7846 + 8.78461i −2.39106 + 0.640684i
\(189\) 0 0
\(190\) 0 0
\(191\) −7.00000 −0.506502 −0.253251 0.967401i \(-0.581500\pi\)
−0.253251 + 0.967401i \(0.581500\pi\)
\(192\) −18.9282 + 5.07180i −1.36603 + 0.366025i
\(193\) 2.53590 + 9.46410i 0.182538 + 0.681241i 0.995144 + 0.0984278i \(0.0313814\pi\)
−0.812606 + 0.582813i \(0.801952\pi\)
\(194\) 15.5885 9.00000i 1.11919 0.646162i
\(195\) 0 0
\(196\) −2.00000 3.46410i −0.142857 0.247436i
\(197\) 6.00000 6.00000i 0.427482 0.427482i −0.460288 0.887770i \(-0.652254\pi\)
0.887770 + 0.460288i \(0.152254\pi\)
\(198\) 25.9808 25.9808i 1.84637 1.84637i
\(199\) −12.9904 + 7.50000i −0.920864 + 0.531661i −0.883911 0.467656i \(-0.845099\pi\)
−0.0369532 + 0.999317i \(0.511765\pi\)
\(200\) 0 0
\(201\) 24.0000 1.69283
\(202\) −8.66025 8.66025i −0.609333 0.609333i
\(203\) 4.73205 + 1.26795i 0.332125 + 0.0889926i
\(204\) 13.8564 24.0000i 0.970143 1.68034i
\(205\) 0 0
\(206\) −12.0000 + 20.7846i −0.836080 + 1.44813i
\(207\) −3.29423 12.2942i −0.228965 0.854508i
\(208\) 0 0
\(209\) 21.6506 2.50000i 1.49761 0.172929i
\(210\) 0 0
\(211\) −22.5000 12.9904i −1.54896 0.894295i −0.998221 0.0596196i \(-0.981011\pi\)
−0.550743 0.834675i \(-0.685655\pi\)
\(212\) 28.3923 7.60770i 1.94999 0.522499i
\(213\) 3.29423 12.2942i 0.225717 0.842387i
\(214\) 5.19615 + 3.00000i 0.355202 + 0.205076i
\(215\) 0 0
\(216\) 0 0
\(217\) −10.3923 10.3923i −0.705476 0.705476i
\(218\) 1.09808 4.09808i 0.0743711 0.277557i
\(219\) −1.73205 3.00000i −0.117041 0.202721i
\(220\) 0 0
\(221\) 0 0
\(222\) −3.80385 + 14.1962i −0.255298 + 0.952783i
\(223\) −6.97372 26.0263i −0.466995 1.74285i −0.650190 0.759772i \(-0.725311\pi\)
0.183195 0.983077i \(-0.441356\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 3.00000 5.19615i 0.199557 0.345643i
\(227\) 8.66025 + 8.66025i 0.574801 + 0.574801i 0.933466 0.358665i \(-0.116768\pi\)
−0.358665 + 0.933466i \(0.616768\pi\)
\(228\) −33.4641 26.5359i −2.21621 1.75738i
\(229\) 9.00000i 0.594737i −0.954763 0.297368i \(-0.903891\pi\)
0.954763 0.297368i \(-0.0961089\pi\)
\(230\) 0 0
\(231\) −30.0000 17.3205i −1.97386 1.13961i
\(232\) 8.19615 + 2.19615i 0.538104 + 0.144184i
\(233\) −12.2942 + 3.29423i −0.805422 + 0.215812i −0.637963 0.770067i \(-0.720223\pi\)
−0.167459 + 0.985879i \(0.553556\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 20.7846i 1.35296i
\(237\) 4.09808 + 1.09808i 0.266199 + 0.0713277i
\(238\) −18.9282 5.07180i −1.22693 0.328756i
\(239\) 11.0000i 0.711531i 0.934575 + 0.355765i \(0.115780\pi\)
−0.934575 + 0.355765i \(0.884220\pi\)
\(240\) 0 0
\(241\) −10.5000 + 6.06218i −0.676364 + 0.390499i −0.798484 0.602016i \(-0.794364\pi\)
0.122119 + 0.992515i \(0.461031\pi\)
\(242\) 33.1244 8.87564i 2.12931 0.570548i
\(243\) −21.2942 5.70577i −1.36603 0.366025i
\(244\) 17.3205 + 10.0000i 1.10883 + 0.640184i
\(245\) 0 0
\(246\) 20.7846i 1.32518i
\(247\) 0 0
\(248\) −18.0000 18.0000i −1.14300 1.14300i
\(249\) 8.66025 15.0000i 0.548821 0.950586i
\(250\) 0 0
\(251\) 2.50000 + 4.33013i 0.157799 + 0.273315i 0.934075 0.357078i \(-0.116227\pi\)
−0.776276 + 0.630393i \(0.782894\pi\)
\(252\) 8.78461 + 32.7846i 0.553378 + 2.06524i
\(253\) 5.49038 20.4904i 0.345177 1.28822i
\(254\) 24.0000i 1.50589i
\(255\) 0 0
\(256\) 16.0000 + 27.7128i 1.00000 + 1.73205i
\(257\) 6.33975 23.6603i 0.395462 1.47589i −0.425529 0.904945i \(-0.639912\pi\)
0.820991 0.570941i \(-0.193422\pi\)
\(258\) 42.0000 + 42.0000i 2.61481 + 2.61481i
\(259\) 6.92820 0.430498
\(260\) 0 0
\(261\) −4.50000 2.59808i −0.278543 0.160817i
\(262\) −6.33975 + 23.6603i −0.391671 + 1.46174i
\(263\) 17.7583 4.75833i 1.09503 0.293411i 0.334288 0.942471i \(-0.391504\pi\)
0.760737 + 0.649060i \(0.224837\pi\)
\(264\) −51.9615 30.0000i −3.19801 1.84637i
\(265\) 0 0
\(266\) −12.0000 + 27.7128i −0.735767 + 1.69918i
\(267\) −9.00000 + 9.00000i −0.550791 + 0.550791i
\(268\) −10.1436 37.8564i −0.619619 2.31245i
\(269\) 0.866025 1.50000i 0.0528025 0.0914566i −0.838416 0.545031i \(-0.816518\pi\)
0.891219 + 0.453574i \(0.149851\pi\)
\(270\) 0 0
\(271\) 7.50000 12.9904i 0.455593 0.789109i −0.543130 0.839649i \(-0.682761\pi\)
0.998722 + 0.0505395i \(0.0160941\pi\)
\(272\) −10.9282 2.92820i −0.662620 0.177548i
\(273\) 0 0
\(274\) 27.7128 1.67419
\(275\) 0 0
\(276\) −36.0000 + 20.7846i −2.16695 + 1.25109i
\(277\) −4.00000 + 4.00000i −0.240337 + 0.240337i −0.816989 0.576653i \(-0.804359\pi\)
0.576653 + 0.816989i \(0.304359\pi\)
\(278\) 31.1769 31.1769i 1.86987 1.86987i
\(279\) 7.79423 + 13.5000i 0.466628 + 0.808224i
\(280\) 0 0
\(281\) −3.00000 + 1.73205i −0.178965 + 0.103325i −0.586806 0.809727i \(-0.699615\pi\)
0.407841 + 0.913053i \(0.366282\pi\)
\(282\) −13.1769 49.1769i −0.784674 2.92844i
\(283\) 5.46410 1.46410i 0.324807 0.0870318i −0.0927310 0.995691i \(-0.529560\pi\)
0.417538 + 0.908659i \(0.362893\pi\)
\(284\) −20.7846 −1.23334
\(285\) 0 0
\(286\) 0 0
\(287\) −9.46410 + 2.53590i −0.558648 + 0.149689i
\(288\) 0 0
\(289\) 7.79423 4.50000i 0.458484 0.264706i
\(290\) 0 0
\(291\) 9.00000 + 15.5885i 0.527589 + 0.913812i
\(292\) −4.00000 + 4.00000i −0.234082 + 0.234082i
\(293\) 6.92820 6.92820i 0.404750 0.404750i −0.475153 0.879903i \(-0.657607\pi\)
0.879903 + 0.475153i \(0.157607\pi\)
\(294\) 5.19615 3.00000i 0.303046 0.174964i
\(295\) 0 0
\(296\) 12.0000 0.697486
\(297\) 0 0
\(298\) 44.9545 + 12.0455i 2.60414 + 0.697778i
\(299\) 0 0
\(300\) 0 0
\(301\) 14.0000 24.2487i 0.806947 1.39767i
\(302\) 9.88269 + 36.8827i 0.568685 + 2.12236i
\(303\) 8.66025 8.66025i 0.497519 0.497519i
\(304\) −6.92820 + 16.0000i −0.397360 + 0.917663i
\(305\) 0 0
\(306\) 18.0000 + 10.3923i 1.02899 + 0.594089i
\(307\) −11.8301 + 3.16987i −0.675181 + 0.180914i −0.580088 0.814554i \(-0.696982\pi\)
−0.0950935 + 0.995468i \(0.530315\pi\)
\(308\) −14.6410 + 54.6410i −0.834249 + 3.11346i
\(309\) −20.7846 12.0000i −1.18240 0.682656i
\(310\) 0 0
\(311\) −20.0000 −1.13410 −0.567048 0.823685i \(-0.691915\pi\)
−0.567048 + 0.823685i \(0.691915\pi\)
\(312\) 0 0
\(313\) −7.32051 + 27.3205i −0.413780 + 1.54425i 0.373488 + 0.927635i \(0.378162\pi\)
−0.787268 + 0.616611i \(0.788505\pi\)
\(314\) 12.1244 + 21.0000i 0.684217 + 1.18510i
\(315\) 0 0
\(316\) 6.92820i 0.389742i
\(317\) −5.70577 + 21.2942i −0.320468 + 1.19600i 0.598322 + 0.801256i \(0.295834\pi\)
−0.918790 + 0.394747i \(0.870832\pi\)
\(318\) 11.4115 + 42.5885i 0.639928 + 2.38824i
\(319\) −4.33013 7.50000i −0.242441 0.419919i
\(320\) 0 0
\(321\) −3.00000 + 5.19615i −0.167444 + 0.290021i
\(322\) 20.7846 + 20.7846i 1.15828 + 1.15828i
\(323\) 4.53590 + 11.4641i 0.252384 + 0.637880i
\(324\) 36.0000i 2.00000i
\(325\) 0 0
\(326\) 33.0000 + 19.0526i 1.82770 + 1.05522i
\(327\) 4.09808 + 1.09808i 0.226624 + 0.0607238i
\(328\) −16.3923 + 4.39230i −0.905114 + 0.242524i
\(329\) −20.7846 + 12.0000i −1.14589 + 0.661581i
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) −27.3205 7.32051i −1.49941 0.401765i
\(333\) −7.09808 1.90192i −0.388972 0.104225i
\(334\) 48.0000i 2.62644i
\(335\) 0 0
\(336\) 24.0000 13.8564i 1.30931 0.755929i
\(337\) 16.5622 4.43782i 0.902199 0.241744i 0.222239 0.974992i \(-0.428664\pi\)
0.679961 + 0.733249i \(0.261997\pi\)
\(338\) −30.7583 8.24167i −1.67303 0.448288i
\(339\) 5.19615 + 3.00000i 0.282216 + 0.162938i
\(340\) 0 0
\(341\) 25.9808i 1.40694i
\(342\) 19.9019 25.0981i 1.07617 1.35715i
\(343\) 12.0000 + 12.0000i 0.647939 + 0.647939i
\(344\) 24.2487 42.0000i 1.30740 2.26449i
\(345\) 0 0
\(346\) −6.00000 10.3923i −0.322562 0.558694i
\(347\) −2.92820 10.9282i −0.157194 0.586657i −0.998907 0.0467319i \(-0.985119\pi\)
0.841713 0.539925i \(-0.181547\pi\)
\(348\) −4.39230 + 16.3923i −0.235452 + 0.878720i
\(349\) 18.0000i 0.963518i −0.876304 0.481759i \(-0.839998\pi\)
0.876304 0.481759i \(-0.160002\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.00000 6.00000i −0.319348 0.319348i 0.529169 0.848517i \(-0.322504\pi\)
−0.848517 + 0.529169i \(0.822504\pi\)
\(354\) 31.1769 1.65703
\(355\) 0 0
\(356\) 18.0000 + 10.3923i 0.953998 + 0.550791i
\(357\) 5.07180 18.9282i 0.268428 1.00179i
\(358\) −45.0788 + 12.0788i −2.38249 + 0.638386i
\(359\) −29.4449 17.0000i −1.55404 0.897226i −0.997806 0.0662000i \(-0.978912\pi\)
−0.556234 0.831026i \(-0.687754\pi\)
\(360\) 0 0
\(361\) 18.5000 4.33013i 0.973684 0.227901i
\(362\) 12.0000 12.0000i 0.630706 0.630706i
\(363\) 8.87564 + 33.1244i 0.465851 + 1.73858i
\(364\) 0 0
\(365\) 0 0
\(366\) −15.0000 + 25.9808i −0.784063 + 1.35804i
\(367\) −30.0526 8.05256i −1.56873 0.420340i −0.633316 0.773893i \(-0.718307\pi\)
−0.935415 + 0.353553i \(0.884973\pi\)
\(368\) 12.0000 + 12.0000i 0.625543 + 0.625543i
\(369\) 10.3923 0.541002
\(370\) 0 0
\(371\) 18.0000 10.3923i 0.934513 0.539542i
\(372\) 36.0000 36.0000i 1.86651 1.86651i
\(373\) −6.92820 + 6.92820i −0.358729 + 0.358729i −0.863344 0.504615i \(-0.831634\pi\)
0.504615 + 0.863344i \(0.331634\pi\)
\(374\) 17.3205 + 30.0000i 0.895622 + 1.55126i
\(375\) 0 0
\(376\) −36.0000 + 20.7846i −1.85656 + 1.07188i
\(377\) 0 0
\(378\) 0 0
\(379\) 32.9090 1.69042 0.845210 0.534434i \(-0.179475\pi\)
0.845210 + 0.534434i \(0.179475\pi\)
\(380\) 0 0
\(381\) 24.0000 1.22956
\(382\) −16.5622 + 4.43782i −0.847395 + 0.227059i
\(383\) −7.60770 28.3923i −0.388735 1.45078i −0.832194 0.554484i \(-0.812916\pi\)
0.443459 0.896295i \(-0.353751\pi\)
\(384\) −41.5692 + 24.0000i −2.12132 + 1.22474i
\(385\) 0 0
\(386\) 12.0000 + 20.7846i 0.610784 + 1.05791i
\(387\) −21.0000 + 21.0000i −1.06749 + 1.06749i
\(388\) 20.7846 20.7846i 1.05518 1.05518i
\(389\) 19.9186 11.5000i 1.00991 0.583073i 0.0987463 0.995113i \(-0.468517\pi\)
0.911166 + 0.412039i \(0.135183\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) −3.46410 3.46410i −0.174964 0.174964i
\(393\) −23.6603 6.33975i −1.19350 0.319798i
\(394\) 10.3923 18.0000i 0.523557 0.906827i
\(395\) 0 0
\(396\) 30.0000 51.9615i 1.50756 2.61116i
\(397\) −1.46410 5.46410i −0.0734812 0.274235i 0.919403 0.393316i \(-0.128672\pi\)
−0.992885 + 0.119080i \(0.962005\pi\)
\(398\) −25.9808 + 25.9808i −1.30230 + 1.30230i
\(399\) −27.7128 12.0000i −1.38738 0.600751i
\(400\) 0 0
\(401\) −31.5000 18.1865i −1.57303 0.908192i −0.995794 0.0916181i \(-0.970796\pi\)
−0.577241 0.816574i \(-0.695871\pi\)
\(402\) 56.7846 15.2154i 2.83216 0.758875i
\(403\) 0 0
\(404\) −17.3205 10.0000i −0.861727 0.497519i
\(405\) 0 0
\(406\) 12.0000 0.595550
\(407\) −8.66025 8.66025i −0.429273 0.429273i
\(408\) 8.78461 32.7846i 0.434903 1.62308i
\(409\) −16.4545 28.5000i −0.813622 1.40923i −0.910313 0.413920i \(-0.864159\pi\)
0.0966915 0.995314i \(-0.469174\pi\)
\(410\) 0 0
\(411\) 27.7128i 1.36697i
\(412\) −10.1436 + 37.8564i −0.499739 + 1.86505i
\(413\) −3.80385 14.1962i −0.187175 0.698547i
\(414\) −15.5885 27.0000i −0.766131 1.32698i
\(415\) 0 0
\(416\) 0 0
\(417\) 31.1769 + 31.1769i 1.52674 + 1.52674i
\(418\) 49.6410 19.6410i 2.42802 0.960674i
\(419\) 31.0000i 1.51445i 0.653155 + 0.757225i \(0.273445\pi\)
−0.653155 + 0.757225i \(0.726555\pi\)
\(420\) 0 0
\(421\) −10.5000 6.06218i −0.511739 0.295452i 0.221809 0.975090i \(-0.428804\pi\)
−0.733548 + 0.679638i \(0.762137\pi\)
\(422\) −61.4711 16.4711i −2.99237 0.801803i
\(423\) 24.5885 6.58846i 1.19553 0.320342i
\(424\) 31.1769 18.0000i 1.51408 0.874157i
\(425\) 0 0
\(426\) 31.1769i 1.51053i
\(427\) 13.6603 + 3.66025i 0.661066 + 0.177132i
\(428\) 9.46410 + 2.53590i 0.457465 + 0.122577i
\(429\) 0 0
\(430\) 0 0
\(431\) 19.5000 11.2583i 0.939282 0.542295i 0.0495468 0.998772i \(-0.484222\pi\)
0.889735 + 0.456477i \(0.150889\pi\)
\(432\) 0 0
\(433\) 9.46410 + 2.53590i 0.454816 + 0.121867i 0.478952 0.877841i \(-0.341017\pi\)
−0.0241361 + 0.999709i \(0.507684\pi\)
\(434\) −31.1769 18.0000i −1.49654 0.864028i
\(435\) 0 0
\(436\) 6.92820i 0.331801i
\(437\) 2.70577 18.2942i 0.129435 0.875132i
\(438\) −6.00000 6.00000i −0.286691 0.286691i
\(439\) −14.7224 + 25.5000i −0.702663 + 1.21705i 0.264865 + 0.964286i \(0.414673\pi\)
−0.967528 + 0.252763i \(0.918661\pi\)
\(440\) 0 0
\(441\) 1.50000 + 2.59808i 0.0714286 + 0.123718i
\(442\) 0 0
\(443\) −2.19615 + 8.19615i −0.104342 + 0.389411i −0.998270 0.0588009i \(-0.981272\pi\)
0.893927 + 0.448212i \(0.147939\pi\)
\(444\) 24.0000i 1.13899i
\(445\) 0 0
\(446\) −33.0000 57.1577i −1.56260 2.70649i
\(447\) −12.0455 + 44.9545i −0.569733 + 2.12627i
\(448\) 16.0000 + 16.0000i 0.755929 + 0.755929i
\(449\) −15.5885 −0.735665 −0.367832 0.929892i \(-0.619900\pi\)
−0.367832 + 0.929892i \(0.619900\pi\)
\(450\) 0 0
\(451\) 15.0000 + 8.66025i 0.706322 + 0.407795i
\(452\) 2.53590 9.46410i 0.119279 0.445154i
\(453\) −36.8827 + 9.88269i −1.73290 + 0.464329i
\(454\) 25.9808 + 15.0000i 1.21934 + 0.703985i
\(455\) 0 0
\(456\) −48.0000 20.7846i −2.24781 0.973329i
\(457\) 10.0000 10.0000i 0.467780 0.467780i −0.433414 0.901195i \(-0.642691\pi\)
0.901195 + 0.433414i \(0.142691\pi\)
\(458\) −5.70577 21.2942i −0.266613 0.995014i
\(459\) 0 0
\(460\) 0 0
\(461\) 2.50000 4.33013i 0.116437 0.201674i −0.801917 0.597436i \(-0.796186\pi\)
0.918353 + 0.395762i \(0.129519\pi\)
\(462\) −81.9615 21.9615i −3.81320 1.02174i
\(463\) −8.00000 8.00000i −0.371792 0.371792i 0.496338 0.868129i \(-0.334678\pi\)
−0.868129 + 0.496338i \(0.834678\pi\)
\(464\) 6.92820 0.321634
\(465\) 0 0
\(466\) −27.0000 + 15.5885i −1.25075 + 0.722121i
\(467\) −9.00000 + 9.00000i −0.416470 + 0.416470i −0.883985 0.467515i \(-0.845149\pi\)
0.467515 + 0.883985i \(0.345149\pi\)
\(468\) 0 0
\(469\) −13.8564 24.0000i −0.639829 1.10822i
\(470\) 0 0
\(471\) −21.0000 + 12.1244i −0.967629 + 0.558661i
\(472\) −6.58846 24.5885i −0.303258 1.13178i
\(473\) −47.8109 + 12.8109i −2.19835 + 0.589045i
\(474\) 10.3923 0.477334
\(475\) 0 0
\(476\) −32.0000 −1.46672
\(477\) −21.2942 + 5.70577i −0.974996 + 0.261249i
\(478\) 6.97372 + 26.0263i 0.318971 + 1.19041i
\(479\) −11.2583 + 6.50000i −0.514406 + 0.296993i −0.734643 0.678454i \(-0.762650\pi\)
0.220237 + 0.975446i \(0.429317\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −21.0000 + 21.0000i −0.956524 + 0.956524i
\(483\) −20.7846 + 20.7846i −0.945732 + 0.945732i
\(484\) 48.4974 28.0000i 2.20443 1.27273i
\(485\) 0 0
\(486\) −54.0000 −2.44949
\(487\) 6.92820 + 6.92820i 0.313947 + 0.313947i 0.846437 0.532490i \(-0.178743\pi\)
−0.532490 + 0.846437i \(0.678743\pi\)
\(488\) 23.6603 + 6.33975i 1.07105 + 0.286987i
\(489\) −19.0526 + 33.0000i −0.861586 + 1.49231i
\(490\) 0 0
\(491\) −18.5000 + 32.0429i −0.834893 + 1.44608i 0.0592240 + 0.998245i \(0.481137\pi\)
−0.894117 + 0.447833i \(0.852196\pi\)
\(492\) −8.78461 32.7846i −0.396041 1.47804i
\(493\) 3.46410 3.46410i 0.156015 0.156015i
\(494\) 0 0
\(495\) 0 0
\(496\) −18.0000 10.3923i −0.808224 0.466628i
\(497\) −14.1962 + 3.80385i −0.636784 + 0.170626i
\(498\) 10.9808 40.9808i 0.492060 1.83639i
\(499\) 5.19615 + 3.00000i 0.232612 + 0.134298i 0.611776 0.791031i \(-0.290455\pi\)
−0.379165 + 0.925329i \(0.623789\pi\)
\(500\) 0 0
\(501\) −48.0000 −2.14448
\(502\) 8.66025 + 8.66025i 0.386526 + 0.386526i
\(503\) 3.66025 13.6603i 0.163203 0.609081i −0.835060 0.550159i \(-0.814567\pi\)
0.998263 0.0589217i \(-0.0187662\pi\)
\(504\) 20.7846 + 36.0000i 0.925820 + 1.60357i
\(505\) 0 0
\(506\) 51.9615i 2.30997i
\(507\) 8.24167 30.7583i 0.366025 1.36603i
\(508\) −10.1436 37.8564i −0.450049 1.67961i
\(509\) −15.5885 27.0000i −0.690946 1.19675i −0.971528 0.236924i \(-0.923861\pi\)
0.280582 0.959830i \(-0.409473\pi\)
\(510\) 0 0
\(511\) −2.00000 + 3.46410i −0.0884748 + 0.153243i
\(512\) 27.7128 + 27.7128i 1.22474 + 1.22474i
\(513\) 0 0
\(514\) 60.0000i 2.64649i
\(515\) 0 0
\(516\) 84.0000 + 48.4974i 3.69789 + 2.13498i
\(517\) 40.9808 + 10.9808i 1.80233 + 0.482933i
\(518\) 16.3923 4.39230i 0.720237 0.192987i
\(519\) 10.3923 6.00000i 0.456172 0.263371i
\(520\) 0 0
\(521\) 1.73205i 0.0758825i 0.999280 + 0.0379413i \(0.0120800\pi\)
−0.999280 + 0.0379413i \(0.987920\pi\)
\(522\) −12.2942 3.29423i −0.538104 0.144184i
\(523\) 11.8301 + 3.16987i 0.517295 + 0.138609i 0.508015 0.861348i \(-0.330379\pi\)
0.00928008 + 0.999957i \(0.497046\pi\)
\(524\) 40.0000i 1.74741i
\(525\) 0 0
\(526\) 39.0000 22.5167i 1.70048 0.981773i
\(527\) −14.1962 + 3.80385i −0.618394 + 0.165698i
\(528\) −47.3205 12.6795i −2.05936 0.551804i
\(529\) 4.33013 + 2.50000i 0.188266 + 0.108696i
\(530\) 0 0
\(531\) 15.5885i 0.676481i
\(532\) −7.21539 + 48.7846i −0.312827 + 2.11508i
\(533\) 0 0
\(534\) −15.5885 + 27.0000i −0.674579 + 1.16840i
\(535\) 0 0
\(536\) −24.0000 41.5692i −1.03664 1.79552i
\(537\) −12.0788 45.0788i −0.521240 1.94530i
\(538\) 1.09808 4.09808i 0.0473414 0.176681i
\(539\) 5.00000i 0.215365i
\(540\) 0 0
\(541\) 16.5000 + 28.5788i 0.709390 + 1.22870i 0.965084 + 0.261942i \(0.0843630\pi\)
−0.255693 + 0.966758i \(0.582304\pi\)
\(542\) 9.50962 35.4904i 0.408473 1.52444i
\(543\) 12.0000 + 12.0000i 0.514969 + 0.514969i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 9.50962 35.4904i 0.406602 1.51746i −0.394480 0.918905i \(-0.629075\pi\)
0.801082 0.598555i \(-0.204258\pi\)
\(548\) 43.7128 11.7128i 1.86732 0.500347i
\(549\) −12.9904 7.50000i −0.554416 0.320092i
\(550\) 0 0
\(551\) −4.50000 6.06218i −0.191706 0.258257i
\(552\) −36.0000 + 36.0000i −1.53226 + 1.53226i
\(553\) −1.26795 4.73205i −0.0539187 0.201227i
\(554\) −6.92820 + 12.0000i −0.294351 + 0.509831i
\(555\) 0 0
\(556\) 36.0000 62.3538i 1.52674 2.64439i
\(557\) 45.0788 + 12.0788i 1.91005 + 0.511797i 0.993798 + 0.111198i \(0.0354686\pi\)
0.916253 + 0.400599i \(0.131198\pi\)
\(558\) 27.0000 + 27.0000i 1.14300 + 1.14300i
\(559\) 0 0
\(560\) 0 0
\(561\) −30.0000 + 17.3205i −1.26660 + 0.731272i
\(562\) −6.00000 + 6.00000i −0.253095 + 0.253095i
\(563\) −19.0526 + 19.0526i −0.802970 + 0.802970i −0.983559 0.180589i \(-0.942200\pi\)
0.180589 + 0.983559i \(0.442200\pi\)
\(564\) −41.5692 72.0000i −1.75038 3.03175i
\(565\) 0 0
\(566\) 12.0000 6.92820i 0.504398 0.291214i
\(567\) 6.58846 + 24.5885i 0.276689 + 1.03262i
\(568\) −24.5885 + 6.58846i −1.03171 + 0.276446i
\(569\) −1.73205 −0.0726113 −0.0363057 0.999341i \(-0.511559\pi\)
−0.0363057 + 0.999341i \(0.511559\pi\)
\(570\) 0 0
\(571\) 9.00000 0.376638 0.188319 0.982108i \(-0.439696\pi\)
0.188319 + 0.982108i \(0.439696\pi\)
\(572\) 0 0
\(573\) −4.43782 16.5622i −0.185393 0.691895i
\(574\) −20.7846 + 12.0000i −0.867533 + 0.500870i
\(575\) 0 0
\(576\) −12.0000 20.7846i −0.500000 0.866025i
\(577\) 7.00000 7.00000i 0.291414 0.291414i −0.546225 0.837639i \(-0.683936\pi\)
0.837639 + 0.546225i \(0.183936\pi\)
\(578\) 15.5885 15.5885i 0.648394 0.648394i
\(579\) −20.7846 + 12.0000i −0.863779 + 0.498703i
\(580\) 0 0
\(581\) −20.0000 −0.829740
\(582\) 31.1769 + 31.1769i 1.29232 + 1.29232i
\(583\) −35.4904 9.50962i −1.46986 0.393848i
\(584\) −3.46410 + 6.00000i −0.143346 + 0.248282i
\(585\) 0 0
\(586\) 12.0000 20.7846i 0.495715 0.858604i
\(587\) −6.58846 24.5885i −0.271935 1.01487i −0.957868 0.287210i \(-0.907272\pi\)
0.685933 0.727665i \(-0.259394\pi\)
\(588\) 6.92820 6.92820i 0.285714 0.285714i
\(589\) 2.59808 + 22.5000i 0.107052 + 0.927096i
\(590\) 0 0
\(591\) 18.0000 + 10.3923i 0.740421 + 0.427482i
\(592\) 9.46410 2.53590i 0.388972 0.104225i
\(593\) −10.2487 + 38.2487i −0.420864 + 1.57069i 0.351928 + 0.936027i \(0.385526\pi\)
−0.772792 + 0.634659i \(0.781140\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 76.0000 3.11308
\(597\) −25.9808 25.9808i −1.06332 1.06332i
\(598\) 0 0
\(599\) 13.8564 + 24.0000i 0.566157 + 0.980613i 0.996941 + 0.0781581i \(0.0249039\pi\)
−0.430784 + 0.902455i \(0.641763\pi\)
\(600\) 0 0
\(601\) 22.5167i 0.918474i 0.888314 + 0.459237i \(0.151877\pi\)
−0.888314 + 0.459237i \(0.848123\pi\)
\(602\) 17.7513 66.2487i 0.723489 2.70010i
\(603\) 7.60770 + 28.3923i 0.309809 + 1.15622i
\(604\) 31.1769 + 54.0000i 1.26857 + 2.19723i
\(605\) 0 0
\(606\) 15.0000 25.9808i 0.609333 1.05540i
\(607\) −3.46410 3.46410i −0.140604 0.140604i 0.633302 0.773905i \(-0.281699\pi\)
−0.773905 + 0.633302i \(0.781699\pi\)
\(608\) 0 0
\(609\) 12.0000i 0.486265i
\(610\) 0 0
\(611\) 0 0
\(612\) 32.7846 + 8.78461i 1.32524 + 0.355097i
\(613\) 15.0263 4.02628i 0.606906 0.162620i 0.0577376 0.998332i \(-0.481611\pi\)
0.549168 + 0.835712i \(0.314945\pi\)
\(614\) −25.9808 + 15.0000i −1.04850 + 0.605351i
\(615\) 0 0
\(616\) 69.2820i 2.79145i
\(617\) −6.83013 1.83013i −0.274971 0.0736781i 0.118699 0.992930i \(-0.462128\pi\)
−0.393669 + 0.919252i \(0.628794\pi\)
\(618\) −56.7846 15.2154i −2.28421 0.612053i
\(619\) 30.0000i 1.20580i −0.797816 0.602901i \(-0.794011\pi\)
0.797816 0.602901i \(-0.205989\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −47.3205 + 12.6795i −1.89738 + 0.508401i
\(623\) 14.1962 + 3.80385i 0.568757 + 0.152398i
\(624\) 0 0
\(625\) 0 0
\(626\) 69.2820i 2.76907i
\(627\) 19.6410 + 49.6410i 0.784387 + 1.98247i
\(628\) 28.0000 + 28.0000i 1.11732 + 1.11732i
\(629\) 3.46410 6.00000i 0.138123 0.239236i
\(630\) 0 0
\(631\) −20.5000 35.5070i −0.816092 1.41351i −0.908541 0.417796i \(-0.862803\pi\)
0.0924489 0.995717i \(-0.470531\pi\)
\(632\) −2.19615 8.19615i −0.0873583 0.326025i
\(633\) 16.4711 61.4711i 0.654669 2.44326i
\(634\) 54.0000i 2.14461i
\(635\) 0 0
\(636\) 36.0000 + 62.3538i 1.42749 + 2.47249i
\(637\) 0 0
\(638\) −15.0000 15.0000i −0.593856 0.593856i
\(639\) 15.5885 0.616670
\(640\) 0 0
\(641\) −7.50000 4.33013i −0.296232 0.171030i 0.344517 0.938780i \(-0.388043\pi\)
−0.640749 + 0.767750i \(0.721376\pi\)
\(642\) −3.80385 + 14.1962i −0.150126 + 0.560277i
\(643\) 27.3205 7.32051i 1.07742 0.288693i 0.323879 0.946099i \(-0.395013\pi\)
0.753537 + 0.657406i \(0.228346\pi\)
\(644\) 41.5692 + 24.0000i 1.63806 + 0.945732i
\(645\) 0 0
\(646\) 18.0000 + 24.2487i 0.708201 + 0.954053i
\(647\) −10.0000 + 10.0000i −0.393141 + 0.393141i −0.875805 0.482665i \(-0.839669\pi\)
0.482665 + 0.875805i \(0.339669\pi\)
\(648\) 11.4115 + 42.5885i 0.448288 + 1.67303i
\(649\) −12.9904 + 22.5000i −0.509917 + 0.883202i
\(650\) 0 0
\(651\) 18.0000 31.1769i 0.705476 1.22192i
\(652\) 60.1051 + 16.1051i 2.35390 + 0.630725i
\(653\) 23.0000 + 23.0000i 0.900060 + 0.900060i 0.995441 0.0953813i \(-0.0304070\pi\)
−0.0953813 + 0.995441i \(0.530407\pi\)
\(654\) 10.3923 0.406371
\(655\) 0 0
\(656\) −12.0000 + 6.92820i −0.468521 + 0.270501i
\(657\) 3.00000 3.00000i 0.117041 0.117041i
\(658\) −41.5692 + 41.5692i −1.62054 + 1.62054i
\(659\) 1.73205 + 3.00000i 0.0674711 + 0.116863i 0.897787 0.440429i \(-0.145174\pi\)
−0.830316 + 0.557292i \(0.811840\pi\)
\(660\) 0 0
\(661\) 25.5000 14.7224i 0.991835 0.572636i 0.0860127 0.996294i \(-0.472587\pi\)
0.905822 + 0.423658i \(0.139254\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −34.6410 −1.34433
\(665\) 0 0
\(666\) −18.0000 −0.697486
\(667\) −7.09808 + 1.90192i −0.274839 + 0.0736428i
\(668\) 20.2872 + 75.7128i 0.784935 + 2.92942i
\(669\) 57.1577 33.0000i 2.20984 1.27585i
\(670\) 0 0
\(671\) −12.5000 21.6506i −0.482557 0.835813i
\(672\) 0 0
\(673\) 13.8564 13.8564i 0.534125 0.534125i −0.387672 0.921797i \(-0.626721\pi\)
0.921797 + 0.387672i \(0.126721\pi\)
\(674\) 36.3731 21.0000i 1.40104 0.808890i
\(675\) 0 0
\(676\) −52.0000 −2.00000
\(677\) −31.1769 31.1769i −1.19823 1.19823i −0.974697 0.223529i \(-0.928242\pi\)
−0.223529 0.974697i \(-0.571758\pi\)
\(678\) 14.1962 + 3.80385i 0.545200 + 0.146086i
\(679\) 10.3923 18.0000i 0.398820 0.690777i
\(680\) 0 0
\(681\) −15.0000 + 25.9808i −0.574801 + 0.995585i
\(682\) 16.4711 + 61.4711i 0.630713 + 2.35385i
\(683\) −27.7128 + 27.7128i −1.06040 + 1.06040i −0.0623468 + 0.998055i \(0.519858\pi\)
−0.998055 + 0.0623468i \(0.980142\pi\)
\(684\) 20.7846 48.0000i 0.794719 1.83533i
\(685\) 0 0
\(686\) 36.0000 + 20.7846i 1.37449 + 0.793560i
\(687\) 21.2942 5.70577i 0.812425 0.217689i
\(688\) 10.2487 38.2487i 0.390728 1.45822i
\(689\) 0 0
\(690\) 0 0
\(691\) 15.0000 0.570627 0.285313 0.958434i \(-0.407902\pi\)
0.285313 + 0.958434i \(0.407902\pi\)
\(692\) −13.8564 13.8564i −0.526742 0.526742i
\(693\) 10.9808 40.9808i 0.417125 1.55673i
\(694\) −13.8564 24.0000i −0.525982 0.911028i
\(695\) 0 0
\(696\) 20.7846i 0.787839i
\(697\) −2.53590 + 9.46410i −0.0960540 + 0.358478i
\(698\) −11.4115 42.5885i −0.431933 1.61200i
\(699\) −15.5885 27.0000i −0.589610 1.02123i
\(700\) 0 0
\(701\) 11.0000 19.0526i 0.415464 0.719605i −0.580013 0.814607i \(-0.696952\pi\)
0.995477 + 0.0950021i \(0.0302858\pi\)
\(702\) 0 0
\(703\) −8.36603 6.63397i −0.315531 0.250205i
\(704\) 40.0000i 1.50756i
\(705\) 0 0
\(706\) −18.0000 10.3923i −0.677439 0.391120i
\(707\) −13.6603 3.66025i −0.513747 0.137658i
\(708\) 49.1769 13.1769i 1.84818 0.495219i
\(709\) −12.9904 + 7.50000i −0.487864 + 0.281668i −0.723688 0.690127i \(-0.757554\pi\)
0.235824 + 0.971796i \(0.424221\pi\)
\(710\) 0 0
\(711\) 5.19615i 0.194871i
\(712\) 24.5885 + 6.58846i 0.921491 + 0.246913i
\(713\) 21.2942 + 5.70577i 0.797475 + 0.213683i
\(714\) 48.0000i 1.79635i
\(715\) 0 0
\(716\) −66.0000 + 38.1051i −2.46654 + 1.42406i
\(717\) −26.0263 + 6.97372i −0.971969 + 0.260438i
\(718\) −80.4449 21.5551i −3.00218 0.804431i
\(719\) 6.06218 + 3.50000i 0.226081 + 0.130528i 0.608763 0.793352i \(-0.291666\pi\)
−0.382682 + 0.923880i \(0.624999\pi\)
\(720\) 0 0
\(721\) 27.7128i 1.03208i
\(722\) 41.0263 21.9737i 1.52684 0.817777i
\(723\) −21.0000 21.0000i −0.780998 0.780998i
\(724\) 13.8564 24.0000i 0.514969 0.891953i
\(725\) 0 0
\(726\) 42.0000 + 72.7461i 1.55877 + 2.69986i
\(727\) −6.95448 25.9545i −0.257927 0.962598i −0.966438 0.256899i \(-0.917299\pi\)
0.708511 0.705700i \(-0.249367\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) −14.0000 24.2487i −0.517809 0.896871i
\(732\) −12.6795 + 47.3205i −0.468648 + 1.74902i
\(733\) −19.0000 19.0000i −0.701781 0.701781i 0.263012 0.964793i \(-0.415284\pi\)
−0.964793 + 0.263012i \(0.915284\pi\)
\(734\) −76.2102 −2.81297
\(735\) 0 0
\(736\) 0 0
\(737\) −12.6795 + 47.3205i −0.467055 + 1.74307i
\(738\) 24.5885 6.58846i 0.905114 0.242524i
\(739\) 16.4545 + 9.50000i 0.605288 + 0.349463i 0.771119 0.636691i \(-0.219697\pi\)
−0.165831 + 0.986154i \(0.553031\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 36.0000 36.0000i 1.32160 1.32160i
\(743\) 5.70577 + 21.2942i 0.209324 + 0.781209i 0.988088 + 0.153892i \(0.0491807\pi\)
−0.778763 + 0.627318i \(0.784153\pi\)
\(744\) 31.1769 54.0000i 1.14300 1.97974i
\(745\) 0 0
\(746\) −12.0000 + 20.7846i −0.439351 + 0.760979i
\(747\) 20.4904 + 5.49038i 0.749704 + 0.200883i
\(748\) 40.0000 + 40.0000i 1.46254 + 1.46254i
\(749\) 6.92820 0.253151
\(750\) 0 0
\(751\) 7.50000 4.33013i 0.273679 0.158009i −0.356879 0.934150i \(-0.616159\pi\)
0.630558 + 0.776142i \(0.282826\pi\)
\(752\) −24.0000 + 24.0000i −0.875190 + 0.875190i
\(753\) −8.66025 + 8.66025i −0.315597 + 0.315597i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −5.12436 19.1244i −0.186248 0.695087i −0.994360 0.106058i \(-0.966177\pi\)
0.808112 0.589029i \(-0.200490\pi\)
\(758\) 77.8634 20.8634i 2.82813 0.757795i
\(759\) 51.9615 1.88608
\(760\) 0 0
\(761\) 34.0000 1.23250 0.616250 0.787551i \(-0.288651\pi\)
0.616250 + 0.787551i \(0.288651\pi\)
\(762\) 56.7846 15.2154i 2.05709 0.551195i
\(763\) −1.26795 4.73205i −0.0459028 0.171312i
\(764\) −24.2487 + 14.0000i −0.877288 + 0.506502i
\(765\) 0 0
\(766\) −36.0000 62.3538i −1.30073 2.25294i
\(767\) 0 0
\(768\) −55.4256 + 55.4256i −2.00000 + 2.00000i
\(769\) −18.1865 + 10.5000i −0.655823 + 0.378640i −0.790684 0.612225i \(-0.790275\pi\)
0.134860 + 0.990865i \(0.456941\pi\)
\(770\) 0 0
\(771\) 60.0000 2.16085
\(772\) 27.7128 + 27.7128i 0.997406 + 0.997406i
\(773\) −9.46410 2.53590i −0.340400 0.0912099i 0.0845694 0.996418i \(-0.473049\pi\)
−0.424970 + 0.905208i \(0.639715\pi\)
\(774\) −36.3731 + 63.0000i −1.30740 + 2.26449i
\(775\) 0 0
\(776\) 18.0000 31.1769i 0.646162 1.11919i
\(777\) 4.39230 + 16.3923i 0.157573 + 0.588071i
\(778\) 39.8372 39.8372i 1.42823 1.42823i
\(779\) 13.8564 + 6.00000i 0.496457 + 0.214972i
\(780\) 0 0
\(781\) 22.5000 + 12.9904i 0.805113 + 0.464832i
\(782\) 28.3923 7.60770i 1.01531 0.272051i
\(783\) 0 0
\(784\) −3.46410 2.00000i −0.123718 0.0714286i
\(785\) 0 0
\(786\) −60.0000 −2.14013
\(787\) 24.2487 + 24.2487i 0.864373 + 0.864373i 0.991843 0.127469i \(-0.0406854\pi\)
−0.127469 + 0.991843i \(0.540685\pi\)
\(788\) 8.78461 32.7846i 0.312939 1.16790i
\(789\) 22.5167 + 39.0000i 0.801614 + 1.38844i
\(790\) 0 0
\(791\) 6.92820i 0.246339i
\(792\) 19.0192 70.9808i 0.675819 2.52219i
\(793\) 0 0
\(794\) −6.92820 12.0000i −0.245873 0.425864i
\(795\) 0 0
\(796\) −30.0000 + 51.9615i −1.06332 + 1.84173i
\(797\) −1.73205 1.73205i −0.0613524 0.0613524i 0.675765 0.737117i \(-0.263813\pi\)
−0.737117 + 0.675765i \(0.763813\pi\)
\(798\) −73.1769 10.8231i −2.59043 0.383133i
\(799\) 24.0000i 0.849059i
\(800\) 0 0
\(801\) −13.5000 7.79423i −0.476999 0.275396i
\(802\) −86.0596 23.0596i −3.03887 0.814263i
\(803\) 6.83013 1.83013i 0.241030 0.0645838i
\(804\) 83.1384 48.0000i 2.93207 1.69283i
\(805\) 0 0
\(806\) 0 0
\(807\) 4.09808 + 1.09808i 0.144259 + 0.0386541i
\(808\) −23.6603 6.33975i −0.832365 0.223031i
\(809\) 35.0000i 1.23053i −0.788319 0.615267i \(-0.789048\pi\)
0.788319 0.615267i \(-0.210952\pi\)
\(810\) 0 0
\(811\) −34.5000 + 19.9186i −1.21146 + 0.699436i −0.963077 0.269226i \(-0.913232\pi\)
−0.248382 + 0.968662i \(0.579899\pi\)
\(812\) 18.9282 5.07180i 0.664250 0.177985i
\(813\) 35.4904 + 9.50962i 1.24470 + 0.333517i
\(814\) −25.9808 15.0000i −0.910625 0.525750i
\(815\) 0 0
\(816\) 27.7128i 0.970143i
\(817\) −40.1244 + 15.8756i −1.40377 + 0.555418i
\(818\) −57.0000 57.0000i −1.99296 1.99296i
\(819\) 0 0
\(820\) 0 0
\(821\) 14.5000 + 25.1147i 0.506053 + 0.876510i 0.999975 + 0.00700413i \(0.00222950\pi\)
−0.493922 + 0.869506i \(0.664437\pi\)
\(822\) 17.5692 + 65.5692i 0.612797 + 2.28699i
\(823\) 0.732051 2.73205i 0.0255177 0.0952333i −0.951993 0.306121i \(-0.900969\pi\)
0.977510 + 0.210888i \(0.0676354\pi\)
\(824\) 48.0000i 1.67216i
\(825\) 0 0
\(826\) −18.0000 31.1769i −0.626300 1.08478i
\(827\) −6.33975 + 23.6603i −0.220455 + 0.822748i 0.763720 + 0.645547i \(0.223371\pi\)
−0.984175 + 0.177200i \(0.943296\pi\)
\(828\) −36.0000 36.0000i −1.25109 1.25109i
\(829\) 17.3205 0.601566 0.300783 0.953693i \(-0.402752\pi\)
0.300783 + 0.953693i \(0.402752\pi\)
\(830\) 0 0
\(831\) −12.0000 6.92820i −0.416275 0.240337i
\(832\) 0 0
\(833\) −2.73205 + 0.732051i −0.0946600 + 0.0253641i
\(834\) 93.5307 + 54.0000i 3.23870 + 1.86987i
\(835\) 0 0
\(836\) 70.0000 51.9615i 2.42100 1.79713i
\(837\) 0 0
\(838\) 19.6532 + 73.3468i 0.678909 + 2.53372i
\(839\) 13.8564 24.0000i 0.478376 0.828572i −0.521316 0.853363i \(-0.674559\pi\)
0.999693 + 0.0247915i \(0.00789218\pi\)
\(840\) 0 0
\(841\) 13.0000 22.5167i 0.448276 0.776437i
\(842\) −28.6865 7.68653i −0.988603 0.264895i
\(843\) −6.00000 6.00000i −0.206651 0.206651i
\(844\) −103.923 −3.57718
\(845\) 0 0
\(846\) 54.0000 31.1769i 1.85656 1.07188i
\(847\) 28.0000 28.0000i 0.962091 0.962091i
\(848\) 20.7846 20.7846i 0.713746 0.713746i
\(849\) 6.92820 + 12.0000i 0.237775 + 0.411839i
\(850\) 0 0
\(851\) −9.00000 + 5.19615i −0.308516 + 0.178122i
\(852\) −13.1769 49.1769i −0.451434 1.68477i
\(853\) 23.2224 6.22243i 0.795121 0.213052i 0.161680 0.986843i \(-0.448309\pi\)
0.633441 + 0.773791i \(0.281642\pi\)
\(854\) 34.6410 1.18539
\(855\) 0 0
\(856\) 12.0000 0.410152
\(857\) 54.4186 14.5814i 1.85890 0.498092i 0.859000 0.511976i \(-0.171086\pi\)
0.999904 + 0.0138842i \(0.00441963\pi\)
\(858\) 0 0
\(859\) −45.8993 + 26.5000i −1.56607 + 0.904168i −0.569445 + 0.822030i \(0.692842\pi\)
−0.996621 + 0.0821386i \(0.973825\pi\)
\(860\) 0 0
\(861\) −12.0000 20.7846i −0.408959 0.708338i
\(862\) 39.0000 39.0000i 1.32835 1.32835i
\(863\) 22.5167 22.5167i 0.766476 0.766476i −0.211008 0.977484i \(-0.567675\pi\)
0.977484 + 0.211008i \(0.0676747\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 24.0000 0.815553
\(867\) 15.5885 + 15.5885i 0.529412 + 0.529412i
\(868\) −56.7846 15.2154i −1.92740 0.516444i
\(869\) −4.33013 + 7.50000i −0.146889 + 0.254420i
\(870\) 0 0
\(871\) 0 0
\(872\) −2.19615 8.19615i −0.0743711 0.277557i
\(873\) −15.5885 + 15.5885i −0.527589 + 0.527589i
\(874\) −5.19615 45.0000i −0.175762 1.52215i
\(875\) 0 0
\(876\) −12.0000 6.92820i −0.405442 0.234082i
\(877\) −7.09808 + 1.90192i −0.239685 + 0.0642234i −0.376662 0.926351i \(-0.622928\pi\)
0.136977 + 0.990574i \(0.456261\pi\)
\(878\) −18.6673 + 69.6673i −0.629991 + 2.35116i
\(879\) 20.7846 + 12.0000i 0.701047 + 0.404750i
\(880\) 0 0
\(881\) 47.0000 1.58347 0.791735 0.610865i \(-0.209178\pi\)
0.791735 + 0.610865i \(0.209178\pi\)
\(882\) 5.19615 + 5.19615i 0.174964 + 0.174964i
\(883\) −5.12436 + 19.1244i −0.172448 + 0.643586i 0.824524 + 0.565827i \(0.191443\pi\)
−0.996972 + 0.0777587i \(0.975224\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 20.7846i 0.698273i
\(887\) −11.4115 + 42.5885i −0.383162 + 1.42998i 0.457882 + 0.889013i \(0.348608\pi\)
−0.841044 + 0.540967i \(0.818058\pi\)
\(888\) 7.60770 + 28.3923i 0.255298 + 0.952783i
\(889\) −13.8564 24.0000i −0.464729 0.804934i
\(890\) 0 0
\(891\) 22.5000 38.9711i 0.753778 1.30558i
\(892\) −76.2102 76.2102i −2.55171 2.55171i
\(893\) 36.5885 + 5.41154i 1.22439 + 0.181090i
\(894\) 114.000i 3.81273i
\(895\) 0 0
\(896\) 48.0000 + 27.7128i 1.60357 + 0.925820i
\(897\) 0 0
\(898\) −36.8827 + 9.88269i −1.23079 + 0.329789i
\(899\) 7.79423 4.50000i 0.259952 0.150083i
\(900\) 0 0
\(901\) 20.7846i 0.692436i
\(902\) 40.9808 + 10.9808i 1.36451 + 0.365619i
\(903\) 66.2487 + 17.7513i 2.20462 + 0.590726i
\(904\) 12.0000i 0.399114i
\(905\) 0 0
\(906\) −81.0000 + 46.7654i −2.69104 + 1.55368i
\(907\) 4.73205 1.26795i 0.157125 0.0421016i −0.179399 0.983776i \(-0.557415\pi\)
0.336524 + 0.941675i \(0.390749\pi\)
\(908\) 47.3205 + 12.6795i 1.57039 + 0.420784i
\(909\) 12.9904 + 7.50000i 0.430864 + 0.248759i
\(910\) 0 0
\(911\) 29.4449i 0.975552i −0.872969 0.487776i \(-0.837808\pi\)
0.872969 0.487776i \(-0.162192\pi\)
\(912\) −42.2487 6.24871i −1.39899 0.206916i
\(913\) 25.0000 + 25.0000i 0.827379 + 0.827379i
\(914\) 17.3205 30.0000i 0.572911 0.992312i
\(915\) 0 0
\(916\) −18.0000 31.1769i −0.594737 1.03011i
\(917\) 7.32051 + 27.3205i 0.241744 + 0.902203i
\(918\) 0 0
\(919\) 22.0000i 0.725713i 0.931845 + 0.362857i \(0.118198\pi\)
−0.931845 + 0.362857i \(0.881802\pi\)
\(920\) 0 0
\(921\) −15.0000 25.9808i −0.494267 0.856095i
\(922\) 3.16987 11.8301i 0.104394 0.389604i
\(923\) 0 0
\(924\) −138.564 −4.55842
\(925\) 0 0
\(926\) −24.0000 13.8564i −0.788689 0.455350i
\(927\) 7.60770 28.3923i 0.249869 0.932526i
\(928\) 0 0
\(929\) 6.06218 + 3.50000i 0.198894 + 0.114831i 0.596139 0.802881i \(-0.296701\pi\)
−0.397246 + 0.917712i \(0.630034\pi\)
\(930\) 0 0
\(931\) 0.500000 + 4.33013i 0.0163868 + 0.141914i
\(932\) −36.0000 + 36.0000i −1.17922 + 1.17922i
\(933\) −12.6795 47.3205i −0.415108 1.54920i
\(934\) −15.5885 + 27.0000i −0.510070 + 0.883467i
\(935\) 0 0
\(936\) 0 0
\(937\) 23.2224 + 6.22243i 0.758644 + 0.203278i 0.617349 0.786690i \(-0.288207\pi\)
0.141295 + 0.989968i \(0.454873\pi\)
\(938\) −48.0000 48.0000i −1.56726 1.56726i
\(939\) −69.2820 −2.26093
\(940\) 0 0
\(941\) −28.5000 + 16.4545i −0.929073 + 0.536401i −0.886518 0.462693i \(-0.846883\pi\)
−0.0425550 + 0.999094i \(0.513550\pi\)
\(942\) −42.0000 + 42.0000i −1.36843 + 1.36843i
\(943\) 10.3923 10.3923i 0.338420 0.338420i
\(944\) −10.3923 18.0000i −0.338241 0.585850i
\(945\) 0 0
\(946\) −105.000 + 60.6218i −3.41384 + 1.97098i
\(947\) 1.46410 + 5.46410i 0.0475769 + 0.177559i 0.985626 0.168944i \(-0.0540356\pi\)
−0.938049 + 0.346503i \(0.887369\pi\)
\(948\) 16.3923 4.39230i 0.532397 0.142655i
\(949\) 0 0
\(950\) 0 0
\(951\) −54.0000 −1.75107
\(952\) −37.8564 + 10.1436i −1.22693 + 0.328756i
\(953\) 8.87564 + 33.1244i 0.287510 + 1.07300i 0.946985 + 0.321277i \(0.104112\pi\)
−0.659475 + 0.751726i \(0.729221\pi\)
\(954\) −46.7654 + 27.0000i −1.51408 + 0.874157i
\(955\) 0 0
\(956\) 22.0000 + 38.1051i 0.711531 + 1.23241i
\(957\) 15.0000 15.0000i 0.484881 0.484881i
\(958\) −22.5167 + 22.5167i −0.727480 + 0.727480i
\(959\) 27.7128 16.0000i 0.894893 0.516667i
\(960\) 0 0
\(961\) 4.00000 0.129032
\(962\) 0 0
\(963\) −7.09808 1.90192i −0.228732 0.0612886i
\(964\) −24.2487 + 42.0000i −0.780998 + 1.35273i
\(965\) 0 0
\(966\) −36.0000 + 62.3538i −1.15828 + 2.00620i
\(967\) −9.15064 34.1506i −0.294265 1.09821i −0.941800 0.336175i \(-0.890867\pi\)
0.647535 0.762036i \(-0.275800\pi\)
\(968\) 48.4974 48.4974i 1.55877 1.55877i
\(969\) −24.2487 + 18.0000i −0.778981 + 0.578243i
\(970\) 0 0
\(971\) −45.0000 25.9808i −1.44412 0.833762i −0.445998 0.895034i \(-0.647151\pi\)
−0.998121 + 0.0612718i \(0.980484\pi\)
\(972\) −85.1769 + 22.8231i −2.73205 + 0.732051i
\(973\) 13.1769 49.1769i 0.422432 1.57654i
\(974\) 20.7846 + 12.0000i 0.665982 + 0.384505i
\(975\) 0 0
\(976\) 20.0000 0.640184
\(977\) −31.1769 31.1769i −0.997438 0.997438i 0.00255886 0.999997i \(-0.499185\pi\)
−0.999997 + 0.00255886i \(0.999185\pi\)
\(978\) −24.1577 + 90.1577i −0.772477 + 2.88292i
\(979\) −12.9904 22.5000i −0.415174 0.719103i
\(980\) 0 0
\(981\) 5.19615i 0.165900i
\(982\) −23.4571 + 87.5429i −0.748545 + 2.79361i
\(983\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(984\) −20.7846 36.0000i −0.662589 1.14764i
\(985\) 0 0
\(986\) 6.00000 10.3923i 0.191079 0.330958i
\(987\) −41.5692 41.5692i −1.32316 1.32316i
\(988\) 0 0
\(989\) 42.0000i 1.33552i
\(990\) 0 0
\(991\) −18.0000 10.3923i −0.571789 0.330122i 0.186075 0.982536i \(-0.440423\pi\)
−0.757863 + 0.652413i \(0.773757\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −31.1769 + 18.0000i −0.988872 + 0.570925i
\(995\) 0 0
\(996\) 69.2820i 2.19529i
\(997\) −10.9282 2.92820i −0.346100 0.0927371i 0.0815818 0.996667i \(-0.474003\pi\)
−0.427681 + 0.903930i \(0.640669\pi\)
\(998\) 14.1962 + 3.80385i 0.449371 + 0.120409i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.p.d.293.1 4
5.2 odd 4 inner 475.2.p.d.407.1 4
5.3 odd 4 95.2.l.a.27.1 yes 4
5.4 even 2 95.2.l.a.8.1 4
15.8 even 4 855.2.cj.d.217.1 4
15.14 odd 2 855.2.cj.d.388.1 4
19.12 odd 6 inner 475.2.p.d.468.1 4
95.12 even 12 inner 475.2.p.d.107.1 4
95.69 odd 6 95.2.l.a.88.1 yes 4
95.88 even 12 95.2.l.a.12.1 yes 4
285.164 even 6 855.2.cj.d.658.1 4
285.278 odd 12 855.2.cj.d.487.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.l.a.8.1 4 5.4 even 2
95.2.l.a.12.1 yes 4 95.88 even 12
95.2.l.a.27.1 yes 4 5.3 odd 4
95.2.l.a.88.1 yes 4 95.69 odd 6
475.2.p.d.107.1 4 95.12 even 12 inner
475.2.p.d.293.1 4 1.1 even 1 trivial
475.2.p.d.407.1 4 5.2 odd 4 inner
475.2.p.d.468.1 4 19.12 odd 6 inner
855.2.cj.d.217.1 4 15.8 even 4
855.2.cj.d.388.1 4 15.14 odd 2
855.2.cj.d.487.1 4 285.278 odd 12
855.2.cj.d.658.1 4 285.164 even 6