Properties

Label 95.2.l
Level $95$
Weight $2$
Character orbit 95.l
Rep. character $\chi_{95}(8,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $32$
Newform subspaces $3$
Sturm bound $20$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 95.l (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 95 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 3 \)
Sturm bound: \(20\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(95, [\chi])\).

Total New Old
Modular forms 48 48 0
Cusp forms 32 32 0
Eisenstein series 16 16 0

Trace form

\( 32 q - 6 q^{2} - 6 q^{3} - 4 q^{5} - 8 q^{6} - 12 q^{7} - 6 q^{10} - 8 q^{11} - 6 q^{13} - 24 q^{15} + 12 q^{16} + 6 q^{17} + 16 q^{20} + 12 q^{21} + 6 q^{22} - 14 q^{23} - 8 q^{25} + 32 q^{26} + 28 q^{28}+ \cdots - 72 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(95, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
95.2.l.a 95.l 95.l $4$ $0.759$ \(\Q(\zeta_{12})\) None 95.2.l.a \(-6\) \(-6\) \(-4\) \(-8\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-1+\zeta_{12}-\zeta_{12}^{2}-2\zeta_{12}^{3})q^{2}+\cdots\)
95.2.l.b 95.l 95.l $4$ $0.759$ \(\Q(\zeta_{12})\) None 95.2.l.b \(0\) \(-6\) \(2\) \(8\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-1-\zeta_{12}-\zeta_{12}^{2}+2\zeta_{12}^{3})q^{3}+\cdots\)
95.2.l.c 95.l 95.l $24$ $0.759$ None 95.2.l.c \(0\) \(6\) \(-2\) \(-12\) $\mathrm{SU}(2)[C_{12}]$