Properties

Label 475.2.p.d.407.1
Level $475$
Weight $2$
Character 475.407
Analytic conductor $3.793$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [475,2,Mod(107,475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(475, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([3, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("475.107"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.p (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,6,6,0,0,12,8,0,0,0,-20,0,0,0,0,8,4,0,0,0,24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 407.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 475.407
Dual form 475.2.p.d.468.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.633975 + 2.36603i) q^{2} +(2.36603 - 0.633975i) q^{3} +(-3.46410 + 2.00000i) q^{4} +(3.00000 + 5.19615i) q^{6} +(2.00000 + 2.00000i) q^{7} +(-3.46410 - 3.46410i) q^{8} +(2.59808 - 1.50000i) q^{9} -5.00000 q^{11} +(-6.92820 + 6.92820i) q^{12} +(-3.46410 + 6.00000i) q^{14} +(2.00000 - 3.46410i) q^{16} +(2.73205 - 0.732051i) q^{17} +(5.19615 + 5.19615i) q^{18} +(4.33013 - 0.500000i) q^{19} +(6.00000 + 3.46410i) q^{21} +(-3.16987 - 11.8301i) q^{22} +(4.09808 + 1.09808i) q^{23} +(-10.3923 - 6.00000i) q^{24} +(-10.9282 - 2.92820i) q^{28} +(-0.866025 - 1.50000i) q^{29} -5.19615i q^{31} +(-11.8301 + 3.16987i) q^{33} +(3.46410 + 6.00000i) q^{34} +(-6.00000 + 10.3923i) q^{36} +(-1.73205 + 1.73205i) q^{37} +(3.92820 + 9.92820i) q^{38} +(-3.00000 - 1.73205i) q^{41} +(-4.39230 + 16.3923i) q^{42} +(-2.56218 - 9.56218i) q^{43} +(17.3205 - 10.0000i) q^{44} +10.3923i q^{46} +(2.19615 - 8.19615i) q^{47} +(2.53590 - 9.46410i) q^{48} +1.00000i q^{49} +(6.00000 - 3.46410i) q^{51} +(1.90192 - 7.09808i) q^{53} -13.8564i q^{56} +(9.92820 - 3.92820i) q^{57} +(3.00000 - 3.00000i) q^{58} +(-2.59808 + 4.50000i) q^{59} +(2.50000 + 4.33013i) q^{61} +(12.2942 - 3.29423i) q^{62} +(8.19615 + 2.19615i) q^{63} -8.00000i q^{64} +(-15.0000 - 25.9808i) q^{66} +(9.46410 + 2.53590i) q^{67} +(-8.00000 + 8.00000i) q^{68} +10.3923 q^{69} +(-4.50000 - 2.59808i) q^{71} +(-14.1962 - 3.80385i) q^{72} +(0.366025 + 1.36603i) q^{73} +(-5.19615 - 3.00000i) q^{74} +(-14.0000 + 10.3923i) q^{76} +(-10.0000 - 10.0000i) q^{77} +(-0.866025 + 1.50000i) q^{79} +(-4.50000 + 7.79423i) q^{81} +(2.19615 - 8.19615i) q^{82} +(-5.00000 + 5.00000i) q^{83} -27.7128 q^{84} +(21.0000 - 12.1244i) q^{86} +(-3.00000 - 3.00000i) q^{87} +(17.3205 + 17.3205i) q^{88} +(-2.59808 - 4.50000i) q^{89} +(-16.3923 + 4.39230i) q^{92} +(-3.29423 - 12.2942i) q^{93} +20.7846 q^{94} +(1.90192 + 7.09808i) q^{97} +(-2.36603 + 0.633975i) q^{98} +(-12.9904 + 7.50000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{2} + 6 q^{3} + 12 q^{6} + 8 q^{7} - 20 q^{11} + 8 q^{16} + 4 q^{17} + 24 q^{21} - 30 q^{22} + 6 q^{23} - 16 q^{28} - 30 q^{33} - 24 q^{36} - 12 q^{38} - 12 q^{41} + 24 q^{42} + 14 q^{43} - 12 q^{47}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.633975 + 2.36603i 0.448288 + 1.67303i 0.707107 + 0.707107i \(0.250000\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(3\) 2.36603 0.633975i 1.36603 0.366025i 0.500000 0.866025i \(-0.333333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(4\) −3.46410 + 2.00000i −1.73205 + 1.00000i
\(5\) 0 0
\(6\) 3.00000 + 5.19615i 1.22474 + 2.12132i
\(7\) 2.00000 + 2.00000i 0.755929 + 0.755929i 0.975579 0.219650i \(-0.0704915\pi\)
−0.219650 + 0.975579i \(0.570491\pi\)
\(8\) −3.46410 3.46410i −1.22474 1.22474i
\(9\) 2.59808 1.50000i 0.866025 0.500000i
\(10\) 0 0
\(11\) −5.00000 −1.50756 −0.753778 0.657129i \(-0.771771\pi\)
−0.753778 + 0.657129i \(0.771771\pi\)
\(12\) −6.92820 + 6.92820i −2.00000 + 2.00000i
\(13\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(14\) −3.46410 + 6.00000i −0.925820 + 1.60357i
\(15\) 0 0
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) 2.73205 0.732051i 0.662620 0.177548i 0.0881917 0.996104i \(-0.471891\pi\)
0.574428 + 0.818555i \(0.305225\pi\)
\(18\) 5.19615 + 5.19615i 1.22474 + 1.22474i
\(19\) 4.33013 0.500000i 0.993399 0.114708i
\(20\) 0 0
\(21\) 6.00000 + 3.46410i 1.30931 + 0.755929i
\(22\) −3.16987 11.8301i −0.675819 2.52219i
\(23\) 4.09808 + 1.09808i 0.854508 + 0.228965i 0.659377 0.751812i \(-0.270820\pi\)
0.195131 + 0.980777i \(0.437487\pi\)
\(24\) −10.3923 6.00000i −2.12132 1.22474i
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) −10.9282 2.92820i −2.06524 0.553378i
\(29\) −0.866025 1.50000i −0.160817 0.278543i 0.774345 0.632764i \(-0.218080\pi\)
−0.935162 + 0.354221i \(0.884746\pi\)
\(30\) 0 0
\(31\) 5.19615i 0.933257i −0.884454 0.466628i \(-0.845469\pi\)
0.884454 0.466628i \(-0.154531\pi\)
\(32\) 0 0
\(33\) −11.8301 + 3.16987i −2.05936 + 0.551804i
\(34\) 3.46410 + 6.00000i 0.594089 + 1.02899i
\(35\) 0 0
\(36\) −6.00000 + 10.3923i −1.00000 + 1.73205i
\(37\) −1.73205 + 1.73205i −0.284747 + 0.284747i −0.834999 0.550252i \(-0.814532\pi\)
0.550252 + 0.834999i \(0.314532\pi\)
\(38\) 3.92820 + 9.92820i 0.637239 + 1.61057i
\(39\) 0 0
\(40\) 0 0
\(41\) −3.00000 1.73205i −0.468521 0.270501i 0.247099 0.968990i \(-0.420523\pi\)
−0.715621 + 0.698489i \(0.753856\pi\)
\(42\) −4.39230 + 16.3923i −0.677747 + 2.52939i
\(43\) −2.56218 9.56218i −0.390728 1.45822i −0.828935 0.559344i \(-0.811053\pi\)
0.438207 0.898874i \(-0.355614\pi\)
\(44\) 17.3205 10.0000i 2.61116 1.50756i
\(45\) 0 0
\(46\) 10.3923i 1.53226i
\(47\) 2.19615 8.19615i 0.320342 1.19553i −0.598571 0.801070i \(-0.704264\pi\)
0.918912 0.394462i \(-0.129069\pi\)
\(48\) 2.53590 9.46410i 0.366025 1.36603i
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 6.00000 3.46410i 0.840168 0.485071i
\(52\) 0 0
\(53\) 1.90192 7.09808i 0.261249 0.974996i −0.703257 0.710936i \(-0.748272\pi\)
0.964506 0.264060i \(-0.0850617\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 13.8564i 1.85164i
\(57\) 9.92820 3.92820i 1.31502 0.520303i
\(58\) 3.00000 3.00000i 0.393919 0.393919i
\(59\) −2.59808 + 4.50000i −0.338241 + 0.585850i −0.984102 0.177605i \(-0.943165\pi\)
0.645861 + 0.763455i \(0.276498\pi\)
\(60\) 0 0
\(61\) 2.50000 + 4.33013i 0.320092 + 0.554416i 0.980507 0.196485i \(-0.0629528\pi\)
−0.660415 + 0.750901i \(0.729619\pi\)
\(62\) 12.2942 3.29423i 1.56137 0.418367i
\(63\) 8.19615 + 2.19615i 1.03262 + 0.276689i
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) −15.0000 25.9808i −1.84637 3.19801i
\(67\) 9.46410 + 2.53590i 1.15622 + 0.309809i 0.785457 0.618917i \(-0.212428\pi\)
0.370767 + 0.928726i \(0.379095\pi\)
\(68\) −8.00000 + 8.00000i −0.970143 + 0.970143i
\(69\) 10.3923 1.25109
\(70\) 0 0
\(71\) −4.50000 2.59808i −0.534052 0.308335i 0.208613 0.977998i \(-0.433105\pi\)
−0.742665 + 0.669663i \(0.766438\pi\)
\(72\) −14.1962 3.80385i −1.67303 0.448288i
\(73\) 0.366025 + 1.36603i 0.0428400 + 0.159881i 0.984032 0.177991i \(-0.0569597\pi\)
−0.941192 + 0.337872i \(0.890293\pi\)
\(74\) −5.19615 3.00000i −0.604040 0.348743i
\(75\) 0 0
\(76\) −14.0000 + 10.3923i −1.60591 + 1.19208i
\(77\) −10.0000 10.0000i −1.13961 1.13961i
\(78\) 0 0
\(79\) −0.866025 + 1.50000i −0.0974355 + 0.168763i −0.910622 0.413239i \(-0.864397\pi\)
0.813187 + 0.582003i \(0.197731\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 2.19615 8.19615i 0.242524 0.905114i
\(83\) −5.00000 + 5.00000i −0.548821 + 0.548821i −0.926100 0.377279i \(-0.876860\pi\)
0.377279 + 0.926100i \(0.376860\pi\)
\(84\) −27.7128 −3.02372
\(85\) 0 0
\(86\) 21.0000 12.1244i 2.26449 1.30740i
\(87\) −3.00000 3.00000i −0.321634 0.321634i
\(88\) 17.3205 + 17.3205i 1.84637 + 1.84637i
\(89\) −2.59808 4.50000i −0.275396 0.476999i 0.694839 0.719165i \(-0.255475\pi\)
−0.970235 + 0.242166i \(0.922142\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −16.3923 + 4.39230i −1.70902 + 0.457929i
\(93\) −3.29423 12.2942i −0.341596 1.27485i
\(94\) 20.7846 2.14377
\(95\) 0 0
\(96\) 0 0
\(97\) 1.90192 + 7.09808i 0.193111 + 0.720700i 0.992748 + 0.120216i \(0.0383588\pi\)
−0.799637 + 0.600484i \(0.794975\pi\)
\(98\) −2.36603 + 0.633975i −0.239005 + 0.0640411i
\(99\) −12.9904 + 7.50000i −1.30558 + 0.753778i
\(100\) 0 0
\(101\) −2.50000 4.33013i −0.248759 0.430864i 0.714423 0.699715i \(-0.246689\pi\)
−0.963182 + 0.268851i \(0.913356\pi\)
\(102\) 12.0000 + 12.0000i 1.18818 + 1.18818i
\(103\) 6.92820 + 6.92820i 0.682656 + 0.682656i 0.960598 0.277942i \(-0.0896522\pi\)
−0.277942 + 0.960598i \(0.589652\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 18.0000 1.74831
\(107\) −1.73205 + 1.73205i −0.167444 + 0.167444i −0.785855 0.618411i \(-0.787777\pi\)
0.618411 + 0.785855i \(0.287777\pi\)
\(108\) 0 0
\(109\) −0.866025 + 1.50000i −0.0829502 + 0.143674i −0.904516 0.426440i \(-0.859768\pi\)
0.821566 + 0.570114i \(0.193101\pi\)
\(110\) 0 0
\(111\) −3.00000 + 5.19615i −0.284747 + 0.493197i
\(112\) 10.9282 2.92820i 1.03262 0.276689i
\(113\) −1.73205 1.73205i −0.162938 0.162938i 0.620929 0.783867i \(-0.286755\pi\)
−0.783867 + 0.620929i \(0.786755\pi\)
\(114\) 15.5885 + 21.0000i 1.45999 + 1.96683i
\(115\) 0 0
\(116\) 6.00000 + 3.46410i 0.557086 + 0.321634i
\(117\) 0 0
\(118\) −12.2942 3.29423i −1.13178 0.303258i
\(119\) 6.92820 + 4.00000i 0.635107 + 0.366679i
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) −8.66025 + 8.66025i −0.784063 + 0.784063i
\(123\) −8.19615 2.19615i −0.739022 0.198020i
\(124\) 10.3923 + 18.0000i 0.933257 + 1.61645i
\(125\) 0 0
\(126\) 20.7846i 1.85164i
\(127\) 9.46410 + 2.53590i 0.839803 + 0.225025i 0.652986 0.757370i \(-0.273516\pi\)
0.186817 + 0.982395i \(0.440183\pi\)
\(128\) 18.9282 5.07180i 1.67303 0.448288i
\(129\) −12.1244 21.0000i −1.06749 1.84895i
\(130\) 0 0
\(131\) −5.00000 + 8.66025i −0.436852 + 0.756650i −0.997445 0.0714417i \(-0.977240\pi\)
0.560593 + 0.828092i \(0.310573\pi\)
\(132\) 34.6410 34.6410i 3.01511 3.01511i
\(133\) 9.66025 + 7.66025i 0.837650 + 0.664228i
\(134\) 24.0000i 2.07328i
\(135\) 0 0
\(136\) −12.0000 6.92820i −1.02899 0.594089i
\(137\) −2.92820 + 10.9282i −0.250173 + 0.933659i 0.720539 + 0.693414i \(0.243894\pi\)
−0.970712 + 0.240245i \(0.922772\pi\)
\(138\) 6.58846 + 24.5885i 0.560847 + 2.09311i
\(139\) −15.5885 + 9.00000i −1.32220 + 0.763370i −0.984079 0.177734i \(-0.943123\pi\)
−0.338117 + 0.941104i \(0.609790\pi\)
\(140\) 0 0
\(141\) 20.7846i 1.75038i
\(142\) 3.29423 12.2942i 0.276446 1.03171i
\(143\) 0 0
\(144\) 12.0000i 1.00000i
\(145\) 0 0
\(146\) −3.00000 + 1.73205i −0.248282 + 0.143346i
\(147\) 0.633975 + 2.36603i 0.0522893 + 0.195146i
\(148\) 2.53590 9.46410i 0.208450 0.777944i
\(149\) −16.4545 9.50000i −1.34800 0.778270i −0.360037 0.932938i \(-0.617236\pi\)
−0.987967 + 0.154668i \(0.950569\pi\)
\(150\) 0 0
\(151\) 15.5885i 1.26857i 0.773099 + 0.634285i \(0.218706\pi\)
−0.773099 + 0.634285i \(0.781294\pi\)
\(152\) −16.7321 13.2679i −1.35715 1.07617i
\(153\) 6.00000 6.00000i 0.485071 0.485071i
\(154\) 17.3205 30.0000i 1.39573 2.41747i
\(155\) 0 0
\(156\) 0 0
\(157\) −9.56218 + 2.56218i −0.763145 + 0.204484i −0.619341 0.785122i \(-0.712600\pi\)
−0.143804 + 0.989606i \(0.545933\pi\)
\(158\) −4.09808 1.09808i −0.326025 0.0873583i
\(159\) 18.0000i 1.42749i
\(160\) 0 0
\(161\) 6.00000 + 10.3923i 0.472866 + 0.819028i
\(162\) −21.2942 5.70577i −1.67303 0.448288i
\(163\) 11.0000 11.0000i 0.861586 0.861586i −0.129936 0.991522i \(-0.541477\pi\)
0.991522 + 0.129936i \(0.0414772\pi\)
\(164\) 13.8564 1.08200
\(165\) 0 0
\(166\) −15.0000 8.66025i −1.16423 0.672166i
\(167\) −18.9282 5.07180i −1.46471 0.392467i −0.563595 0.826051i \(-0.690582\pi\)
−0.901113 + 0.433584i \(0.857249\pi\)
\(168\) −8.78461 32.7846i −0.677747 2.52939i
\(169\) 11.2583 + 6.50000i 0.866025 + 0.500000i
\(170\) 0 0
\(171\) 10.5000 7.79423i 0.802955 0.596040i
\(172\) 28.0000 + 28.0000i 2.13498 + 2.13498i
\(173\) −4.73205 + 1.26795i −0.359771 + 0.0964004i −0.434177 0.900828i \(-0.642961\pi\)
0.0744057 + 0.997228i \(0.476294\pi\)
\(174\) 5.19615 9.00000i 0.393919 0.682288i
\(175\) 0 0
\(176\) −10.0000 + 17.3205i −0.753778 + 1.30558i
\(177\) −3.29423 + 12.2942i −0.247609 + 0.924091i
\(178\) 9.00000 9.00000i 0.674579 0.674579i
\(179\) 19.0526 1.42406 0.712028 0.702152i \(-0.247777\pi\)
0.712028 + 0.702152i \(0.247777\pi\)
\(180\) 0 0
\(181\) 6.00000 3.46410i 0.445976 0.257485i −0.260153 0.965567i \(-0.583773\pi\)
0.706129 + 0.708083i \(0.250440\pi\)
\(182\) 0 0
\(183\) 8.66025 + 8.66025i 0.640184 + 0.640184i
\(184\) −10.3923 18.0000i −0.766131 1.32698i
\(185\) 0 0
\(186\) 27.0000 15.5885i 1.97974 1.14300i
\(187\) −13.6603 + 3.66025i −0.998937 + 0.267664i
\(188\) 8.78461 + 32.7846i 0.640684 + 2.39106i
\(189\) 0 0
\(190\) 0 0
\(191\) −7.00000 −0.506502 −0.253251 0.967401i \(-0.581500\pi\)
−0.253251 + 0.967401i \(0.581500\pi\)
\(192\) −5.07180 18.9282i −0.366025 1.36603i
\(193\) 9.46410 2.53590i 0.681241 0.182538i 0.0984278 0.995144i \(-0.468619\pi\)
0.582813 + 0.812606i \(0.301952\pi\)
\(194\) −15.5885 + 9.00000i −1.11919 + 0.646162i
\(195\) 0 0
\(196\) −2.00000 3.46410i −0.142857 0.247436i
\(197\) 6.00000 + 6.00000i 0.427482 + 0.427482i 0.887770 0.460288i \(-0.152254\pi\)
−0.460288 + 0.887770i \(0.652254\pi\)
\(198\) −25.9808 25.9808i −1.84637 1.84637i
\(199\) 12.9904 7.50000i 0.920864 0.531661i 0.0369532 0.999317i \(-0.488235\pi\)
0.883911 + 0.467656i \(0.154901\pi\)
\(200\) 0 0
\(201\) 24.0000 1.69283
\(202\) 8.66025 8.66025i 0.609333 0.609333i
\(203\) 1.26795 4.73205i 0.0889926 0.332125i
\(204\) −13.8564 + 24.0000i −0.970143 + 1.68034i
\(205\) 0 0
\(206\) −12.0000 + 20.7846i −0.836080 + 1.44813i
\(207\) 12.2942 3.29423i 0.854508 0.228965i
\(208\) 0 0
\(209\) −21.6506 + 2.50000i −1.49761 + 0.172929i
\(210\) 0 0
\(211\) −22.5000 12.9904i −1.54896 0.894295i −0.998221 0.0596196i \(-0.981011\pi\)
−0.550743 0.834675i \(-0.685655\pi\)
\(212\) 7.60770 + 28.3923i 0.522499 + 1.94999i
\(213\) −12.2942 3.29423i −0.842387 0.225717i
\(214\) −5.19615 3.00000i −0.355202 0.205076i
\(215\) 0 0
\(216\) 0 0
\(217\) 10.3923 10.3923i 0.705476 0.705476i
\(218\) −4.09808 1.09808i −0.277557 0.0743711i
\(219\) 1.73205 + 3.00000i 0.117041 + 0.202721i
\(220\) 0 0
\(221\) 0 0
\(222\) −14.1962 3.80385i −0.952783 0.255298i
\(223\) −26.0263 + 6.97372i −1.74285 + 0.466995i −0.983077 0.183195i \(-0.941356\pi\)
−0.759772 + 0.650190i \(0.774689\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 3.00000 5.19615i 0.199557 0.345643i
\(227\) −8.66025 + 8.66025i −0.574801 + 0.574801i −0.933466 0.358665i \(-0.883232\pi\)
0.358665 + 0.933466i \(0.383232\pi\)
\(228\) −26.5359 + 33.4641i −1.75738 + 2.21621i
\(229\) 9.00000i 0.594737i 0.954763 + 0.297368i \(0.0961089\pi\)
−0.954763 + 0.297368i \(0.903891\pi\)
\(230\) 0 0
\(231\) −30.0000 17.3205i −1.97386 1.13961i
\(232\) −2.19615 + 8.19615i −0.144184 + 0.538104i
\(233\) 3.29423 + 12.2942i 0.215812 + 0.805422i 0.985879 + 0.167459i \(0.0535561\pi\)
−0.770067 + 0.637963i \(0.779777\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 20.7846i 1.35296i
\(237\) −1.09808 + 4.09808i −0.0713277 + 0.266199i
\(238\) −5.07180 + 18.9282i −0.328756 + 1.22693i
\(239\) 11.0000i 0.711531i −0.934575 0.355765i \(-0.884220\pi\)
0.934575 0.355765i \(-0.115780\pi\)
\(240\) 0 0
\(241\) −10.5000 + 6.06218i −0.676364 + 0.390499i −0.798484 0.602016i \(-0.794364\pi\)
0.122119 + 0.992515i \(0.461031\pi\)
\(242\) 8.87564 + 33.1244i 0.570548 + 2.12931i
\(243\) −5.70577 + 21.2942i −0.366025 + 1.36603i
\(244\) −17.3205 10.0000i −1.10883 0.640184i
\(245\) 0 0
\(246\) 20.7846i 1.32518i
\(247\) 0 0
\(248\) −18.0000 + 18.0000i −1.14300 + 1.14300i
\(249\) −8.66025 + 15.0000i −0.548821 + 0.950586i
\(250\) 0 0
\(251\) 2.50000 + 4.33013i 0.157799 + 0.273315i 0.934075 0.357078i \(-0.116227\pi\)
−0.776276 + 0.630393i \(0.782894\pi\)
\(252\) −32.7846 + 8.78461i −2.06524 + 0.553378i
\(253\) −20.4904 5.49038i −1.28822 0.345177i
\(254\) 24.0000i 1.50589i
\(255\) 0 0
\(256\) 16.0000 + 27.7128i 1.00000 + 1.73205i
\(257\) 23.6603 + 6.33975i 1.47589 + 0.395462i 0.904945 0.425529i \(-0.139912\pi\)
0.570941 + 0.820991i \(0.306578\pi\)
\(258\) 42.0000 42.0000i 2.61481 2.61481i
\(259\) −6.92820 −0.430498
\(260\) 0 0
\(261\) −4.50000 2.59808i −0.278543 0.160817i
\(262\) −23.6603 6.33975i −1.46174 0.391671i
\(263\) −4.75833 17.7583i −0.293411 1.09503i −0.942471 0.334288i \(-0.891504\pi\)
0.649060 0.760737i \(-0.275163\pi\)
\(264\) 51.9615 + 30.0000i 3.19801 + 1.84637i
\(265\) 0 0
\(266\) −12.0000 + 27.7128i −0.735767 + 1.69918i
\(267\) −9.00000 9.00000i −0.550791 0.550791i
\(268\) −37.8564 + 10.1436i −2.31245 + 0.619619i
\(269\) −0.866025 + 1.50000i −0.0528025 + 0.0914566i −0.891219 0.453574i \(-0.850149\pi\)
0.838416 + 0.545031i \(0.183482\pi\)
\(270\) 0 0
\(271\) 7.50000 12.9904i 0.455593 0.789109i −0.543130 0.839649i \(-0.682761\pi\)
0.998722 + 0.0505395i \(0.0160941\pi\)
\(272\) 2.92820 10.9282i 0.177548 0.662620i
\(273\) 0 0
\(274\) −27.7128 −1.67419
\(275\) 0 0
\(276\) −36.0000 + 20.7846i −2.16695 + 1.25109i
\(277\) −4.00000 4.00000i −0.240337 0.240337i 0.576653 0.816989i \(-0.304359\pi\)
−0.816989 + 0.576653i \(0.804359\pi\)
\(278\) −31.1769 31.1769i −1.86987 1.86987i
\(279\) −7.79423 13.5000i −0.466628 0.808224i
\(280\) 0 0
\(281\) −3.00000 + 1.73205i −0.178965 + 0.103325i −0.586806 0.809727i \(-0.699615\pi\)
0.407841 + 0.913053i \(0.366282\pi\)
\(282\) 49.1769 13.1769i 2.92844 0.784674i
\(283\) −1.46410 5.46410i −0.0870318 0.324807i 0.908659 0.417538i \(-0.137107\pi\)
−0.995691 + 0.0927310i \(0.970440\pi\)
\(284\) 20.7846 1.23334
\(285\) 0 0
\(286\) 0 0
\(287\) −2.53590 9.46410i −0.149689 0.558648i
\(288\) 0 0
\(289\) −7.79423 + 4.50000i −0.458484 + 0.264706i
\(290\) 0 0
\(291\) 9.00000 + 15.5885i 0.527589 + 0.913812i
\(292\) −4.00000 4.00000i −0.234082 0.234082i
\(293\) −6.92820 6.92820i −0.404750 0.404750i 0.475153 0.879903i \(-0.342393\pi\)
−0.879903 + 0.475153i \(0.842393\pi\)
\(294\) −5.19615 + 3.00000i −0.303046 + 0.174964i
\(295\) 0 0
\(296\) 12.0000 0.697486
\(297\) 0 0
\(298\) 12.0455 44.9545i 0.697778 2.60414i
\(299\) 0 0
\(300\) 0 0
\(301\) 14.0000 24.2487i 0.806947 1.39767i
\(302\) −36.8827 + 9.88269i −2.12236 + 0.568685i
\(303\) −8.66025 8.66025i −0.497519 0.497519i
\(304\) 6.92820 16.0000i 0.397360 0.917663i
\(305\) 0 0
\(306\) 18.0000 + 10.3923i 1.02899 + 0.594089i
\(307\) −3.16987 11.8301i −0.180914 0.675181i −0.995468 0.0950935i \(-0.969685\pi\)
0.814554 0.580088i \(-0.196982\pi\)
\(308\) 54.6410 + 14.6410i 3.11346 + 0.834249i
\(309\) 20.7846 + 12.0000i 1.18240 + 0.682656i
\(310\) 0 0
\(311\) −20.0000 −1.13410 −0.567048 0.823685i \(-0.691915\pi\)
−0.567048 + 0.823685i \(0.691915\pi\)
\(312\) 0 0
\(313\) 27.3205 + 7.32051i 1.54425 + 0.413780i 0.927635 0.373488i \(-0.121838\pi\)
0.616611 + 0.787268i \(0.288505\pi\)
\(314\) −12.1244 21.0000i −0.684217 1.18510i
\(315\) 0 0
\(316\) 6.92820i 0.389742i
\(317\) −21.2942 5.70577i −1.19600 0.320468i −0.394747 0.918790i \(-0.629168\pi\)
−0.801256 + 0.598322i \(0.795834\pi\)
\(318\) 42.5885 11.4115i 2.38824 0.639928i
\(319\) 4.33013 + 7.50000i 0.242441 + 0.419919i
\(320\) 0 0
\(321\) −3.00000 + 5.19615i −0.167444 + 0.290021i
\(322\) −20.7846 + 20.7846i −1.15828 + 1.15828i
\(323\) 11.4641 4.53590i 0.637880 0.252384i
\(324\) 36.0000i 2.00000i
\(325\) 0 0
\(326\) 33.0000 + 19.0526i 1.82770 + 1.05522i
\(327\) −1.09808 + 4.09808i −0.0607238 + 0.226624i
\(328\) 4.39230 + 16.3923i 0.242524 + 0.905114i
\(329\) 20.7846 12.0000i 1.14589 0.661581i
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 7.32051 27.3205i 0.401765 1.49941i
\(333\) −1.90192 + 7.09808i −0.104225 + 0.388972i
\(334\) 48.0000i 2.62644i
\(335\) 0 0
\(336\) 24.0000 13.8564i 1.30931 0.755929i
\(337\) 4.43782 + 16.5622i 0.241744 + 0.902199i 0.974992 + 0.222239i \(0.0713364\pi\)
−0.733249 + 0.679961i \(0.761997\pi\)
\(338\) −8.24167 + 30.7583i −0.448288 + 1.67303i
\(339\) −5.19615 3.00000i −0.282216 0.162938i
\(340\) 0 0
\(341\) 25.9808i 1.40694i
\(342\) 25.0981 + 19.9019i 1.35715 + 1.07617i
\(343\) 12.0000 12.0000i 0.647939 0.647939i
\(344\) −24.2487 + 42.0000i −1.30740 + 2.26449i
\(345\) 0 0
\(346\) −6.00000 10.3923i −0.322562 0.558694i
\(347\) 10.9282 2.92820i 0.586657 0.157194i 0.0467319 0.998907i \(-0.485119\pi\)
0.539925 + 0.841713i \(0.318453\pi\)
\(348\) 16.3923 + 4.39230i 0.878720 + 0.235452i
\(349\) 18.0000i 0.963518i 0.876304 + 0.481759i \(0.160002\pi\)
−0.876304 + 0.481759i \(0.839998\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.00000 + 6.00000i −0.319348 + 0.319348i −0.848517 0.529169i \(-0.822504\pi\)
0.529169 + 0.848517i \(0.322504\pi\)
\(354\) −31.1769 −1.65703
\(355\) 0 0
\(356\) 18.0000 + 10.3923i 0.953998 + 0.550791i
\(357\) 18.9282 + 5.07180i 1.00179 + 0.268428i
\(358\) 12.0788 + 45.0788i 0.638386 + 2.38249i
\(359\) 29.4449 + 17.0000i 1.55404 + 0.897226i 0.997806 + 0.0662000i \(0.0210875\pi\)
0.556234 + 0.831026i \(0.312246\pi\)
\(360\) 0 0
\(361\) 18.5000 4.33013i 0.973684 0.227901i
\(362\) 12.0000 + 12.0000i 0.630706 + 0.630706i
\(363\) 33.1244 8.87564i 1.73858 0.465851i
\(364\) 0 0
\(365\) 0 0
\(366\) −15.0000 + 25.9808i −0.784063 + 1.35804i
\(367\) 8.05256 30.0526i 0.420340 1.56873i −0.353553 0.935415i \(-0.615027\pi\)
0.773893 0.633316i \(-0.218307\pi\)
\(368\) 12.0000 12.0000i 0.625543 0.625543i
\(369\) −10.3923 −0.541002
\(370\) 0 0
\(371\) 18.0000 10.3923i 0.934513 0.539542i
\(372\) 36.0000 + 36.0000i 1.86651 + 1.86651i
\(373\) 6.92820 + 6.92820i 0.358729 + 0.358729i 0.863344 0.504615i \(-0.168366\pi\)
−0.504615 + 0.863344i \(0.668366\pi\)
\(374\) −17.3205 30.0000i −0.895622 1.55126i
\(375\) 0 0
\(376\) −36.0000 + 20.7846i −1.85656 + 1.07188i
\(377\) 0 0
\(378\) 0 0
\(379\) −32.9090 −1.69042 −0.845210 0.534434i \(-0.820525\pi\)
−0.845210 + 0.534434i \(0.820525\pi\)
\(380\) 0 0
\(381\) 24.0000 1.22956
\(382\) −4.43782 16.5622i −0.227059 0.847395i
\(383\) −28.3923 + 7.60770i −1.45078 + 0.388735i −0.896295 0.443459i \(-0.853751\pi\)
−0.554484 + 0.832194i \(0.687084\pi\)
\(384\) 41.5692 24.0000i 2.12132 1.22474i
\(385\) 0 0
\(386\) 12.0000 + 20.7846i 0.610784 + 1.05791i
\(387\) −21.0000 21.0000i −1.06749 1.06749i
\(388\) −20.7846 20.7846i −1.05518 1.05518i
\(389\) −19.9186 + 11.5000i −1.00991 + 0.583073i −0.911166 0.412039i \(-0.864817\pi\)
−0.0987463 + 0.995113i \(0.531483\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) 3.46410 3.46410i 0.174964 0.174964i
\(393\) −6.33975 + 23.6603i −0.319798 + 1.19350i
\(394\) −10.3923 + 18.0000i −0.523557 + 0.906827i
\(395\) 0 0
\(396\) 30.0000 51.9615i 1.50756 2.61116i
\(397\) 5.46410 1.46410i 0.274235 0.0734812i −0.119080 0.992885i \(-0.537995\pi\)
0.393316 + 0.919403i \(0.371328\pi\)
\(398\) 25.9808 + 25.9808i 1.30230 + 1.30230i
\(399\) 27.7128 + 12.0000i 1.38738 + 0.600751i
\(400\) 0 0
\(401\) −31.5000 18.1865i −1.57303 0.908192i −0.995794 0.0916181i \(-0.970796\pi\)
−0.577241 0.816574i \(-0.695871\pi\)
\(402\) 15.2154 + 56.7846i 0.758875 + 2.83216i
\(403\) 0 0
\(404\) 17.3205 + 10.0000i 0.861727 + 0.497519i
\(405\) 0 0
\(406\) 12.0000 0.595550
\(407\) 8.66025 8.66025i 0.429273 0.429273i
\(408\) −32.7846 8.78461i −1.62308 0.434903i
\(409\) 16.4545 + 28.5000i 0.813622 + 1.40923i 0.910313 + 0.413920i \(0.135841\pi\)
−0.0966915 + 0.995314i \(0.530826\pi\)
\(410\) 0 0
\(411\) 27.7128i 1.36697i
\(412\) −37.8564 10.1436i −1.86505 0.499739i
\(413\) −14.1962 + 3.80385i −0.698547 + 0.187175i
\(414\) 15.5885 + 27.0000i 0.766131 + 1.32698i
\(415\) 0 0
\(416\) 0 0
\(417\) −31.1769 + 31.1769i −1.52674 + 1.52674i
\(418\) −19.6410 49.6410i −0.960674 2.42802i
\(419\) 31.0000i 1.51445i −0.653155 0.757225i \(-0.726555\pi\)
0.653155 0.757225i \(-0.273445\pi\)
\(420\) 0 0
\(421\) −10.5000 6.06218i −0.511739 0.295452i 0.221809 0.975090i \(-0.428804\pi\)
−0.733548 + 0.679638i \(0.762137\pi\)
\(422\) 16.4711 61.4711i 0.801803 2.99237i
\(423\) −6.58846 24.5885i −0.320342 1.19553i
\(424\) −31.1769 + 18.0000i −1.51408 + 0.874157i
\(425\) 0 0
\(426\) 31.1769i 1.51053i
\(427\) −3.66025 + 13.6603i −0.177132 + 0.661066i
\(428\) 2.53590 9.46410i 0.122577 0.457465i
\(429\) 0 0
\(430\) 0 0
\(431\) 19.5000 11.2583i 0.939282 0.542295i 0.0495468 0.998772i \(-0.484222\pi\)
0.889735 + 0.456477i \(0.150889\pi\)
\(432\) 0 0
\(433\) 2.53590 9.46410i 0.121867 0.454816i −0.877841 0.478952i \(-0.841017\pi\)
0.999709 + 0.0241361i \(0.00768352\pi\)
\(434\) 31.1769 + 18.0000i 1.49654 + 0.864028i
\(435\) 0 0
\(436\) 6.92820i 0.331801i
\(437\) 18.2942 + 2.70577i 0.875132 + 0.129435i
\(438\) −6.00000 + 6.00000i −0.286691 + 0.286691i
\(439\) 14.7224 25.5000i 0.702663 1.21705i −0.264865 0.964286i \(-0.585327\pi\)
0.967528 0.252763i \(-0.0813393\pi\)
\(440\) 0 0
\(441\) 1.50000 + 2.59808i 0.0714286 + 0.123718i
\(442\) 0 0
\(443\) 8.19615 + 2.19615i 0.389411 + 0.104342i 0.448212 0.893927i \(-0.352061\pi\)
−0.0588009 + 0.998270i \(0.518728\pi\)
\(444\) 24.0000i 1.13899i
\(445\) 0 0
\(446\) −33.0000 57.1577i −1.56260 2.70649i
\(447\) −44.9545 12.0455i −2.12627 0.569733i
\(448\) 16.0000 16.0000i 0.755929 0.755929i
\(449\) 15.5885 0.735665 0.367832 0.929892i \(-0.380100\pi\)
0.367832 + 0.929892i \(0.380100\pi\)
\(450\) 0 0
\(451\) 15.0000 + 8.66025i 0.706322 + 0.407795i
\(452\) 9.46410 + 2.53590i 0.445154 + 0.119279i
\(453\) 9.88269 + 36.8827i 0.464329 + 1.73290i
\(454\) −25.9808 15.0000i −1.21934 0.703985i
\(455\) 0 0
\(456\) −48.0000 20.7846i −2.24781 0.973329i
\(457\) 10.0000 + 10.0000i 0.467780 + 0.467780i 0.901195 0.433414i \(-0.142691\pi\)
−0.433414 + 0.901195i \(0.642691\pi\)
\(458\) −21.2942 + 5.70577i −0.995014 + 0.266613i
\(459\) 0 0
\(460\) 0 0
\(461\) 2.50000 4.33013i 0.116437 0.201674i −0.801917 0.597436i \(-0.796186\pi\)
0.918353 + 0.395762i \(0.129519\pi\)
\(462\) 21.9615 81.9615i 1.02174 3.81320i
\(463\) −8.00000 + 8.00000i −0.371792 + 0.371792i −0.868129 0.496338i \(-0.834678\pi\)
0.496338 + 0.868129i \(0.334678\pi\)
\(464\) −6.92820 −0.321634
\(465\) 0 0
\(466\) −27.0000 + 15.5885i −1.25075 + 0.722121i
\(467\) −9.00000 9.00000i −0.416470 0.416470i 0.467515 0.883985i \(-0.345149\pi\)
−0.883985 + 0.467515i \(0.845149\pi\)
\(468\) 0 0
\(469\) 13.8564 + 24.0000i 0.639829 + 1.10822i
\(470\) 0 0
\(471\) −21.0000 + 12.1244i −0.967629 + 0.558661i
\(472\) 24.5885 6.58846i 1.13178 0.303258i
\(473\) 12.8109 + 47.8109i 0.589045 + 2.19835i
\(474\) −10.3923 −0.477334
\(475\) 0 0
\(476\) −32.0000 −1.46672
\(477\) −5.70577 21.2942i −0.261249 0.974996i
\(478\) 26.0263 6.97372i 1.19041 0.318971i
\(479\) 11.2583 6.50000i 0.514406 0.296993i −0.220237 0.975446i \(-0.570683\pi\)
0.734643 + 0.678454i \(0.237350\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −21.0000 21.0000i −0.956524 0.956524i
\(483\) 20.7846 + 20.7846i 0.945732 + 0.945732i
\(484\) −48.4974 + 28.0000i −2.20443 + 1.27273i
\(485\) 0 0
\(486\) −54.0000 −2.44949
\(487\) −6.92820 + 6.92820i −0.313947 + 0.313947i −0.846437 0.532490i \(-0.821257\pi\)
0.532490 + 0.846437i \(0.321257\pi\)
\(488\) 6.33975 23.6603i 0.286987 1.07105i
\(489\) 19.0526 33.0000i 0.861586 1.49231i
\(490\) 0 0
\(491\) −18.5000 + 32.0429i −0.834893 + 1.44608i 0.0592240 + 0.998245i \(0.481137\pi\)
−0.894117 + 0.447833i \(0.852196\pi\)
\(492\) 32.7846 8.78461i 1.47804 0.396041i
\(493\) −3.46410 3.46410i −0.156015 0.156015i
\(494\) 0 0
\(495\) 0 0
\(496\) −18.0000 10.3923i −0.808224 0.466628i
\(497\) −3.80385 14.1962i −0.170626 0.636784i
\(498\) −40.9808 10.9808i −1.83639 0.492060i
\(499\) −5.19615 3.00000i −0.232612 0.134298i 0.379165 0.925329i \(-0.376211\pi\)
−0.611776 + 0.791031i \(0.709545\pi\)
\(500\) 0 0
\(501\) −48.0000 −2.14448
\(502\) −8.66025 + 8.66025i −0.386526 + 0.386526i
\(503\) −13.6603 3.66025i −0.609081 0.163203i −0.0589217 0.998263i \(-0.518766\pi\)
−0.550159 + 0.835060i \(0.685433\pi\)
\(504\) −20.7846 36.0000i −0.925820 1.60357i
\(505\) 0 0
\(506\) 51.9615i 2.30997i
\(507\) 30.7583 + 8.24167i 1.36603 + 0.366025i
\(508\) −37.8564 + 10.1436i −1.67961 + 0.450049i
\(509\) 15.5885 + 27.0000i 0.690946 + 1.19675i 0.971528 + 0.236924i \(0.0761392\pi\)
−0.280582 + 0.959830i \(0.590527\pi\)
\(510\) 0 0
\(511\) −2.00000 + 3.46410i −0.0884748 + 0.153243i
\(512\) −27.7128 + 27.7128i −1.22474 + 1.22474i
\(513\) 0 0
\(514\) 60.0000i 2.64649i
\(515\) 0 0
\(516\) 84.0000 + 48.4974i 3.69789 + 2.13498i
\(517\) −10.9808 + 40.9808i −0.482933 + 1.80233i
\(518\) −4.39230 16.3923i −0.192987 0.720237i
\(519\) −10.3923 + 6.00000i −0.456172 + 0.263371i
\(520\) 0 0
\(521\) 1.73205i 0.0758825i 0.999280 + 0.0379413i \(0.0120800\pi\)
−0.999280 + 0.0379413i \(0.987920\pi\)
\(522\) 3.29423 12.2942i 0.144184 0.538104i
\(523\) 3.16987 11.8301i 0.138609 0.517295i −0.861348 0.508015i \(-0.830379\pi\)
0.999957 0.00928008i \(-0.00295398\pi\)
\(524\) 40.0000i 1.74741i
\(525\) 0 0
\(526\) 39.0000 22.5167i 1.70048 0.981773i
\(527\) −3.80385 14.1962i −0.165698 0.618394i
\(528\) −12.6795 + 47.3205i −0.551804 + 2.05936i
\(529\) −4.33013 2.50000i −0.188266 0.108696i
\(530\) 0 0
\(531\) 15.5885i 0.676481i
\(532\) −48.7846 7.21539i −2.11508 0.312827i
\(533\) 0 0
\(534\) 15.5885 27.0000i 0.674579 1.16840i
\(535\) 0 0
\(536\) −24.0000 41.5692i −1.03664 1.79552i
\(537\) 45.0788 12.0788i 1.94530 0.521240i
\(538\) −4.09808 1.09808i −0.176681 0.0473414i
\(539\) 5.00000i 0.215365i
\(540\) 0 0
\(541\) 16.5000 + 28.5788i 0.709390 + 1.22870i 0.965084 + 0.261942i \(0.0843630\pi\)
−0.255693 + 0.966758i \(0.582304\pi\)
\(542\) 35.4904 + 9.50962i 1.52444 + 0.408473i
\(543\) 12.0000 12.0000i 0.514969 0.514969i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 35.4904 + 9.50962i 1.51746 + 0.406602i 0.918905 0.394480i \(-0.129075\pi\)
0.598555 + 0.801082i \(0.295742\pi\)
\(548\) −11.7128 43.7128i −0.500347 1.86732i
\(549\) 12.9904 + 7.50000i 0.554416 + 0.320092i
\(550\) 0 0
\(551\) −4.50000 6.06218i −0.191706 0.258257i
\(552\) −36.0000 36.0000i −1.53226 1.53226i
\(553\) −4.73205 + 1.26795i −0.201227 + 0.0539187i
\(554\) 6.92820 12.0000i 0.294351 0.509831i
\(555\) 0 0
\(556\) 36.0000 62.3538i 1.52674 2.64439i
\(557\) −12.0788 + 45.0788i −0.511797 + 1.91005i −0.111198 + 0.993798i \(0.535469\pi\)
−0.400599 + 0.916253i \(0.631198\pi\)
\(558\) 27.0000 27.0000i 1.14300 1.14300i
\(559\) 0 0
\(560\) 0 0
\(561\) −30.0000 + 17.3205i −1.26660 + 0.731272i
\(562\) −6.00000 6.00000i −0.253095 0.253095i
\(563\) 19.0526 + 19.0526i 0.802970 + 0.802970i 0.983559 0.180589i \(-0.0578004\pi\)
−0.180589 + 0.983559i \(0.557800\pi\)
\(564\) 41.5692 + 72.0000i 1.75038 + 3.03175i
\(565\) 0 0
\(566\) 12.0000 6.92820i 0.504398 0.291214i
\(567\) −24.5885 + 6.58846i −1.03262 + 0.276689i
\(568\) 6.58846 + 24.5885i 0.276446 + 1.03171i
\(569\) 1.73205 0.0726113 0.0363057 0.999341i \(-0.488441\pi\)
0.0363057 + 0.999341i \(0.488441\pi\)
\(570\) 0 0
\(571\) 9.00000 0.376638 0.188319 0.982108i \(-0.439696\pi\)
0.188319 + 0.982108i \(0.439696\pi\)
\(572\) 0 0
\(573\) −16.5622 + 4.43782i −0.691895 + 0.185393i
\(574\) 20.7846 12.0000i 0.867533 0.500870i
\(575\) 0 0
\(576\) −12.0000 20.7846i −0.500000 0.866025i
\(577\) 7.00000 + 7.00000i 0.291414 + 0.291414i 0.837639 0.546225i \(-0.183936\pi\)
−0.546225 + 0.837639i \(0.683936\pi\)
\(578\) −15.5885 15.5885i −0.648394 0.648394i
\(579\) 20.7846 12.0000i 0.863779 0.498703i
\(580\) 0 0
\(581\) −20.0000 −0.829740
\(582\) −31.1769 + 31.1769i −1.29232 + 1.29232i
\(583\) −9.50962 + 35.4904i −0.393848 + 1.46986i
\(584\) 3.46410 6.00000i 0.143346 0.248282i
\(585\) 0 0
\(586\) 12.0000 20.7846i 0.495715 0.858604i
\(587\) 24.5885 6.58846i 1.01487 0.271935i 0.287210 0.957868i \(-0.407272\pi\)
0.727665 + 0.685933i \(0.240606\pi\)
\(588\) −6.92820 6.92820i −0.285714 0.285714i
\(589\) −2.59808 22.5000i −0.107052 0.927096i
\(590\) 0 0
\(591\) 18.0000 + 10.3923i 0.740421 + 0.427482i
\(592\) 2.53590 + 9.46410i 0.104225 + 0.388972i
\(593\) 38.2487 + 10.2487i 1.57069 + 0.420864i 0.936027 0.351928i \(-0.114474\pi\)
0.634659 + 0.772792i \(0.281140\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 76.0000 3.11308
\(597\) 25.9808 25.9808i 1.06332 1.06332i
\(598\) 0 0
\(599\) −13.8564 24.0000i −0.566157 0.980613i −0.996941 0.0781581i \(-0.975096\pi\)
0.430784 0.902455i \(-0.358237\pi\)
\(600\) 0 0
\(601\) 22.5167i 0.918474i 0.888314 + 0.459237i \(0.151877\pi\)
−0.888314 + 0.459237i \(0.848123\pi\)
\(602\) 66.2487 + 17.7513i 2.70010 + 0.723489i
\(603\) 28.3923 7.60770i 1.15622 0.309809i
\(604\) −31.1769 54.0000i −1.26857 2.19723i
\(605\) 0 0
\(606\) 15.0000 25.9808i 0.609333 1.05540i
\(607\) 3.46410 3.46410i 0.140604 0.140604i −0.633302 0.773905i \(-0.718301\pi\)
0.773905 + 0.633302i \(0.218301\pi\)
\(608\) 0 0
\(609\) 12.0000i 0.486265i
\(610\) 0 0
\(611\) 0 0
\(612\) −8.78461 + 32.7846i −0.355097 + 1.32524i
\(613\) −4.02628 15.0263i −0.162620 0.606906i −0.998332 0.0577376i \(-0.981611\pi\)
0.835712 0.549168i \(-0.185055\pi\)
\(614\) 25.9808 15.0000i 1.04850 0.605351i
\(615\) 0 0
\(616\) 69.2820i 2.79145i
\(617\) 1.83013 6.83013i 0.0736781 0.274971i −0.919252 0.393669i \(-0.871206\pi\)
0.992930 + 0.118699i \(0.0378722\pi\)
\(618\) −15.2154 + 56.7846i −0.612053 + 2.28421i
\(619\) 30.0000i 1.20580i 0.797816 + 0.602901i \(0.205989\pi\)
−0.797816 + 0.602901i \(0.794011\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −12.6795 47.3205i −0.508401 1.89738i
\(623\) 3.80385 14.1962i 0.152398 0.568757i
\(624\) 0 0
\(625\) 0 0
\(626\) 69.2820i 2.76907i
\(627\) −49.6410 + 19.6410i −1.98247 + 0.784387i
\(628\) 28.0000 28.0000i 1.11732 1.11732i
\(629\) −3.46410 + 6.00000i −0.138123 + 0.239236i
\(630\) 0 0
\(631\) −20.5000 35.5070i −0.816092 1.41351i −0.908541 0.417796i \(-0.862803\pi\)
0.0924489 0.995717i \(-0.470531\pi\)
\(632\) 8.19615 2.19615i 0.326025 0.0873583i
\(633\) −61.4711 16.4711i −2.44326 0.654669i
\(634\) 54.0000i 2.14461i
\(635\) 0 0
\(636\) 36.0000 + 62.3538i 1.42749 + 2.47249i
\(637\) 0 0
\(638\) −15.0000 + 15.0000i −0.593856 + 0.593856i
\(639\) −15.5885 −0.616670
\(640\) 0 0
\(641\) −7.50000 4.33013i −0.296232 0.171030i 0.344517 0.938780i \(-0.388043\pi\)
−0.640749 + 0.767750i \(0.721376\pi\)
\(642\) −14.1962 3.80385i −0.560277 0.150126i
\(643\) −7.32051 27.3205i −0.288693 1.07742i −0.946099 0.323879i \(-0.895013\pi\)
0.657406 0.753537i \(-0.271654\pi\)
\(644\) −41.5692 24.0000i −1.63806 0.945732i
\(645\) 0 0
\(646\) 18.0000 + 24.2487i 0.708201 + 0.954053i
\(647\) −10.0000 10.0000i −0.393141 0.393141i 0.482665 0.875805i \(-0.339669\pi\)
−0.875805 + 0.482665i \(0.839669\pi\)
\(648\) 42.5885 11.4115i 1.67303 0.448288i
\(649\) 12.9904 22.5000i 0.509917 0.883202i
\(650\) 0 0
\(651\) 18.0000 31.1769i 0.705476 1.22192i
\(652\) −16.1051 + 60.1051i −0.630725 + 2.35390i
\(653\) 23.0000 23.0000i 0.900060 0.900060i −0.0953813 0.995441i \(-0.530407\pi\)
0.995441 + 0.0953813i \(0.0304070\pi\)
\(654\) −10.3923 −0.406371
\(655\) 0 0
\(656\) −12.0000 + 6.92820i −0.468521 + 0.270501i
\(657\) 3.00000 + 3.00000i 0.117041 + 0.117041i
\(658\) 41.5692 + 41.5692i 1.62054 + 1.62054i
\(659\) −1.73205 3.00000i −0.0674711 0.116863i 0.830316 0.557292i \(-0.188160\pi\)
−0.897787 + 0.440429i \(0.854826\pi\)
\(660\) 0 0
\(661\) 25.5000 14.7224i 0.991835 0.572636i 0.0860127 0.996294i \(-0.472587\pi\)
0.905822 + 0.423658i \(0.139254\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 34.6410 1.34433
\(665\) 0 0
\(666\) −18.0000 −0.697486
\(667\) −1.90192 7.09808i −0.0736428 0.274839i
\(668\) 75.7128 20.2872i 2.92942 0.784935i
\(669\) −57.1577 + 33.0000i −2.20984 + 1.27585i
\(670\) 0 0
\(671\) −12.5000 21.6506i −0.482557 0.835813i
\(672\) 0 0
\(673\) −13.8564 13.8564i −0.534125 0.534125i 0.387672 0.921797i \(-0.373279\pi\)
−0.921797 + 0.387672i \(0.873279\pi\)
\(674\) −36.3731 + 21.0000i −1.40104 + 0.808890i
\(675\) 0 0
\(676\) −52.0000 −2.00000
\(677\) 31.1769 31.1769i 1.19823 1.19823i 0.223529 0.974697i \(-0.428242\pi\)
0.974697 0.223529i \(-0.0717577\pi\)
\(678\) 3.80385 14.1962i 0.146086 0.545200i
\(679\) −10.3923 + 18.0000i −0.398820 + 0.690777i
\(680\) 0 0
\(681\) −15.0000 + 25.9808i −0.574801 + 0.995585i
\(682\) −61.4711 + 16.4711i −2.35385 + 0.630713i
\(683\) 27.7128 + 27.7128i 1.06040 + 1.06040i 0.998055 + 0.0623468i \(0.0198585\pi\)
0.0623468 + 0.998055i \(0.480142\pi\)
\(684\) −20.7846 + 48.0000i −0.794719 + 1.83533i
\(685\) 0 0
\(686\) 36.0000 + 20.7846i 1.37449 + 0.793560i
\(687\) 5.70577 + 21.2942i 0.217689 + 0.812425i
\(688\) −38.2487 10.2487i −1.45822 0.390728i
\(689\) 0 0
\(690\) 0 0
\(691\) 15.0000 0.570627 0.285313 0.958434i \(-0.407902\pi\)
0.285313 + 0.958434i \(0.407902\pi\)
\(692\) 13.8564 13.8564i 0.526742 0.526742i
\(693\) −40.9808 10.9808i −1.55673 0.417125i
\(694\) 13.8564 + 24.0000i 0.525982 + 0.911028i
\(695\) 0 0
\(696\) 20.7846i 0.787839i
\(697\) −9.46410 2.53590i −0.358478 0.0960540i
\(698\) −42.5885 + 11.4115i −1.61200 + 0.431933i
\(699\) 15.5885 + 27.0000i 0.589610 + 1.02123i
\(700\) 0 0
\(701\) 11.0000 19.0526i 0.415464 0.719605i −0.580013 0.814607i \(-0.696952\pi\)
0.995477 + 0.0950021i \(0.0302858\pi\)
\(702\) 0 0
\(703\) −6.63397 + 8.36603i −0.250205 + 0.315531i
\(704\) 40.0000i 1.50756i
\(705\) 0 0
\(706\) −18.0000 10.3923i −0.677439 0.391120i
\(707\) 3.66025 13.6603i 0.137658 0.513747i
\(708\) −13.1769 49.1769i −0.495219 1.84818i
\(709\) 12.9904 7.50000i 0.487864 0.281668i −0.235824 0.971796i \(-0.575779\pi\)
0.723688 + 0.690127i \(0.242446\pi\)
\(710\) 0 0
\(711\) 5.19615i 0.194871i
\(712\) −6.58846 + 24.5885i −0.246913 + 0.921491i
\(713\) 5.70577 21.2942i 0.213683 0.797475i
\(714\) 48.0000i 1.79635i
\(715\) 0 0
\(716\) −66.0000 + 38.1051i −2.46654 + 1.42406i
\(717\) −6.97372 26.0263i −0.260438 0.971969i
\(718\) −21.5551 + 80.4449i −0.804431 + 3.00218i
\(719\) −6.06218 3.50000i −0.226081 0.130528i 0.382682 0.923880i \(-0.375001\pi\)
−0.608763 + 0.793352i \(0.708334\pi\)
\(720\) 0 0
\(721\) 27.7128i 1.03208i
\(722\) 21.9737 + 41.0263i 0.817777 + 1.52684i
\(723\) −21.0000 + 21.0000i −0.780998 + 0.780998i
\(724\) −13.8564 + 24.0000i −0.514969 + 0.891953i
\(725\) 0 0
\(726\) 42.0000 + 72.7461i 1.55877 + 2.69986i
\(727\) 25.9545 6.95448i 0.962598 0.257927i 0.256899 0.966438i \(-0.417299\pi\)
0.705700 + 0.708511i \(0.250633\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) −14.0000 24.2487i −0.517809 0.896871i
\(732\) −47.3205 12.6795i −1.74902 0.468648i
\(733\) −19.0000 + 19.0000i −0.701781 + 0.701781i −0.964793 0.263012i \(-0.915284\pi\)
0.263012 + 0.964793i \(0.415284\pi\)
\(734\) 76.2102 2.81297
\(735\) 0 0
\(736\) 0 0
\(737\) −47.3205 12.6795i −1.74307 0.467055i
\(738\) −6.58846 24.5885i −0.242524 0.905114i
\(739\) −16.4545 9.50000i −0.605288 0.349463i 0.165831 0.986154i \(-0.446969\pi\)
−0.771119 + 0.636691i \(0.780303\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 36.0000 + 36.0000i 1.32160 + 1.32160i
\(743\) 21.2942 5.70577i 0.781209 0.209324i 0.153892 0.988088i \(-0.450819\pi\)
0.627318 + 0.778763i \(0.284153\pi\)
\(744\) −31.1769 + 54.0000i −1.14300 + 1.97974i
\(745\) 0 0
\(746\) −12.0000 + 20.7846i −0.439351 + 0.760979i
\(747\) −5.49038 + 20.4904i −0.200883 + 0.749704i
\(748\) 40.0000 40.0000i 1.46254 1.46254i
\(749\) −6.92820 −0.253151
\(750\) 0 0
\(751\) 7.50000 4.33013i 0.273679 0.158009i −0.356879 0.934150i \(-0.616159\pi\)
0.630558 + 0.776142i \(0.282826\pi\)
\(752\) −24.0000 24.0000i −0.875190 0.875190i
\(753\) 8.66025 + 8.66025i 0.315597 + 0.315597i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 19.1244 5.12436i 0.695087 0.186248i 0.106058 0.994360i \(-0.466177\pi\)
0.589029 + 0.808112i \(0.299510\pi\)
\(758\) −20.8634 77.8634i −0.757795 2.82813i
\(759\) −51.9615 −1.88608
\(760\) 0 0
\(761\) 34.0000 1.23250 0.616250 0.787551i \(-0.288651\pi\)
0.616250 + 0.787551i \(0.288651\pi\)
\(762\) 15.2154 + 56.7846i 0.551195 + 2.05709i
\(763\) −4.73205 + 1.26795i −0.171312 + 0.0459028i
\(764\) 24.2487 14.0000i 0.877288 0.506502i
\(765\) 0 0
\(766\) −36.0000 62.3538i −1.30073 2.25294i
\(767\) 0 0
\(768\) 55.4256 + 55.4256i 2.00000 + 2.00000i
\(769\) 18.1865 10.5000i 0.655823 0.378640i −0.134860 0.990865i \(-0.543059\pi\)
0.790684 + 0.612225i \(0.209725\pi\)
\(770\) 0 0
\(771\) 60.0000 2.16085
\(772\) −27.7128 + 27.7128i −0.997406 + 0.997406i
\(773\) −2.53590 + 9.46410i −0.0912099 + 0.340400i −0.996418 0.0845694i \(-0.973049\pi\)
0.905208 + 0.424970i \(0.139715\pi\)
\(774\) 36.3731 63.0000i 1.30740 2.26449i
\(775\) 0 0
\(776\) 18.0000 31.1769i 0.646162 1.11919i
\(777\) −16.3923 + 4.39230i −0.588071 + 0.157573i
\(778\) −39.8372 39.8372i −1.42823 1.42823i
\(779\) −13.8564 6.00000i −0.496457 0.214972i
\(780\) 0 0
\(781\) 22.5000 + 12.9904i 0.805113 + 0.464832i
\(782\) 7.60770 + 28.3923i 0.272051 + 1.01531i
\(783\) 0 0
\(784\) 3.46410 + 2.00000i 0.123718 + 0.0714286i
\(785\) 0 0
\(786\) −60.0000 −2.14013
\(787\) −24.2487 + 24.2487i −0.864373 + 0.864373i −0.991843 0.127469i \(-0.959315\pi\)
0.127469 + 0.991843i \(0.459315\pi\)
\(788\) −32.7846 8.78461i −1.16790 0.312939i
\(789\) −22.5167 39.0000i −0.801614 1.38844i
\(790\) 0 0
\(791\) 6.92820i 0.246339i
\(792\) 70.9808 + 19.0192i 2.52219 + 0.675819i
\(793\) 0 0
\(794\) 6.92820 + 12.0000i 0.245873 + 0.425864i
\(795\) 0 0
\(796\) −30.0000 + 51.9615i −1.06332 + 1.84173i
\(797\) 1.73205 1.73205i 0.0613524 0.0613524i −0.675765 0.737117i \(-0.736187\pi\)
0.737117 + 0.675765i \(0.236187\pi\)
\(798\) −10.8231 + 73.1769i −0.383133 + 2.59043i
\(799\) 24.0000i 0.849059i
\(800\) 0 0
\(801\) −13.5000 7.79423i −0.476999 0.275396i
\(802\) 23.0596 86.0596i 0.814263 3.03887i
\(803\) −1.83013 6.83013i −0.0645838 0.241030i
\(804\) −83.1384 + 48.0000i −2.93207 + 1.69283i
\(805\) 0 0
\(806\) 0 0
\(807\) −1.09808 + 4.09808i −0.0386541 + 0.144259i
\(808\) −6.33975 + 23.6603i −0.223031 + 0.832365i
\(809\) 35.0000i 1.23053i 0.788319 + 0.615267i \(0.210952\pi\)
−0.788319 + 0.615267i \(0.789048\pi\)
\(810\) 0 0
\(811\) −34.5000 + 19.9186i −1.21146 + 0.699436i −0.963077 0.269226i \(-0.913232\pi\)
−0.248382 + 0.968662i \(0.579899\pi\)
\(812\) 5.07180 + 18.9282i 0.177985 + 0.664250i
\(813\) 9.50962 35.4904i 0.333517 1.24470i
\(814\) 25.9808 + 15.0000i 0.910625 + 0.525750i
\(815\) 0 0
\(816\) 27.7128i 0.970143i
\(817\) −15.8756 40.1244i −0.555418 1.40377i
\(818\) −57.0000 + 57.0000i −1.99296 + 1.99296i
\(819\) 0 0
\(820\) 0 0
\(821\) 14.5000 + 25.1147i 0.506053 + 0.876510i 0.999975 + 0.00700413i \(0.00222950\pi\)
−0.493922 + 0.869506i \(0.664437\pi\)
\(822\) −65.5692 + 17.5692i −2.28699 + 0.612797i
\(823\) −2.73205 0.732051i −0.0952333 0.0255177i 0.210888 0.977510i \(-0.432365\pi\)
−0.306121 + 0.951993i \(0.599031\pi\)
\(824\) 48.0000i 1.67216i
\(825\) 0 0
\(826\) −18.0000 31.1769i −0.626300 1.08478i
\(827\) −23.6603 6.33975i −0.822748 0.220455i −0.177200 0.984175i \(-0.556704\pi\)
−0.645547 + 0.763720i \(0.723371\pi\)
\(828\) −36.0000 + 36.0000i −1.25109 + 1.25109i
\(829\) −17.3205 −0.601566 −0.300783 0.953693i \(-0.597248\pi\)
−0.300783 + 0.953693i \(0.597248\pi\)
\(830\) 0 0
\(831\) −12.0000 6.92820i −0.416275 0.240337i
\(832\) 0 0
\(833\) 0.732051 + 2.73205i 0.0253641 + 0.0946600i
\(834\) −93.5307 54.0000i −3.23870 1.86987i
\(835\) 0 0
\(836\) 70.0000 51.9615i 2.42100 1.79713i
\(837\) 0 0
\(838\) 73.3468 19.6532i 2.53372 0.678909i
\(839\) −13.8564 + 24.0000i −0.478376 + 0.828572i −0.999693 0.0247915i \(-0.992108\pi\)
0.521316 + 0.853363i \(0.325441\pi\)
\(840\) 0 0
\(841\) 13.0000 22.5167i 0.448276 0.776437i
\(842\) 7.68653 28.6865i 0.264895 0.988603i
\(843\) −6.00000 + 6.00000i −0.206651 + 0.206651i
\(844\) 103.923 3.57718
\(845\) 0 0
\(846\) 54.0000 31.1769i 1.85656 1.07188i
\(847\) 28.0000 + 28.0000i 0.962091 + 0.962091i
\(848\) −20.7846 20.7846i −0.713746 0.713746i
\(849\) −6.92820 12.0000i −0.237775 0.411839i
\(850\) 0 0
\(851\) −9.00000 + 5.19615i −0.308516 + 0.178122i
\(852\) 49.1769 13.1769i 1.68477 0.451434i
\(853\) −6.22243 23.2224i −0.213052 0.795121i −0.986843 0.161680i \(-0.948309\pi\)
0.773791 0.633441i \(-0.218358\pi\)
\(854\) −34.6410 −1.18539
\(855\) 0 0
\(856\) 12.0000 0.410152
\(857\) 14.5814 + 54.4186i 0.498092 + 1.85890i 0.511976 + 0.859000i \(0.328914\pi\)
−0.0138842 + 0.999904i \(0.504420\pi\)
\(858\) 0 0
\(859\) 45.8993 26.5000i 1.56607 0.904168i 0.569445 0.822030i \(-0.307158\pi\)
0.996621 0.0821386i \(-0.0261750\pi\)
\(860\) 0 0
\(861\) −12.0000 20.7846i −0.408959 0.708338i
\(862\) 39.0000 + 39.0000i 1.32835 + 1.32835i
\(863\) −22.5167 22.5167i −0.766476 0.766476i 0.211008 0.977484i \(-0.432325\pi\)
−0.977484 + 0.211008i \(0.932325\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 24.0000 0.815553
\(867\) −15.5885 + 15.5885i −0.529412 + 0.529412i
\(868\) −15.2154 + 56.7846i −0.516444 + 1.92740i
\(869\) 4.33013 7.50000i 0.146889 0.254420i
\(870\) 0 0
\(871\) 0 0
\(872\) 8.19615 2.19615i 0.277557 0.0743711i
\(873\) 15.5885 + 15.5885i 0.527589 + 0.527589i
\(874\) 5.19615 + 45.0000i 0.175762 + 1.52215i
\(875\) 0 0
\(876\) −12.0000 6.92820i −0.405442 0.234082i
\(877\) −1.90192 7.09808i −0.0642234 0.239685i 0.926351 0.376662i \(-0.122928\pi\)
−0.990574 + 0.136977i \(0.956261\pi\)
\(878\) 69.6673 + 18.6673i 2.35116 + 0.629991i
\(879\) −20.7846 12.0000i −0.701047 0.404750i
\(880\) 0 0
\(881\) 47.0000 1.58347 0.791735 0.610865i \(-0.209178\pi\)
0.791735 + 0.610865i \(0.209178\pi\)
\(882\) −5.19615 + 5.19615i −0.174964 + 0.174964i
\(883\) 19.1244 + 5.12436i 0.643586 + 0.172448i 0.565827 0.824524i \(-0.308557\pi\)
0.0777587 + 0.996972i \(0.475224\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 20.7846i 0.698273i
\(887\) −42.5885 11.4115i −1.42998 0.383162i −0.540967 0.841044i \(-0.681942\pi\)
−0.889013 + 0.457882i \(0.848608\pi\)
\(888\) 28.3923 7.60770i 0.952783 0.255298i
\(889\) 13.8564 + 24.0000i 0.464729 + 0.804934i
\(890\) 0 0
\(891\) 22.5000 38.9711i 0.753778 1.30558i
\(892\) 76.2102 76.2102i 2.55171 2.55171i
\(893\) 5.41154 36.5885i 0.181090 1.22439i
\(894\) 114.000i 3.81273i
\(895\) 0 0
\(896\) 48.0000 + 27.7128i 1.60357 + 0.925820i
\(897\) 0 0
\(898\) 9.88269 + 36.8827i 0.329789 + 1.23079i
\(899\) −7.79423 + 4.50000i −0.259952 + 0.150083i
\(900\) 0 0
\(901\) 20.7846i 0.692436i
\(902\) −10.9808 + 40.9808i −0.365619 + 1.36451i
\(903\) 17.7513 66.2487i 0.590726 2.20462i
\(904\) 12.0000i 0.399114i
\(905\) 0 0
\(906\) −81.0000 + 46.7654i −2.69104 + 1.55368i
\(907\) 1.26795 + 4.73205i 0.0421016 + 0.157125i 0.983776 0.179399i \(-0.0574153\pi\)
−0.941675 + 0.336524i \(0.890749\pi\)
\(908\) 12.6795 47.3205i 0.420784 1.57039i
\(909\) −12.9904 7.50000i −0.430864 0.248759i
\(910\) 0 0
\(911\) 29.4449i 0.975552i −0.872969 0.487776i \(-0.837808\pi\)
0.872969 0.487776i \(-0.162192\pi\)
\(912\) 6.24871 42.2487i 0.206916 1.39899i
\(913\) 25.0000 25.0000i 0.827379 0.827379i
\(914\) −17.3205 + 30.0000i −0.572911 + 0.992312i
\(915\) 0 0
\(916\) −18.0000 31.1769i −0.594737 1.03011i
\(917\) −27.3205 + 7.32051i −0.902203 + 0.241744i
\(918\) 0 0
\(919\) 22.0000i 0.725713i −0.931845 0.362857i \(-0.881802\pi\)
0.931845 0.362857i \(-0.118198\pi\)
\(920\) 0 0
\(921\) −15.0000 25.9808i −0.494267 0.856095i
\(922\) 11.8301 + 3.16987i 0.389604 + 0.104394i
\(923\) 0 0
\(924\) 138.564 4.55842
\(925\) 0 0
\(926\) −24.0000 13.8564i −0.788689 0.455350i
\(927\) 28.3923 + 7.60770i 0.932526 + 0.249869i
\(928\) 0 0
\(929\) −6.06218 3.50000i −0.198894 0.114831i 0.397246 0.917712i \(-0.369966\pi\)
−0.596139 + 0.802881i \(0.703299\pi\)
\(930\) 0 0
\(931\) 0.500000 + 4.33013i 0.0163868 + 0.141914i
\(932\) −36.0000 36.0000i −1.17922 1.17922i
\(933\) −47.3205 + 12.6795i −1.54920 + 0.415108i
\(934\) 15.5885 27.0000i 0.510070 0.883467i
\(935\) 0 0
\(936\) 0 0
\(937\) −6.22243 + 23.2224i −0.203278 + 0.758644i 0.786690 + 0.617349i \(0.211793\pi\)
−0.989968 + 0.141295i \(0.954873\pi\)
\(938\) −48.0000 + 48.0000i −1.56726 + 1.56726i
\(939\) 69.2820 2.26093
\(940\) 0 0
\(941\) −28.5000 + 16.4545i −0.929073 + 0.536401i −0.886518 0.462693i \(-0.846883\pi\)
−0.0425550 + 0.999094i \(0.513550\pi\)
\(942\) −42.0000 42.0000i −1.36843 1.36843i
\(943\) −10.3923 10.3923i −0.338420 0.338420i
\(944\) 10.3923 + 18.0000i 0.338241 + 0.585850i
\(945\) 0 0
\(946\) −105.000 + 60.6218i −3.41384 + 1.97098i
\(947\) −5.46410 + 1.46410i −0.177559 + 0.0475769i −0.346503 0.938049i \(-0.612631\pi\)
0.168944 + 0.985626i \(0.445964\pi\)
\(948\) −4.39230 16.3923i −0.142655 0.532397i
\(949\) 0 0
\(950\) 0 0
\(951\) −54.0000 −1.75107
\(952\) −10.1436 37.8564i −0.328756 1.22693i
\(953\) 33.1244 8.87564i 1.07300 0.287510i 0.321277 0.946985i \(-0.395888\pi\)
0.751726 + 0.659475i \(0.229221\pi\)
\(954\) 46.7654 27.0000i 1.51408 0.874157i
\(955\) 0 0
\(956\) 22.0000 + 38.1051i 0.711531 + 1.23241i
\(957\) 15.0000 + 15.0000i 0.484881 + 0.484881i
\(958\) 22.5167 + 22.5167i 0.727480 + 0.727480i
\(959\) −27.7128 + 16.0000i −0.894893 + 0.516667i
\(960\) 0 0
\(961\) 4.00000 0.129032
\(962\) 0 0
\(963\) −1.90192 + 7.09808i −0.0612886 + 0.228732i
\(964\) 24.2487 42.0000i 0.780998 1.35273i
\(965\) 0 0
\(966\) −36.0000 + 62.3538i −1.15828 + 2.00620i
\(967\) 34.1506 9.15064i 1.09821 0.294265i 0.336175 0.941800i \(-0.390867\pi\)
0.762036 + 0.647535i \(0.224200\pi\)
\(968\) −48.4974 48.4974i −1.55877 1.55877i
\(969\) 24.2487 18.0000i 0.778981 0.578243i
\(970\) 0 0
\(971\) −45.0000 25.9808i −1.44412 0.833762i −0.445998 0.895034i \(-0.647151\pi\)
−0.998121 + 0.0612718i \(0.980484\pi\)
\(972\) −22.8231 85.1769i −0.732051 2.73205i
\(973\) −49.1769 13.1769i −1.57654 0.422432i
\(974\) −20.7846 12.0000i −0.665982 0.384505i
\(975\) 0 0
\(976\) 20.0000 0.640184
\(977\) 31.1769 31.1769i 0.997438 0.997438i −0.00255886 0.999997i \(-0.500815\pi\)
0.999997 + 0.00255886i \(0.000814512\pi\)
\(978\) 90.1577 + 24.1577i 2.88292 + 0.772477i
\(979\) 12.9904 + 22.5000i 0.415174 + 0.719103i
\(980\) 0 0
\(981\) 5.19615i 0.165900i
\(982\) −87.5429 23.4571i −2.79361 0.748545i
\(983\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(984\) 20.7846 + 36.0000i 0.662589 + 1.14764i
\(985\) 0 0
\(986\) 6.00000 10.3923i 0.191079 0.330958i
\(987\) 41.5692 41.5692i 1.32316 1.32316i
\(988\) 0 0
\(989\) 42.0000i 1.33552i
\(990\) 0 0
\(991\) −18.0000 10.3923i −0.571789 0.330122i 0.186075 0.982536i \(-0.440423\pi\)
−0.757863 + 0.652413i \(0.773757\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 31.1769 18.0000i 0.988872 0.570925i
\(995\) 0 0
\(996\) 69.2820i 2.19529i
\(997\) 2.92820 10.9282i 0.0927371 0.346100i −0.903930 0.427681i \(-0.859331\pi\)
0.996667 + 0.0815818i \(0.0259972\pi\)
\(998\) 3.80385 14.1962i 0.120409 0.449371i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.p.d.407.1 4
5.2 odd 4 95.2.l.a.8.1 4
5.3 odd 4 inner 475.2.p.d.293.1 4
5.4 even 2 95.2.l.a.27.1 yes 4
15.2 even 4 855.2.cj.d.388.1 4
15.14 odd 2 855.2.cj.d.217.1 4
19.12 odd 6 inner 475.2.p.d.107.1 4
95.12 even 12 95.2.l.a.88.1 yes 4
95.69 odd 6 95.2.l.a.12.1 yes 4
95.88 even 12 inner 475.2.p.d.468.1 4
285.107 odd 12 855.2.cj.d.658.1 4
285.164 even 6 855.2.cj.d.487.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.l.a.8.1 4 5.2 odd 4
95.2.l.a.12.1 yes 4 95.69 odd 6
95.2.l.a.27.1 yes 4 5.4 even 2
95.2.l.a.88.1 yes 4 95.12 even 12
475.2.p.d.107.1 4 19.12 odd 6 inner
475.2.p.d.293.1 4 5.3 odd 4 inner
475.2.p.d.407.1 4 1.1 even 1 trivial
475.2.p.d.468.1 4 95.88 even 12 inner
855.2.cj.d.217.1 4 15.14 odd 2
855.2.cj.d.388.1 4 15.2 even 4
855.2.cj.d.487.1 4 285.164 even 6
855.2.cj.d.658.1 4 285.107 odd 12