Properties

Label 855.2.cj.d.658.1
Level $855$
Weight $2$
Character 855.658
Analytic conductor $6.827$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,2,Mod(217,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.217"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.cj (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,6,0,0,4,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 658.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 855.658
Dual form 855.2.cj.d.217.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.633975 - 2.36603i) q^{2} +(-3.46410 - 2.00000i) q^{4} +(0.133975 + 2.23205i) q^{5} +(-2.00000 + 2.00000i) q^{7} +(-3.46410 + 3.46410i) q^{8} +(5.36603 + 1.09808i) q^{10} +5.00000 q^{11} +(3.46410 + 6.00000i) q^{14} +(2.00000 + 3.46410i) q^{16} +(2.73205 + 0.732051i) q^{17} +(4.33013 + 0.500000i) q^{19} +(4.00000 - 8.00000i) q^{20} +(3.16987 - 11.8301i) q^{22} +(4.09808 - 1.09808i) q^{23} +(-4.96410 + 0.598076i) q^{25} +(10.9282 - 2.92820i) q^{28} +(0.866025 - 1.50000i) q^{29} +5.19615i q^{31} +(3.46410 - 6.00000i) q^{34} +(-4.73205 - 4.19615i) q^{35} +(1.73205 + 1.73205i) q^{37} +(3.92820 - 9.92820i) q^{38} +(-8.19615 - 7.26795i) q^{40} +(3.00000 - 1.73205i) q^{41} +(2.56218 - 9.56218i) q^{43} +(-17.3205 - 10.0000i) q^{44} -10.3923i q^{46} +(2.19615 + 8.19615i) q^{47} -1.00000i q^{49} +(-1.73205 + 12.1244i) q^{50} +(1.90192 + 7.09808i) q^{53} +(0.669873 + 11.1603i) q^{55} -13.8564i q^{56} +(-3.00000 - 3.00000i) q^{58} +(2.59808 + 4.50000i) q^{59} +(2.50000 - 4.33013i) q^{61} +(12.2942 + 3.29423i) q^{62} +8.00000i q^{64} +(-9.46410 + 2.53590i) q^{67} +(-8.00000 - 8.00000i) q^{68} +(-12.9282 + 8.53590i) q^{70} +(4.50000 - 2.59808i) q^{71} +(-0.366025 + 1.36603i) q^{73} +(5.19615 - 3.00000i) q^{74} +(-14.0000 - 10.3923i) q^{76} +(-10.0000 + 10.0000i) q^{77} +(-0.866025 - 1.50000i) q^{79} +(-7.46410 + 4.92820i) q^{80} +(-2.19615 - 8.19615i) q^{82} +(-5.00000 - 5.00000i) q^{83} +(-1.26795 + 6.19615i) q^{85} +(-21.0000 - 12.1244i) q^{86} +(-17.3205 + 17.3205i) q^{88} +(2.59808 - 4.50000i) q^{89} +(-16.3923 - 4.39230i) q^{92} +20.7846 q^{94} +(-0.535898 + 9.73205i) q^{95} +(-1.90192 + 7.09808i) q^{97} +(-2.36603 - 0.633975i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{2} + 4 q^{5} - 8 q^{7} + 18 q^{10} + 20 q^{11} + 8 q^{16} + 4 q^{17} + 16 q^{20} + 30 q^{22} + 6 q^{23} - 6 q^{25} + 16 q^{28} - 12 q^{35} - 12 q^{38} - 12 q^{40} + 12 q^{41} - 14 q^{43} - 12 q^{47}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.633975 2.36603i 0.448288 1.67303i −0.258819 0.965926i \(-0.583333\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(3\) 0 0
\(4\) −3.46410 2.00000i −1.73205 1.00000i
\(5\) 0.133975 + 2.23205i 0.0599153 + 0.998203i
\(6\) 0 0
\(7\) −2.00000 + 2.00000i −0.755929 + 0.755929i −0.975579 0.219650i \(-0.929509\pi\)
0.219650 + 0.975579i \(0.429509\pi\)
\(8\) −3.46410 + 3.46410i −1.22474 + 1.22474i
\(9\) 0 0
\(10\) 5.36603 + 1.09808i 1.69689 + 0.347242i
\(11\) 5.00000 1.50756 0.753778 0.657129i \(-0.228229\pi\)
0.753778 + 0.657129i \(0.228229\pi\)
\(12\) 0 0
\(13\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(14\) 3.46410 + 6.00000i 0.925820 + 1.60357i
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) 2.73205 + 0.732051i 0.662620 + 0.177548i 0.574428 0.818555i \(-0.305225\pi\)
0.0881917 + 0.996104i \(0.471891\pi\)
\(18\) 0 0
\(19\) 4.33013 + 0.500000i 0.993399 + 0.114708i
\(20\) 4.00000 8.00000i 0.894427 1.78885i
\(21\) 0 0
\(22\) 3.16987 11.8301i 0.675819 2.52219i
\(23\) 4.09808 1.09808i 0.854508 0.228965i 0.195131 0.980777i \(-0.437487\pi\)
0.659377 + 0.751812i \(0.270820\pi\)
\(24\) 0 0
\(25\) −4.96410 + 0.598076i −0.992820 + 0.119615i
\(26\) 0 0
\(27\) 0 0
\(28\) 10.9282 2.92820i 2.06524 0.553378i
\(29\) 0.866025 1.50000i 0.160817 0.278543i −0.774345 0.632764i \(-0.781920\pi\)
0.935162 + 0.354221i \(0.115254\pi\)
\(30\) 0 0
\(31\) 5.19615i 0.933257i 0.884454 + 0.466628i \(0.154531\pi\)
−0.884454 + 0.466628i \(0.845469\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 3.46410 6.00000i 0.594089 1.02899i
\(35\) −4.73205 4.19615i −0.799863 0.709279i
\(36\) 0 0
\(37\) 1.73205 + 1.73205i 0.284747 + 0.284747i 0.834999 0.550252i \(-0.185468\pi\)
−0.550252 + 0.834999i \(0.685468\pi\)
\(38\) 3.92820 9.92820i 0.637239 1.61057i
\(39\) 0 0
\(40\) −8.19615 7.26795i −1.29593 1.14916i
\(41\) 3.00000 1.73205i 0.468521 0.270501i −0.247099 0.968990i \(-0.579477\pi\)
0.715621 + 0.698489i \(0.246144\pi\)
\(42\) 0 0
\(43\) 2.56218 9.56218i 0.390728 1.45822i −0.438207 0.898874i \(-0.644386\pi\)
0.828935 0.559344i \(-0.188947\pi\)
\(44\) −17.3205 10.0000i −2.61116 1.50756i
\(45\) 0 0
\(46\) 10.3923i 1.53226i
\(47\) 2.19615 + 8.19615i 0.320342 + 1.19553i 0.918912 + 0.394462i \(0.129069\pi\)
−0.598571 + 0.801070i \(0.704264\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) −1.73205 + 12.1244i −0.244949 + 1.71464i
\(51\) 0 0
\(52\) 0 0
\(53\) 1.90192 + 7.09808i 0.261249 + 0.974996i 0.964506 + 0.264060i \(0.0850617\pi\)
−0.703257 + 0.710936i \(0.748272\pi\)
\(54\) 0 0
\(55\) 0.669873 + 11.1603i 0.0903257 + 1.50485i
\(56\) 13.8564i 1.85164i
\(57\) 0 0
\(58\) −3.00000 3.00000i −0.393919 0.393919i
\(59\) 2.59808 + 4.50000i 0.338241 + 0.585850i 0.984102 0.177605i \(-0.0568349\pi\)
−0.645861 + 0.763455i \(0.723502\pi\)
\(60\) 0 0
\(61\) 2.50000 4.33013i 0.320092 0.554416i −0.660415 0.750901i \(-0.729619\pi\)
0.980507 + 0.196485i \(0.0629528\pi\)
\(62\) 12.2942 + 3.29423i 1.56137 + 0.418367i
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) 0 0
\(67\) −9.46410 + 2.53590i −1.15622 + 0.309809i −0.785457 0.618917i \(-0.787572\pi\)
−0.370767 + 0.928726i \(0.620905\pi\)
\(68\) −8.00000 8.00000i −0.970143 0.970143i
\(69\) 0 0
\(70\) −12.9282 + 8.53590i −1.54522 + 1.02023i
\(71\) 4.50000 2.59808i 0.534052 0.308335i −0.208613 0.977998i \(-0.566895\pi\)
0.742665 + 0.669663i \(0.233562\pi\)
\(72\) 0 0
\(73\) −0.366025 + 1.36603i −0.0428400 + 0.159881i −0.984032 0.177991i \(-0.943040\pi\)
0.941192 + 0.337872i \(0.109707\pi\)
\(74\) 5.19615 3.00000i 0.604040 0.348743i
\(75\) 0 0
\(76\) −14.0000 10.3923i −1.60591 1.19208i
\(77\) −10.0000 + 10.0000i −1.13961 + 1.13961i
\(78\) 0 0
\(79\) −0.866025 1.50000i −0.0974355 0.168763i 0.813187 0.582003i \(-0.197731\pi\)
−0.910622 + 0.413239i \(0.864397\pi\)
\(80\) −7.46410 + 4.92820i −0.834512 + 0.550990i
\(81\) 0 0
\(82\) −2.19615 8.19615i −0.242524 0.905114i
\(83\) −5.00000 5.00000i −0.548821 0.548821i 0.377279 0.926100i \(-0.376860\pi\)
−0.926100 + 0.377279i \(0.876860\pi\)
\(84\) 0 0
\(85\) −1.26795 + 6.19615i −0.137528 + 0.672067i
\(86\) −21.0000 12.1244i −2.26449 1.30740i
\(87\) 0 0
\(88\) −17.3205 + 17.3205i −1.84637 + 1.84637i
\(89\) 2.59808 4.50000i 0.275396 0.476999i −0.694839 0.719165i \(-0.744525\pi\)
0.970235 + 0.242166i \(0.0778579\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −16.3923 4.39230i −1.70902 0.457929i
\(93\) 0 0
\(94\) 20.7846 2.14377
\(95\) −0.535898 + 9.73205i −0.0549820 + 0.998487i
\(96\) 0 0
\(97\) −1.90192 + 7.09808i −0.193111 + 0.720700i 0.799637 + 0.600484i \(0.205025\pi\)
−0.992748 + 0.120216i \(0.961641\pi\)
\(98\) −2.36603 0.633975i −0.239005 0.0640411i
\(99\) 0 0
\(100\) 18.3923 + 7.85641i 1.83923 + 0.785641i
\(101\) 2.50000 4.33013i 0.248759 0.430864i −0.714423 0.699715i \(-0.753311\pi\)
0.963182 + 0.268851i \(0.0866439\pi\)
\(102\) 0 0
\(103\) −6.92820 + 6.92820i −0.682656 + 0.682656i −0.960598 0.277942i \(-0.910348\pi\)
0.277942 + 0.960598i \(0.410348\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 18.0000 1.74831
\(107\) −1.73205 1.73205i −0.167444 0.167444i 0.618411 0.785855i \(-0.287777\pi\)
−0.785855 + 0.618411i \(0.787777\pi\)
\(108\) 0 0
\(109\) −0.866025 1.50000i −0.0829502 0.143674i 0.821566 0.570114i \(-0.193101\pi\)
−0.904516 + 0.426440i \(0.859768\pi\)
\(110\) 26.8301 + 5.49038i 2.55815 + 0.523487i
\(111\) 0 0
\(112\) −10.9282 2.92820i −1.03262 0.276689i
\(113\) −1.73205 + 1.73205i −0.162938 + 0.162938i −0.783867 0.620929i \(-0.786755\pi\)
0.620929 + 0.783867i \(0.286755\pi\)
\(114\) 0 0
\(115\) 3.00000 + 9.00000i 0.279751 + 0.839254i
\(116\) −6.00000 + 3.46410i −0.557086 + 0.321634i
\(117\) 0 0
\(118\) 12.2942 3.29423i 1.13178 0.303258i
\(119\) −6.92820 + 4.00000i −0.635107 + 0.366679i
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) −8.66025 8.66025i −0.784063 0.784063i
\(123\) 0 0
\(124\) 10.3923 18.0000i 0.933257 1.61645i
\(125\) −2.00000 11.0000i −0.178885 0.983870i
\(126\) 0 0
\(127\) −9.46410 + 2.53590i −0.839803 + 0.225025i −0.652986 0.757370i \(-0.726484\pi\)
−0.186817 + 0.982395i \(0.559817\pi\)
\(128\) 18.9282 + 5.07180i 1.67303 + 0.448288i
\(129\) 0 0
\(130\) 0 0
\(131\) 5.00000 + 8.66025i 0.436852 + 0.756650i 0.997445 0.0714417i \(-0.0227600\pi\)
−0.560593 + 0.828092i \(0.689427\pi\)
\(132\) 0 0
\(133\) −9.66025 + 7.66025i −0.837650 + 0.664228i
\(134\) 24.0000i 2.07328i
\(135\) 0 0
\(136\) −12.0000 + 6.92820i −1.02899 + 0.594089i
\(137\) −2.92820 10.9282i −0.250173 0.933659i −0.970712 0.240245i \(-0.922772\pi\)
0.720539 0.693414i \(-0.243894\pi\)
\(138\) 0 0
\(139\) −15.5885 9.00000i −1.32220 0.763370i −0.338117 0.941104i \(-0.609790\pi\)
−0.984079 + 0.177734i \(0.943123\pi\)
\(140\) 8.00000 + 24.0000i 0.676123 + 2.02837i
\(141\) 0 0
\(142\) −3.29423 12.2942i −0.276446 1.03171i
\(143\) 0 0
\(144\) 0 0
\(145\) 3.46410 + 1.73205i 0.287678 + 0.143839i
\(146\) 3.00000 + 1.73205i 0.248282 + 0.143346i
\(147\) 0 0
\(148\) −2.53590 9.46410i −0.208450 0.777944i
\(149\) 16.4545 9.50000i 1.34800 0.778270i 0.360037 0.932938i \(-0.382764\pi\)
0.987967 + 0.154668i \(0.0494307\pi\)
\(150\) 0 0
\(151\) 15.5885i 1.26857i −0.773099 0.634285i \(-0.781294\pi\)
0.773099 0.634285i \(-0.218706\pi\)
\(152\) −16.7321 + 13.2679i −1.35715 + 1.07617i
\(153\) 0 0
\(154\) 17.3205 + 30.0000i 1.39573 + 2.41747i
\(155\) −11.5981 + 0.696152i −0.931580 + 0.0559163i
\(156\) 0 0
\(157\) 9.56218 + 2.56218i 0.763145 + 0.204484i 0.619341 0.785122i \(-0.287400\pi\)
0.143804 + 0.989606i \(0.454067\pi\)
\(158\) −4.09808 + 1.09808i −0.326025 + 0.0873583i
\(159\) 0 0
\(160\) 0 0
\(161\) −6.00000 + 10.3923i −0.472866 + 0.819028i
\(162\) 0 0
\(163\) −11.0000 11.0000i −0.861586 0.861586i 0.129936 0.991522i \(-0.458523\pi\)
−0.991522 + 0.129936i \(0.958523\pi\)
\(164\) −13.8564 −1.08200
\(165\) 0 0
\(166\) −15.0000 + 8.66025i −1.16423 + 0.672166i
\(167\) −18.9282 + 5.07180i −1.46471 + 0.392467i −0.901113 0.433584i \(-0.857249\pi\)
−0.563595 + 0.826051i \(0.690582\pi\)
\(168\) 0 0
\(169\) 11.2583 6.50000i 0.866025 0.500000i
\(170\) 13.8564 + 6.92820i 1.06274 + 0.531369i
\(171\) 0 0
\(172\) −28.0000 + 28.0000i −2.13498 + 2.13498i
\(173\) −4.73205 1.26795i −0.359771 0.0964004i 0.0744057 0.997228i \(-0.476294\pi\)
−0.434177 + 0.900828i \(0.642961\pi\)
\(174\) 0 0
\(175\) 8.73205 11.1244i 0.660081 0.840922i
\(176\) 10.0000 + 17.3205i 0.753778 + 1.30558i
\(177\) 0 0
\(178\) −9.00000 9.00000i −0.674579 0.674579i
\(179\) −19.0526 −1.42406 −0.712028 0.702152i \(-0.752223\pi\)
−0.712028 + 0.702152i \(0.752223\pi\)
\(180\) 0 0
\(181\) 6.00000 + 3.46410i 0.445976 + 0.257485i 0.706129 0.708083i \(-0.250440\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −10.3923 + 18.0000i −0.766131 + 1.32698i
\(185\) −3.63397 + 4.09808i −0.267175 + 0.301297i
\(186\) 0 0
\(187\) 13.6603 + 3.66025i 0.998937 + 0.267664i
\(188\) 8.78461 32.7846i 0.640684 2.39106i
\(189\) 0 0
\(190\) 22.6865 + 7.43782i 1.64585 + 0.539596i
\(191\) 7.00000 0.506502 0.253251 0.967401i \(-0.418500\pi\)
0.253251 + 0.967401i \(0.418500\pi\)
\(192\) 0 0
\(193\) −9.46410 2.53590i −0.681241 0.182538i −0.0984278 0.995144i \(-0.531381\pi\)
−0.582813 + 0.812606i \(0.698048\pi\)
\(194\) 15.5885 + 9.00000i 1.11919 + 0.646162i
\(195\) 0 0
\(196\) −2.00000 + 3.46410i −0.142857 + 0.247436i
\(197\) 6.00000 6.00000i 0.427482 0.427482i −0.460288 0.887770i \(-0.652254\pi\)
0.887770 + 0.460288i \(0.152254\pi\)
\(198\) 0 0
\(199\) 12.9904 + 7.50000i 0.920864 + 0.531661i 0.883911 0.467656i \(-0.154901\pi\)
0.0369532 + 0.999317i \(0.488235\pi\)
\(200\) 15.1244 19.2679i 1.06945 1.36245i
\(201\) 0 0
\(202\) −8.66025 8.66025i −0.609333 0.609333i
\(203\) 1.26795 + 4.73205i 0.0889926 + 0.332125i
\(204\) 0 0
\(205\) 4.26795 + 6.46410i 0.298087 + 0.451472i
\(206\) 12.0000 + 20.7846i 0.836080 + 1.44813i
\(207\) 0 0
\(208\) 0 0
\(209\) 21.6506 + 2.50000i 1.49761 + 0.172929i
\(210\) 0 0
\(211\) −22.5000 + 12.9904i −1.54896 + 0.894295i −0.550743 + 0.834675i \(0.685655\pi\)
−0.998221 + 0.0596196i \(0.981011\pi\)
\(212\) 7.60770 28.3923i 0.522499 1.94999i
\(213\) 0 0
\(214\) −5.19615 + 3.00000i −0.355202 + 0.205076i
\(215\) 21.6865 + 4.43782i 1.47901 + 0.302657i
\(216\) 0 0
\(217\) −10.3923 10.3923i −0.705476 0.705476i
\(218\) −4.09808 + 1.09808i −0.277557 + 0.0743711i
\(219\) 0 0
\(220\) 20.0000 40.0000i 1.34840 2.69680i
\(221\) 0 0
\(222\) 0 0
\(223\) 26.0263 + 6.97372i 1.74285 + 0.466995i 0.983077 0.183195i \(-0.0586439\pi\)
0.759772 + 0.650190i \(0.225311\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 3.00000 + 5.19615i 0.199557 + 0.345643i
\(227\) −8.66025 8.66025i −0.574801 0.574801i 0.358665 0.933466i \(-0.383232\pi\)
−0.933466 + 0.358665i \(0.883232\pi\)
\(228\) 0 0
\(229\) 9.00000i 0.594737i −0.954763 0.297368i \(-0.903891\pi\)
0.954763 0.297368i \(-0.0961089\pi\)
\(230\) 23.1962 1.39230i 1.52951 0.0918059i
\(231\) 0 0
\(232\) 2.19615 + 8.19615i 0.144184 + 0.538104i
\(233\) 3.29423 12.2942i 0.215812 0.805422i −0.770067 0.637963i \(-0.779777\pi\)
0.985879 0.167459i \(-0.0535561\pi\)
\(234\) 0 0
\(235\) −18.0000 + 6.00000i −1.17419 + 0.391397i
\(236\) 20.7846i 1.35296i
\(237\) 0 0
\(238\) 5.07180 + 18.9282i 0.328756 + 1.22693i
\(239\) 11.0000i 0.711531i −0.934575 0.355765i \(-0.884220\pi\)
0.934575 0.355765i \(-0.115780\pi\)
\(240\) 0 0
\(241\) −10.5000 6.06218i −0.676364 0.390499i 0.122119 0.992515i \(-0.461031\pi\)
−0.798484 + 0.602016i \(0.794364\pi\)
\(242\) 8.87564 33.1244i 0.570548 2.12931i
\(243\) 0 0
\(244\) −17.3205 + 10.0000i −1.10883 + 0.640184i
\(245\) 2.23205 0.133975i 0.142600 0.00855932i
\(246\) 0 0
\(247\) 0 0
\(248\) −18.0000 18.0000i −1.14300 1.14300i
\(249\) 0 0
\(250\) −27.2942 2.24167i −1.72624 0.141776i
\(251\) −2.50000 + 4.33013i −0.157799 + 0.273315i −0.934075 0.357078i \(-0.883773\pi\)
0.776276 + 0.630393i \(0.217106\pi\)
\(252\) 0 0
\(253\) 20.4904 5.49038i 1.28822 0.345177i
\(254\) 24.0000i 1.50589i
\(255\) 0 0
\(256\) 16.0000 27.7128i 1.00000 1.73205i
\(257\) 23.6603 6.33975i 1.47589 0.395462i 0.570941 0.820991i \(-0.306578\pi\)
0.904945 + 0.425529i \(0.139912\pi\)
\(258\) 0 0
\(259\) −6.92820 −0.430498
\(260\) 0 0
\(261\) 0 0
\(262\) 23.6603 6.33975i 1.46174 0.391671i
\(263\) −4.75833 + 17.7583i −0.293411 + 1.09503i 0.649060 + 0.760737i \(0.275163\pi\)
−0.942471 + 0.334288i \(0.891504\pi\)
\(264\) 0 0
\(265\) −15.5885 + 5.19615i −0.957591 + 0.319197i
\(266\) 12.0000 + 27.7128i 0.735767 + 1.69918i
\(267\) 0 0
\(268\) 37.8564 + 10.1436i 2.31245 + 0.619619i
\(269\) 0.866025 + 1.50000i 0.0528025 + 0.0914566i 0.891219 0.453574i \(-0.149851\pi\)
−0.838416 + 0.545031i \(0.816518\pi\)
\(270\) 0 0
\(271\) 7.50000 + 12.9904i 0.455593 + 0.789109i 0.998722 0.0505395i \(-0.0160941\pi\)
−0.543130 + 0.839649i \(0.682761\pi\)
\(272\) 2.92820 + 10.9282i 0.177548 + 0.662620i
\(273\) 0 0
\(274\) −27.7128 −1.67419
\(275\) −24.8205 + 2.99038i −1.49673 + 0.180327i
\(276\) 0 0
\(277\) 4.00000 4.00000i 0.240337 0.240337i −0.576653 0.816989i \(-0.695641\pi\)
0.816989 + 0.576653i \(0.195641\pi\)
\(278\) −31.1769 + 31.1769i −1.86987 + 1.86987i
\(279\) 0 0
\(280\) 30.9282 1.85641i 1.84831 0.110942i
\(281\) 3.00000 + 1.73205i 0.178965 + 0.103325i 0.586806 0.809727i \(-0.300385\pi\)
−0.407841 + 0.913053i \(0.633718\pi\)
\(282\) 0 0
\(283\) 1.46410 5.46410i 0.0870318 0.324807i −0.908659 0.417538i \(-0.862893\pi\)
0.995691 + 0.0927310i \(0.0295597\pi\)
\(284\) −20.7846 −1.23334
\(285\) 0 0
\(286\) 0 0
\(287\) −2.53590 + 9.46410i −0.149689 + 0.558648i
\(288\) 0 0
\(289\) −7.79423 4.50000i −0.458484 0.264706i
\(290\) 6.29423 7.09808i 0.369610 0.416813i
\(291\) 0 0
\(292\) 4.00000 4.00000i 0.234082 0.234082i
\(293\) −6.92820 + 6.92820i −0.404750 + 0.404750i −0.879903 0.475153i \(-0.842393\pi\)
0.475153 + 0.879903i \(0.342393\pi\)
\(294\) 0 0
\(295\) −9.69615 + 6.40192i −0.564532 + 0.372734i
\(296\) −12.0000 −0.697486
\(297\) 0 0
\(298\) −12.0455 44.9545i −0.697778 2.60414i
\(299\) 0 0
\(300\) 0 0
\(301\) 14.0000 + 24.2487i 0.806947 + 1.39767i
\(302\) −36.8827 9.88269i −2.12236 0.568685i
\(303\) 0 0
\(304\) 6.92820 + 16.0000i 0.397360 + 0.917663i
\(305\) 10.0000 + 5.00000i 0.572598 + 0.286299i
\(306\) 0 0
\(307\) 3.16987 11.8301i 0.180914 0.675181i −0.814554 0.580088i \(-0.803018\pi\)
0.995468 0.0950935i \(-0.0303150\pi\)
\(308\) 54.6410 14.6410i 3.11346 0.834249i
\(309\) 0 0
\(310\) −5.70577 + 27.8827i −0.324066 + 1.58363i
\(311\) 20.0000 1.13410 0.567048 0.823685i \(-0.308085\pi\)
0.567048 + 0.823685i \(0.308085\pi\)
\(312\) 0 0
\(313\) −27.3205 + 7.32051i −1.54425 + 0.413780i −0.927635 0.373488i \(-0.878162\pi\)
−0.616611 + 0.787268i \(0.711495\pi\)
\(314\) 12.1244 21.0000i 0.684217 1.18510i
\(315\) 0 0
\(316\) 6.92820i 0.389742i
\(317\) −21.2942 + 5.70577i −1.19600 + 0.320468i −0.801256 0.598322i \(-0.795834\pi\)
−0.394747 + 0.918790i \(0.629168\pi\)
\(318\) 0 0
\(319\) 4.33013 7.50000i 0.242441 0.419919i
\(320\) −17.8564 + 1.07180i −0.998203 + 0.0599153i
\(321\) 0 0
\(322\) 20.7846 + 20.7846i 1.15828 + 1.15828i
\(323\) 11.4641 + 4.53590i 0.637880 + 0.252384i
\(324\) 0 0
\(325\) 0 0
\(326\) −33.0000 + 19.0526i −1.82770 + 1.05522i
\(327\) 0 0
\(328\) −4.39230 + 16.3923i −0.242524 + 0.905114i
\(329\) −20.7846 12.0000i −1.14589 0.661581i
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 7.32051 + 27.3205i 0.401765 + 1.49941i
\(333\) 0 0
\(334\) 48.0000i 2.62644i
\(335\) −6.92820 20.7846i −0.378528 1.13558i
\(336\) 0 0
\(337\) −4.43782 + 16.5622i −0.241744 + 0.902199i 0.733249 + 0.679961i \(0.238003\pi\)
−0.974992 + 0.222239i \(0.928664\pi\)
\(338\) −8.24167 30.7583i −0.448288 1.67303i
\(339\) 0 0
\(340\) 16.7846 18.9282i 0.910273 1.02653i
\(341\) 25.9808i 1.40694i
\(342\) 0 0
\(343\) −12.0000 12.0000i −0.647939 0.647939i
\(344\) 24.2487 + 42.0000i 1.30740 + 2.26449i
\(345\) 0 0
\(346\) −6.00000 + 10.3923i −0.322562 + 0.558694i
\(347\) 10.9282 + 2.92820i 0.586657 + 0.157194i 0.539925 0.841713i \(-0.318453\pi\)
0.0467319 + 0.998907i \(0.485119\pi\)
\(348\) 0 0
\(349\) 18.0000i 0.963518i −0.876304 0.481759i \(-0.839998\pi\)
0.876304 0.481759i \(-0.160002\pi\)
\(350\) −20.7846 27.7128i −1.11098 1.48131i
\(351\) 0 0
\(352\) 0 0
\(353\) −6.00000 6.00000i −0.319348 0.319348i 0.529169 0.848517i \(-0.322504\pi\)
−0.848517 + 0.529169i \(0.822504\pi\)
\(354\) 0 0
\(355\) 6.40192 + 9.69615i 0.339779 + 0.514618i
\(356\) −18.0000 + 10.3923i −0.953998 + 0.550791i
\(357\) 0 0
\(358\) −12.0788 + 45.0788i −0.638386 + 2.38249i
\(359\) −29.4449 + 17.0000i −1.55404 + 0.897226i −0.556234 + 0.831026i \(0.687754\pi\)
−0.997806 + 0.0662000i \(0.978912\pi\)
\(360\) 0 0
\(361\) 18.5000 + 4.33013i 0.973684 + 0.227901i
\(362\) 12.0000 12.0000i 0.630706 0.630706i
\(363\) 0 0
\(364\) 0 0
\(365\) −3.09808 0.633975i −0.162161 0.0331837i
\(366\) 0 0
\(367\) −8.05256 30.0526i −0.420340 1.56873i −0.773893 0.633316i \(-0.781693\pi\)
0.353553 0.935415i \(-0.384973\pi\)
\(368\) 12.0000 + 12.0000i 0.625543 + 0.625543i
\(369\) 0 0
\(370\) 7.39230 + 11.1962i 0.384308 + 0.582060i
\(371\) −18.0000 10.3923i −0.934513 0.539542i
\(372\) 0 0
\(373\) −6.92820 + 6.92820i −0.358729 + 0.358729i −0.863344 0.504615i \(-0.831634\pi\)
0.504615 + 0.863344i \(0.331634\pi\)
\(374\) 17.3205 30.0000i 0.895622 1.55126i
\(375\) 0 0
\(376\) −36.0000 20.7846i −1.85656 1.07188i
\(377\) 0 0
\(378\) 0 0
\(379\) −32.9090 −1.69042 −0.845210 0.534434i \(-0.820525\pi\)
−0.845210 + 0.534434i \(0.820525\pi\)
\(380\) 21.3205 32.6410i 1.09372 1.67445i
\(381\) 0 0
\(382\) 4.43782 16.5622i 0.227059 0.847395i
\(383\) −28.3923 7.60770i −1.45078 0.388735i −0.554484 0.832194i \(-0.687084\pi\)
−0.896295 + 0.443459i \(0.853751\pi\)
\(384\) 0 0
\(385\) −23.6603 20.9808i −1.20584 1.06928i
\(386\) −12.0000 + 20.7846i −0.610784 + 1.05791i
\(387\) 0 0
\(388\) 20.7846 20.7846i 1.05518 1.05518i
\(389\) 19.9186 + 11.5000i 1.00991 + 0.583073i 0.911166 0.412039i \(-0.135183\pi\)
0.0987463 + 0.995113i \(0.468517\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) 3.46410 + 3.46410i 0.174964 + 0.174964i
\(393\) 0 0
\(394\) −10.3923 18.0000i −0.523557 0.906827i
\(395\) 3.23205 2.13397i 0.162622 0.107372i
\(396\) 0 0
\(397\) −5.46410 1.46410i −0.274235 0.0734812i 0.119080 0.992885i \(-0.462005\pi\)
−0.393316 + 0.919403i \(0.628672\pi\)
\(398\) 25.9808 25.9808i 1.30230 1.30230i
\(399\) 0 0
\(400\) −12.0000 16.0000i −0.600000 0.800000i
\(401\) 31.5000 18.1865i 1.57303 0.908192i 0.577241 0.816574i \(-0.304129\pi\)
0.995794 0.0916181i \(-0.0292039\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −17.3205 + 10.0000i −0.861727 + 0.497519i
\(405\) 0 0
\(406\) 12.0000 0.595550
\(407\) 8.66025 + 8.66025i 0.429273 + 0.429273i
\(408\) 0 0
\(409\) 16.4545 28.5000i 0.813622 1.40923i −0.0966915 0.995314i \(-0.530826\pi\)
0.910313 0.413920i \(-0.135841\pi\)
\(410\) 18.0000 6.00000i 0.888957 0.296319i
\(411\) 0 0
\(412\) 37.8564 10.1436i 1.86505 0.499739i
\(413\) −14.1962 3.80385i −0.698547 0.187175i
\(414\) 0 0
\(415\) 10.4904 11.8301i 0.514953 0.580718i
\(416\) 0 0
\(417\) 0 0
\(418\) 19.6410 49.6410i 0.960674 2.42802i
\(419\) 31.0000i 1.51445i −0.653155 0.757225i \(-0.726555\pi\)
0.653155 0.757225i \(-0.273445\pi\)
\(420\) 0 0
\(421\) −10.5000 + 6.06218i −0.511739 + 0.295452i −0.733548 0.679638i \(-0.762137\pi\)
0.221809 + 0.975090i \(0.428804\pi\)
\(422\) 16.4711 + 61.4711i 0.801803 + 2.99237i
\(423\) 0 0
\(424\) −31.1769 18.0000i −1.51408 0.874157i
\(425\) −14.0000 2.00000i −0.679100 0.0970143i
\(426\) 0 0
\(427\) 3.66025 + 13.6603i 0.177132 + 0.661066i
\(428\) 2.53590 + 9.46410i 0.122577 + 0.457465i
\(429\) 0 0
\(430\) 24.2487 48.4974i 1.16938 2.33875i
\(431\) −19.5000 11.2583i −0.939282 0.542295i −0.0495468 0.998772i \(-0.515778\pi\)
−0.889735 + 0.456477i \(0.849111\pi\)
\(432\) 0 0
\(433\) −2.53590 9.46410i −0.121867 0.454816i 0.877841 0.478952i \(-0.158983\pi\)
−0.999709 + 0.0241361i \(0.992316\pi\)
\(434\) −31.1769 + 18.0000i −1.49654 + 0.864028i
\(435\) 0 0
\(436\) 6.92820i 0.331801i
\(437\) 18.2942 2.70577i 0.875132 0.129435i
\(438\) 0 0
\(439\) 14.7224 + 25.5000i 0.702663 + 1.21705i 0.967528 + 0.252763i \(0.0813393\pi\)
−0.264865 + 0.964286i \(0.585327\pi\)
\(440\) −40.9808 36.3397i −1.95368 1.73243i
\(441\) 0 0
\(442\) 0 0
\(443\) 8.19615 2.19615i 0.389411 0.104342i −0.0588009 0.998270i \(-0.518728\pi\)
0.448212 + 0.893927i \(0.352061\pi\)
\(444\) 0 0
\(445\) 10.3923 + 5.19615i 0.492642 + 0.246321i
\(446\) 33.0000 57.1577i 1.56260 2.70649i
\(447\) 0 0
\(448\) −16.0000 16.0000i −0.755929 0.755929i
\(449\) −15.5885 −0.735665 −0.367832 0.929892i \(-0.619900\pi\)
−0.367832 + 0.929892i \(0.619900\pi\)
\(450\) 0 0
\(451\) 15.0000 8.66025i 0.706322 0.407795i
\(452\) 9.46410 2.53590i 0.445154 0.119279i
\(453\) 0 0
\(454\) −25.9808 + 15.0000i −1.21934 + 0.703985i
\(455\) 0 0
\(456\) 0 0
\(457\) −10.0000 + 10.0000i −0.467780 + 0.467780i −0.901195 0.433414i \(-0.857309\pi\)
0.433414 + 0.901195i \(0.357309\pi\)
\(458\) −21.2942 5.70577i −0.995014 0.266613i
\(459\) 0 0
\(460\) 7.60770 37.1769i 0.354711 1.73338i
\(461\) −2.50000 4.33013i −0.116437 0.201674i 0.801917 0.597436i \(-0.203814\pi\)
−0.918353 + 0.395762i \(0.870481\pi\)
\(462\) 0 0
\(463\) 8.00000 + 8.00000i 0.371792 + 0.371792i 0.868129 0.496338i \(-0.165322\pi\)
−0.496338 + 0.868129i \(0.665322\pi\)
\(464\) 6.92820 0.321634
\(465\) 0 0
\(466\) −27.0000 15.5885i −1.25075 0.722121i
\(467\) −9.00000 + 9.00000i −0.416470 + 0.416470i −0.883985 0.467515i \(-0.845149\pi\)
0.467515 + 0.883985i \(0.345149\pi\)
\(468\) 0 0
\(469\) 13.8564 24.0000i 0.639829 1.10822i
\(470\) 2.78461 + 46.3923i 0.128444 + 2.13992i
\(471\) 0 0
\(472\) −24.5885 6.58846i −1.13178 0.303258i
\(473\) 12.8109 47.8109i 0.589045 2.19835i
\(474\) 0 0
\(475\) −21.7942 + 0.107695i −0.999988 + 0.00494139i
\(476\) 32.0000 1.46672
\(477\) 0 0
\(478\) −26.0263 6.97372i −1.19041 0.318971i
\(479\) −11.2583 6.50000i −0.514406 0.296993i 0.220237 0.975446i \(-0.429317\pi\)
−0.734643 + 0.678454i \(0.762650\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −21.0000 + 21.0000i −0.956524 + 0.956524i
\(483\) 0 0
\(484\) −48.4974 28.0000i −2.20443 1.27273i
\(485\) −16.0981 3.29423i −0.730976 0.149583i
\(486\) 0 0
\(487\) 6.92820 + 6.92820i 0.313947 + 0.313947i 0.846437 0.532490i \(-0.178743\pi\)
−0.532490 + 0.846437i \(0.678743\pi\)
\(488\) 6.33975 + 23.6603i 0.286987 + 1.07105i
\(489\) 0 0
\(490\) 1.09808 5.36603i 0.0496060 0.242412i
\(491\) 18.5000 + 32.0429i 0.834893 + 1.44608i 0.894117 + 0.447833i \(0.147804\pi\)
−0.0592240 + 0.998245i \(0.518863\pi\)
\(492\) 0 0
\(493\) 3.46410 3.46410i 0.156015 0.156015i
\(494\) 0 0
\(495\) 0 0
\(496\) −18.0000 + 10.3923i −0.808224 + 0.466628i
\(497\) −3.80385 + 14.1962i −0.170626 + 0.636784i
\(498\) 0 0
\(499\) −5.19615 + 3.00000i −0.232612 + 0.134298i −0.611776 0.791031i \(-0.709545\pi\)
0.379165 + 0.925329i \(0.376211\pi\)
\(500\) −15.0718 + 42.1051i −0.674031 + 1.88300i
\(501\) 0 0
\(502\) 8.66025 + 8.66025i 0.386526 + 0.386526i
\(503\) −13.6603 + 3.66025i −0.609081 + 0.163203i −0.550159 0.835060i \(-0.685433\pi\)
−0.0589217 + 0.998263i \(0.518766\pi\)
\(504\) 0 0
\(505\) 10.0000 + 5.00000i 0.444994 + 0.222497i
\(506\) 51.9615i 2.30997i
\(507\) 0 0
\(508\) 37.8564 + 10.1436i 1.67961 + 0.450049i
\(509\) −15.5885 + 27.0000i −0.690946 + 1.19675i 0.280582 + 0.959830i \(0.409473\pi\)
−0.971528 + 0.236924i \(0.923861\pi\)
\(510\) 0 0
\(511\) −2.00000 3.46410i −0.0884748 0.153243i
\(512\) −27.7128 27.7128i −1.22474 1.22474i
\(513\) 0 0
\(514\) 60.0000i 2.64649i
\(515\) −16.3923 14.5359i −0.722331 0.640528i
\(516\) 0 0
\(517\) 10.9808 + 40.9808i 0.482933 + 1.80233i
\(518\) −4.39230 + 16.3923i −0.192987 + 0.720237i
\(519\) 0 0
\(520\) 0 0
\(521\) 1.73205i 0.0758825i 0.999280 + 0.0379413i \(0.0120800\pi\)
−0.999280 + 0.0379413i \(0.987920\pi\)
\(522\) 0 0
\(523\) −3.16987 11.8301i −0.138609 0.517295i −0.999957 0.00928008i \(-0.997046\pi\)
0.861348 0.508015i \(-0.169621\pi\)
\(524\) 40.0000i 1.74741i
\(525\) 0 0
\(526\) 39.0000 + 22.5167i 1.70048 + 0.981773i
\(527\) −3.80385 + 14.1962i −0.165698 + 0.618394i
\(528\) 0 0
\(529\) −4.33013 + 2.50000i −0.188266 + 0.108696i
\(530\) 2.41154 + 40.1769i 0.104751 + 1.74517i
\(531\) 0 0
\(532\) 48.7846 7.21539i 2.11508 0.312827i
\(533\) 0 0
\(534\) 0 0
\(535\) 3.63397 4.09808i 0.157110 0.177175i
\(536\) 24.0000 41.5692i 1.03664 1.79552i
\(537\) 0 0
\(538\) 4.09808 1.09808i 0.176681 0.0473414i
\(539\) 5.00000i 0.215365i
\(540\) 0 0
\(541\) 16.5000 28.5788i 0.709390 1.22870i −0.255693 0.966758i \(-0.582304\pi\)
0.965084 0.261942i \(-0.0843630\pi\)
\(542\) 35.4904 9.50962i 1.52444 0.408473i
\(543\) 0 0
\(544\) 0 0
\(545\) 3.23205 2.13397i 0.138446 0.0914094i
\(546\) 0 0
\(547\) −35.4904 + 9.50962i −1.51746 + 0.406602i −0.918905 0.394480i \(-0.870925\pi\)
−0.598555 + 0.801082i \(0.704258\pi\)
\(548\) −11.7128 + 43.7128i −0.500347 + 1.86732i
\(549\) 0 0
\(550\) −8.66025 + 60.6218i −0.369274 + 2.58492i
\(551\) 4.50000 6.06218i 0.191706 0.258257i
\(552\) 0 0
\(553\) 4.73205 + 1.26795i 0.201227 + 0.0539187i
\(554\) −6.92820 12.0000i −0.294351 0.509831i
\(555\) 0 0
\(556\) 36.0000 + 62.3538i 1.52674 + 2.64439i
\(557\) −12.0788 45.0788i −0.511797 1.91005i −0.400599 0.916253i \(-0.631198\pi\)
−0.111198 0.993798i \(-0.535469\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 5.07180 24.7846i 0.214323 1.04734i
\(561\) 0 0
\(562\) 6.00000 6.00000i 0.253095 0.253095i
\(563\) 19.0526 19.0526i 0.802970 0.802970i −0.180589 0.983559i \(-0.557800\pi\)
0.983559 + 0.180589i \(0.0578004\pi\)
\(564\) 0 0
\(565\) −4.09808 3.63397i −0.172407 0.152882i
\(566\) −12.0000 6.92820i −0.504398 0.291214i
\(567\) 0 0
\(568\) −6.58846 + 24.5885i −0.276446 + 1.03171i
\(569\) −1.73205 −0.0726113 −0.0363057 0.999341i \(-0.511559\pi\)
−0.0363057 + 0.999341i \(0.511559\pi\)
\(570\) 0 0
\(571\) 9.00000 0.376638 0.188319 0.982108i \(-0.439696\pi\)
0.188319 + 0.982108i \(0.439696\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 20.7846 + 12.0000i 0.867533 + 0.500870i
\(575\) −19.6865 + 7.90192i −0.820985 + 0.329533i
\(576\) 0 0
\(577\) −7.00000 + 7.00000i −0.291414 + 0.291414i −0.837639 0.546225i \(-0.816064\pi\)
0.546225 + 0.837639i \(0.316064\pi\)
\(578\) −15.5885 + 15.5885i −0.648394 + 0.648394i
\(579\) 0 0
\(580\) −8.53590 12.9282i −0.354434 0.536814i
\(581\) 20.0000 0.829740
\(582\) 0 0
\(583\) 9.50962 + 35.4904i 0.393848 + 1.46986i
\(584\) −3.46410 6.00000i −0.143346 0.248282i
\(585\) 0 0
\(586\) 12.0000 + 20.7846i 0.495715 + 0.858604i
\(587\) 24.5885 + 6.58846i 1.01487 + 0.271935i 0.727665 0.685933i \(-0.240606\pi\)
0.287210 + 0.957868i \(0.407272\pi\)
\(588\) 0 0
\(589\) −2.59808 + 22.5000i −0.107052 + 0.927096i
\(590\) 9.00000 + 27.0000i 0.370524 + 1.11157i
\(591\) 0 0
\(592\) −2.53590 + 9.46410i −0.104225 + 0.388972i
\(593\) 38.2487 10.2487i 1.57069 0.420864i 0.634659 0.772792i \(-0.281140\pi\)
0.936027 + 0.351928i \(0.114474\pi\)
\(594\) 0 0
\(595\) −9.85641 14.9282i −0.404073 0.611997i
\(596\) −76.0000 −3.11308
\(597\) 0 0
\(598\) 0 0
\(599\) 13.8564 24.0000i 0.566157 0.980613i −0.430784 0.902455i \(-0.641763\pi\)
0.996941 0.0781581i \(-0.0249039\pi\)
\(600\) 0 0
\(601\) 22.5167i 0.918474i −0.888314 0.459237i \(-0.848123\pi\)
0.888314 0.459237i \(-0.151877\pi\)
\(602\) 66.2487 17.7513i 2.70010 0.723489i
\(603\) 0 0
\(604\) −31.1769 + 54.0000i −1.26857 + 2.19723i
\(605\) 1.87564 + 31.2487i 0.0762558 + 1.27044i
\(606\) 0 0
\(607\) −3.46410 3.46410i −0.140604 0.140604i 0.633302 0.773905i \(-0.281699\pi\)
−0.773905 + 0.633302i \(0.781699\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 18.1699 20.4904i 0.735677 0.829631i
\(611\) 0 0
\(612\) 0 0
\(613\) 4.02628 15.0263i 0.162620 0.606906i −0.835712 0.549168i \(-0.814945\pi\)
0.998332 0.0577376i \(-0.0183887\pi\)
\(614\) −25.9808 15.0000i −1.04850 0.605351i
\(615\) 0 0
\(616\) 69.2820i 2.79145i
\(617\) 1.83013 + 6.83013i 0.0736781 + 0.274971i 0.992930 0.118699i \(-0.0378722\pi\)
−0.919252 + 0.393669i \(0.871206\pi\)
\(618\) 0 0
\(619\) 30.0000i 1.20580i −0.797816 0.602901i \(-0.794011\pi\)
0.797816 0.602901i \(-0.205989\pi\)
\(620\) 41.5692 + 20.7846i 1.66946 + 0.834730i
\(621\) 0 0
\(622\) 12.6795 47.3205i 0.508401 1.89738i
\(623\) 3.80385 + 14.1962i 0.152398 + 0.568757i
\(624\) 0 0
\(625\) 24.2846 5.93782i 0.971384 0.237513i
\(626\) 69.2820i 2.76907i
\(627\) 0 0
\(628\) −28.0000 28.0000i −1.11732 1.11732i
\(629\) 3.46410 + 6.00000i 0.138123 + 0.239236i
\(630\) 0 0
\(631\) −20.5000 + 35.5070i −0.816092 + 1.41351i 0.0924489 + 0.995717i \(0.470531\pi\)
−0.908541 + 0.417796i \(0.862803\pi\)
\(632\) 8.19615 + 2.19615i 0.326025 + 0.0873583i
\(633\) 0 0
\(634\) 54.0000i 2.14461i
\(635\) −6.92820 20.7846i −0.274937 0.824812i
\(636\) 0 0
\(637\) 0 0
\(638\) −15.0000 15.0000i −0.593856 0.593856i
\(639\) 0 0
\(640\) −8.78461 + 42.9282i −0.347242 + 1.69689i
\(641\) 7.50000 4.33013i 0.296232 0.171030i −0.344517 0.938780i \(-0.611957\pi\)
0.640749 + 0.767750i \(0.278624\pi\)
\(642\) 0 0
\(643\) 7.32051 27.3205i 0.288693 1.07742i −0.657406 0.753537i \(-0.728346\pi\)
0.946099 0.323879i \(-0.104987\pi\)
\(644\) 41.5692 24.0000i 1.63806 0.945732i
\(645\) 0 0
\(646\) 18.0000 24.2487i 0.708201 0.954053i
\(647\) −10.0000 + 10.0000i −0.393141 + 0.393141i −0.875805 0.482665i \(-0.839669\pi\)
0.482665 + 0.875805i \(0.339669\pi\)
\(648\) 0 0
\(649\) 12.9904 + 22.5000i 0.509917 + 0.883202i
\(650\) 0 0
\(651\) 0 0
\(652\) 16.1051 + 60.1051i 0.630725 + 2.35390i
\(653\) 23.0000 + 23.0000i 0.900060 + 0.900060i 0.995441 0.0953813i \(-0.0304070\pi\)
−0.0953813 + 0.995441i \(0.530407\pi\)
\(654\) 0 0
\(655\) −18.6603 + 12.3205i −0.729116 + 0.481402i
\(656\) 12.0000 + 6.92820i 0.468521 + 0.270501i
\(657\) 0 0
\(658\) −41.5692 + 41.5692i −1.62054 + 1.62054i
\(659\) 1.73205 3.00000i 0.0674711 0.116863i −0.830316 0.557292i \(-0.811840\pi\)
0.897787 + 0.440429i \(0.145174\pi\)
\(660\) 0 0
\(661\) 25.5000 + 14.7224i 0.991835 + 0.572636i 0.905822 0.423658i \(-0.139254\pi\)
0.0860127 + 0.996294i \(0.472587\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 34.6410 1.34433
\(665\) −18.3923 20.5359i −0.713223 0.796348i
\(666\) 0 0
\(667\) 1.90192 7.09808i 0.0736428 0.274839i
\(668\) 75.7128 + 20.2872i 2.92942 + 0.784935i
\(669\) 0 0
\(670\) −53.5692 + 3.21539i −2.06956 + 0.124221i
\(671\) 12.5000 21.6506i 0.482557 0.835813i
\(672\) 0 0
\(673\) 13.8564 13.8564i 0.534125 0.534125i −0.387672 0.921797i \(-0.626721\pi\)
0.921797 + 0.387672i \(0.126721\pi\)
\(674\) 36.3731 + 21.0000i 1.40104 + 0.808890i
\(675\) 0 0
\(676\) −52.0000 −2.00000
\(677\) 31.1769 + 31.1769i 1.19823 + 1.19823i 0.974697 + 0.223529i \(0.0717577\pi\)
0.223529 + 0.974697i \(0.428242\pi\)
\(678\) 0 0
\(679\) −10.3923 18.0000i −0.398820 0.690777i
\(680\) −17.0718 25.8564i −0.654674 0.991548i
\(681\) 0 0
\(682\) 61.4711 + 16.4711i 2.35385 + 0.630713i
\(683\) 27.7128 27.7128i 1.06040 1.06040i 0.0623468 0.998055i \(-0.480142\pi\)
0.998055 0.0623468i \(-0.0198585\pi\)
\(684\) 0 0
\(685\) 24.0000 8.00000i 0.916993 0.305664i
\(686\) −36.0000 + 20.7846i −1.37449 + 0.793560i
\(687\) 0 0
\(688\) 38.2487 10.2487i 1.45822 0.390728i
\(689\) 0 0
\(690\) 0 0
\(691\) 15.0000 0.570627 0.285313 0.958434i \(-0.407902\pi\)
0.285313 + 0.958434i \(0.407902\pi\)
\(692\) 13.8564 + 13.8564i 0.526742 + 0.526742i
\(693\) 0 0
\(694\) 13.8564 24.0000i 0.525982 0.911028i
\(695\) 18.0000 36.0000i 0.682779 1.36556i
\(696\) 0 0
\(697\) 9.46410 2.53590i 0.358478 0.0960540i
\(698\) −42.5885 11.4115i −1.61200 0.431933i
\(699\) 0 0
\(700\) −52.4974 + 21.0718i −1.98422 + 0.796439i
\(701\) −11.0000 19.0526i −0.415464 0.719605i 0.580013 0.814607i \(-0.303048\pi\)
−0.995477 + 0.0950021i \(0.969714\pi\)
\(702\) 0 0
\(703\) 6.63397 + 8.36603i 0.250205 + 0.315531i
\(704\) 40.0000i 1.50756i
\(705\) 0 0
\(706\) −18.0000 + 10.3923i −0.677439 + 0.391120i
\(707\) 3.66025 + 13.6603i 0.137658 + 0.513747i
\(708\) 0 0
\(709\) 12.9904 + 7.50000i 0.487864 + 0.281668i 0.723688 0.690127i \(-0.242446\pi\)
−0.235824 + 0.971796i \(0.575779\pi\)
\(710\) 27.0000 9.00000i 1.01329 0.337764i
\(711\) 0 0
\(712\) 6.58846 + 24.5885i 0.246913 + 0.921491i
\(713\) 5.70577 + 21.2942i 0.213683 + 0.797475i
\(714\) 0 0
\(715\) 0 0
\(716\) 66.0000 + 38.1051i 2.46654 + 1.42406i
\(717\) 0 0
\(718\) 21.5551 + 80.4449i 0.804431 + 3.00218i
\(719\) 6.06218 3.50000i 0.226081 0.130528i −0.382682 0.923880i \(-0.624999\pi\)
0.608763 + 0.793352i \(0.291666\pi\)
\(720\) 0 0
\(721\) 27.7128i 1.03208i
\(722\) 21.9737 41.0263i 0.817777 1.52684i
\(723\) 0 0
\(724\) −13.8564 24.0000i −0.514969 0.891953i
\(725\) −3.40192 + 7.96410i −0.126344 + 0.295779i
\(726\) 0 0
\(727\) −25.9545 6.95448i −0.962598 0.257927i −0.256899 0.966438i \(-0.582701\pi\)
−0.705700 + 0.708511i \(0.749367\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −3.46410 + 6.92820i −0.128212 + 0.256424i
\(731\) 14.0000 24.2487i 0.517809 0.896871i
\(732\) 0 0
\(733\) 19.0000 + 19.0000i 0.701781 + 0.701781i 0.964793 0.263012i \(-0.0847158\pi\)
−0.263012 + 0.964793i \(0.584716\pi\)
\(734\) −76.2102 −2.81297
\(735\) 0 0
\(736\) 0 0
\(737\) −47.3205 + 12.6795i −1.74307 + 0.467055i
\(738\) 0 0
\(739\) −16.4545 + 9.50000i −0.605288 + 0.349463i −0.771119 0.636691i \(-0.780303\pi\)
0.165831 + 0.986154i \(0.446969\pi\)
\(740\) 20.7846 6.92820i 0.764057 0.254686i
\(741\) 0 0
\(742\) −36.0000 + 36.0000i −1.32160 + 1.32160i
\(743\) 21.2942 + 5.70577i 0.781209 + 0.209324i 0.627318 0.778763i \(-0.284153\pi\)
0.153892 + 0.988088i \(0.450819\pi\)
\(744\) 0 0
\(745\) 23.4090 + 35.4545i 0.857638 + 1.29895i
\(746\) 12.0000 + 20.7846i 0.439351 + 0.760979i
\(747\) 0 0
\(748\) −40.0000 40.0000i −1.46254 1.46254i
\(749\) 6.92820 0.253151
\(750\) 0 0
\(751\) 7.50000 + 4.33013i 0.273679 + 0.158009i 0.630558 0.776142i \(-0.282826\pi\)
−0.356879 + 0.934150i \(0.616159\pi\)
\(752\) −24.0000 + 24.0000i −0.875190 + 0.875190i
\(753\) 0 0
\(754\) 0 0
\(755\) 34.7942 2.08846i 1.26629 0.0760067i
\(756\) 0 0
\(757\) −19.1244 5.12436i −0.695087 0.186248i −0.106058 0.994360i \(-0.533823\pi\)
−0.589029 + 0.808112i \(0.700490\pi\)
\(758\) −20.8634 + 77.8634i −0.757795 + 2.82813i
\(759\) 0 0
\(760\) −31.8564 35.5692i −1.15555 1.29023i
\(761\) −34.0000 −1.23250 −0.616250 0.787551i \(-0.711349\pi\)
−0.616250 + 0.787551i \(0.711349\pi\)
\(762\) 0 0
\(763\) 4.73205 + 1.26795i 0.171312 + 0.0459028i
\(764\) −24.2487 14.0000i −0.877288 0.506502i
\(765\) 0 0
\(766\) −36.0000 + 62.3538i −1.30073 + 2.25294i
\(767\) 0 0
\(768\) 0 0
\(769\) 18.1865 + 10.5000i 0.655823 + 0.378640i 0.790684 0.612225i \(-0.209725\pi\)
−0.134860 + 0.990865i \(0.543059\pi\)
\(770\) −64.6410 + 42.6795i −2.32950 + 1.53806i
\(771\) 0 0
\(772\) 27.7128 + 27.7128i 0.997406 + 0.997406i
\(773\) −2.53590 9.46410i −0.0912099 0.340400i 0.905208 0.424970i \(-0.139715\pi\)
−0.996418 + 0.0845694i \(0.973049\pi\)
\(774\) 0 0
\(775\) −3.10770 25.7942i −0.111632 0.926556i
\(776\) −18.0000 31.1769i −0.646162 1.11919i
\(777\) 0 0
\(778\) 39.8372 39.8372i 1.42823 1.42823i
\(779\) 13.8564 6.00000i 0.496457 0.214972i
\(780\) 0 0
\(781\) 22.5000 12.9904i 0.805113 0.464832i
\(782\) 7.60770 28.3923i 0.272051 1.01531i
\(783\) 0 0
\(784\) 3.46410 2.00000i 0.123718 0.0714286i
\(785\) −4.43782 + 21.6865i −0.158393 + 0.774026i
\(786\) 0 0
\(787\) 24.2487 + 24.2487i 0.864373 + 0.864373i 0.991843 0.127469i \(-0.0406854\pi\)
−0.127469 + 0.991843i \(0.540685\pi\)
\(788\) −32.7846 + 8.78461i −1.16790 + 0.312939i
\(789\) 0 0
\(790\) −3.00000 9.00000i −0.106735 0.320206i
\(791\) 6.92820i 0.246339i
\(792\) 0 0
\(793\) 0 0
\(794\) −6.92820 + 12.0000i −0.245873 + 0.425864i
\(795\) 0 0
\(796\) −30.0000 51.9615i −1.06332 1.84173i
\(797\) 1.73205 + 1.73205i 0.0613524 + 0.0613524i 0.737117 0.675765i \(-0.236187\pi\)
−0.675765 + 0.737117i \(0.736187\pi\)
\(798\) 0 0
\(799\) 24.0000i 0.849059i
\(800\) 0 0
\(801\) 0 0
\(802\) −23.0596 86.0596i −0.814263 3.03887i
\(803\) −1.83013 + 6.83013i −0.0645838 + 0.241030i
\(804\) 0 0
\(805\) −24.0000 12.0000i −0.845889 0.422944i
\(806\) 0 0
\(807\) 0 0
\(808\) 6.33975 + 23.6603i 0.223031 + 0.832365i
\(809\) 35.0000i 1.23053i 0.788319 + 0.615267i \(0.210952\pi\)
−0.788319 + 0.615267i \(0.789048\pi\)
\(810\) 0 0
\(811\) −34.5000 19.9186i −1.21146 0.699436i −0.248382 0.968662i \(-0.579899\pi\)
−0.963077 + 0.269226i \(0.913232\pi\)
\(812\) 5.07180 18.9282i 0.177985 0.664250i
\(813\) 0 0
\(814\) 25.9808 15.0000i 0.910625 0.525750i
\(815\) 23.0788 26.0263i 0.808416 0.911661i
\(816\) 0 0
\(817\) 15.8756 40.1244i 0.555418 1.40377i
\(818\) −57.0000 57.0000i −1.99296 1.99296i
\(819\) 0 0
\(820\) −1.85641 30.9282i −0.0648285 1.08006i
\(821\) −14.5000 + 25.1147i −0.506053 + 0.876510i 0.493922 + 0.869506i \(0.335563\pi\)
−0.999975 + 0.00700413i \(0.997770\pi\)
\(822\) 0 0
\(823\) 2.73205 0.732051i 0.0952333 0.0255177i −0.210888 0.977510i \(-0.567635\pi\)
0.306121 + 0.951993i \(0.400969\pi\)
\(824\) 48.0000i 1.67216i
\(825\) 0 0
\(826\) −18.0000 + 31.1769i −0.626300 + 1.08478i
\(827\) −23.6603 + 6.33975i −0.822748 + 0.220455i −0.645547 0.763720i \(-0.723371\pi\)
−0.177200 + 0.984175i \(0.556704\pi\)
\(828\) 0 0
\(829\) −17.3205 −0.601566 −0.300783 0.953693i \(-0.597248\pi\)
−0.300783 + 0.953693i \(0.597248\pi\)
\(830\) −21.3397 32.3205i −0.740713 1.12186i
\(831\) 0 0
\(832\) 0 0
\(833\) 0.732051 2.73205i 0.0253641 0.0946600i
\(834\) 0 0
\(835\) −13.8564 41.5692i −0.479521 1.43856i
\(836\) −70.0000 51.9615i −2.42100 1.79713i
\(837\) 0 0
\(838\) −73.3468 19.6532i −2.53372 0.678909i
\(839\) 13.8564 + 24.0000i 0.478376 + 0.828572i 0.999693 0.0247915i \(-0.00789218\pi\)
−0.521316 + 0.853363i \(0.674559\pi\)
\(840\) 0 0
\(841\) 13.0000 + 22.5167i 0.448276 + 0.776437i
\(842\) 7.68653 + 28.6865i 0.264895 + 0.988603i
\(843\) 0 0
\(844\) 103.923 3.57718
\(845\) 16.0167 + 24.2583i 0.550990 + 0.834512i
\(846\) 0 0
\(847\) −28.0000 + 28.0000i −0.962091 + 0.962091i
\(848\) −20.7846 + 20.7846i −0.713746 + 0.713746i
\(849\) 0 0
\(850\) −13.6077 + 31.8564i −0.466740 + 1.09267i
\(851\) 9.00000 + 5.19615i 0.308516 + 0.178122i
\(852\) 0 0
\(853\) 6.22243 23.2224i 0.213052 0.795121i −0.773791 0.633441i \(-0.781642\pi\)
0.986843 0.161680i \(-0.0516913\pi\)
\(854\) 34.6410 1.18539
\(855\) 0 0
\(856\) 12.0000 0.410152
\(857\) 14.5814 54.4186i 0.498092 1.85890i −0.0138842 0.999904i \(-0.504420\pi\)
0.511976 0.859000i \(-0.328914\pi\)
\(858\) 0 0
\(859\) 45.8993 + 26.5000i 1.56607 + 0.904168i 0.996621 + 0.0821386i \(0.0261750\pi\)
0.569445 + 0.822030i \(0.307158\pi\)
\(860\) −66.2487 58.7461i −2.25906 2.00323i
\(861\) 0 0
\(862\) −39.0000 + 39.0000i −1.32835 + 1.32835i
\(863\) −22.5167 + 22.5167i −0.766476 + 0.766476i −0.977484 0.211008i \(-0.932325\pi\)
0.211008 + 0.977484i \(0.432325\pi\)
\(864\) 0 0
\(865\) 2.19615 10.7321i 0.0746714 0.364901i
\(866\) −24.0000 −0.815553
\(867\) 0 0
\(868\) 15.2154 + 56.7846i 0.516444 + 1.92740i
\(869\) −4.33013 7.50000i −0.146889 0.254420i
\(870\) 0 0
\(871\) 0 0
\(872\) 8.19615 + 2.19615i 0.277557 + 0.0743711i
\(873\) 0 0
\(874\) 5.19615 45.0000i 0.175762 1.52215i
\(875\) 26.0000 + 18.0000i 0.878960 + 0.608511i
\(876\) 0 0
\(877\) 1.90192 7.09808i 0.0642234 0.239685i −0.926351 0.376662i \(-0.877072\pi\)
0.990574 + 0.136977i \(0.0437386\pi\)
\(878\) 69.6673 18.6673i 2.35116 0.629991i
\(879\) 0 0
\(880\) −37.3205 + 24.6410i −1.25807 + 0.830648i
\(881\) −47.0000 −1.58347 −0.791735 0.610865i \(-0.790822\pi\)
−0.791735 + 0.610865i \(0.790822\pi\)
\(882\) 0 0
\(883\) −19.1244 + 5.12436i −0.643586 + 0.172448i −0.565827 0.824524i \(-0.691443\pi\)
−0.0777587 + 0.996972i \(0.524776\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 20.7846i 0.698273i
\(887\) −42.5885 + 11.4115i −1.42998 + 0.383162i −0.889013 0.457882i \(-0.848608\pi\)
−0.540967 + 0.841044i \(0.681942\pi\)
\(888\) 0 0
\(889\) 13.8564 24.0000i 0.464729 0.804934i
\(890\) 18.8827 21.2942i 0.632949 0.713784i
\(891\) 0 0
\(892\) −76.2102 76.2102i −2.55171 2.55171i
\(893\) 5.41154 + 36.5885i 0.181090 + 1.22439i
\(894\) 0 0
\(895\) −2.55256 42.5263i −0.0853226 1.42150i
\(896\) −48.0000 + 27.7128i −1.60357 + 0.925820i
\(897\) 0 0
\(898\) −9.88269 + 36.8827i −0.329789 + 1.23079i
\(899\) 7.79423 + 4.50000i 0.259952 + 0.150083i
\(900\) 0 0
\(901\) 20.7846i 0.692436i
\(902\) −10.9808 40.9808i −0.365619 1.36451i
\(903\) 0 0
\(904\) 12.0000i 0.399114i
\(905\) −6.92820 + 13.8564i −0.230301 + 0.460603i
\(906\) 0 0
\(907\) −1.26795 + 4.73205i −0.0421016 + 0.157125i −0.983776 0.179399i \(-0.942585\pi\)
0.941675 + 0.336524i \(0.109251\pi\)
\(908\) 12.6795 + 47.3205i 0.420784 + 1.57039i
\(909\) 0 0
\(910\) 0 0
\(911\) 29.4449i 0.975552i −0.872969 0.487776i \(-0.837808\pi\)
0.872969 0.487776i \(-0.162192\pi\)
\(912\) 0 0
\(913\) −25.0000 25.0000i −0.827379 0.827379i
\(914\) 17.3205 + 30.0000i 0.572911 + 0.992312i
\(915\) 0 0
\(916\) −18.0000 + 31.1769i −0.594737 + 1.03011i
\(917\) −27.3205 7.32051i −0.902203 0.241744i
\(918\) 0 0
\(919\) 22.0000i 0.725713i 0.931845 + 0.362857i \(0.118198\pi\)
−0.931845 + 0.362857i \(0.881802\pi\)
\(920\) −41.5692 20.7846i −1.37050 0.685248i
\(921\) 0 0
\(922\) −11.8301 + 3.16987i −0.389604 + 0.104394i
\(923\) 0 0
\(924\) 0 0
\(925\) −9.63397 7.56218i −0.316763 0.248643i
\(926\) 24.0000 13.8564i 0.788689 0.455350i
\(927\) 0 0
\(928\) 0 0
\(929\) 6.06218 3.50000i 0.198894 0.114831i −0.397246 0.917712i \(-0.630034\pi\)
0.596139 + 0.802881i \(0.296701\pi\)
\(930\) 0 0
\(931\) 0.500000 4.33013i 0.0163868 0.141914i
\(932\) −36.0000 + 36.0000i −1.17922 + 1.17922i
\(933\) 0 0
\(934\) 15.5885 + 27.0000i 0.510070 + 0.883467i
\(935\) −6.33975 + 30.9808i −0.207332 + 1.01318i
\(936\) 0 0
\(937\) 6.22243 + 23.2224i 0.203278 + 0.758644i 0.989968 + 0.141295i \(0.0451266\pi\)
−0.786690 + 0.617349i \(0.788207\pi\)
\(938\) −48.0000 48.0000i −1.56726 1.56726i
\(939\) 0 0
\(940\) 74.3538 + 15.2154i 2.42515 + 0.496271i
\(941\) 28.5000 + 16.4545i 0.929073 + 0.536401i 0.886518 0.462693i \(-0.153117\pi\)
0.0425550 + 0.999094i \(0.486450\pi\)
\(942\) 0 0
\(943\) 10.3923 10.3923i 0.338420 0.338420i
\(944\) −10.3923 + 18.0000i −0.338241 + 0.585850i
\(945\) 0 0
\(946\) −105.000 60.6218i −3.41384 1.97098i
\(947\) −5.46410 1.46410i −0.177559 0.0475769i 0.168944 0.985626i \(-0.445964\pi\)
−0.346503 + 0.938049i \(0.612631\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −13.5622 + 51.6340i −0.440015 + 1.67523i
\(951\) 0 0
\(952\) 10.1436 37.8564i 0.328756 1.22693i
\(953\) 33.1244 + 8.87564i 1.07300 + 0.287510i 0.751726 0.659475i \(-0.229221\pi\)
0.321277 + 0.946985i \(0.395888\pi\)
\(954\) 0 0
\(955\) 0.937822 + 15.6244i 0.0303472 + 0.505592i
\(956\) −22.0000 + 38.1051i −0.711531 + 1.23241i
\(957\) 0 0
\(958\) −22.5167 + 22.5167i −0.727480 + 0.727480i
\(959\) 27.7128 + 16.0000i 0.894893 + 0.516667i
\(960\) 0 0
\(961\) 4.00000 0.129032
\(962\) 0 0
\(963\) 0 0
\(964\) 24.2487 + 42.0000i 0.780998 + 1.35273i
\(965\) 4.39230 21.4641i 0.141393 0.690954i
\(966\) 0 0
\(967\) −34.1506 9.15064i −1.09821 0.294265i −0.336175 0.941800i \(-0.609133\pi\)
−0.762036 + 0.647535i \(0.775800\pi\)
\(968\) −48.4974 + 48.4974i −1.55877 + 1.55877i
\(969\) 0 0
\(970\) −18.0000 + 36.0000i −0.577945 + 1.15589i
\(971\) 45.0000 25.9808i 1.44412 0.833762i 0.445998 0.895034i \(-0.352849\pi\)
0.998121 + 0.0612718i \(0.0195156\pi\)
\(972\) 0 0
\(973\) 49.1769 13.1769i 1.57654 0.422432i
\(974\) 20.7846 12.0000i 0.665982 0.384505i
\(975\) 0 0
\(976\) 20.0000 0.640184
\(977\) 31.1769 + 31.1769i 0.997438 + 0.997438i 0.999997 0.00255886i \(-0.000814512\pi\)
−0.00255886 + 0.999997i \(0.500815\pi\)
\(978\) 0 0
\(979\) 12.9904 22.5000i 0.415174 0.719103i
\(980\) −8.00000 4.00000i −0.255551 0.127775i
\(981\) 0 0
\(982\) 87.5429 23.4571i 2.79361 0.748545i
\(983\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(984\) 0 0
\(985\) 14.1962 + 12.5885i 0.452327 + 0.401102i
\(986\) −6.00000 10.3923i −0.191079 0.330958i
\(987\) 0 0
\(988\) 0 0
\(989\) 42.0000i 1.33552i
\(990\) 0 0
\(991\) −18.0000 + 10.3923i −0.571789 + 0.330122i −0.757863 0.652413i \(-0.773757\pi\)
0.186075 + 0.982536i \(0.440423\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 31.1769 + 18.0000i 0.988872 + 0.570925i
\(995\) −15.0000 + 30.0000i −0.475532 + 0.951064i
\(996\) 0 0
\(997\) −2.92820 10.9282i −0.0927371 0.346100i 0.903930 0.427681i \(-0.140669\pi\)
−0.996667 + 0.0815818i \(0.974003\pi\)
\(998\) 3.80385 + 14.1962i 0.120409 + 0.449371i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.cj.d.658.1 4
3.2 odd 2 95.2.l.a.88.1 yes 4
5.2 odd 4 inner 855.2.cj.d.487.1 4
15.2 even 4 95.2.l.a.12.1 yes 4
15.8 even 4 475.2.p.d.107.1 4
15.14 odd 2 475.2.p.d.468.1 4
19.8 odd 6 inner 855.2.cj.d.388.1 4
57.8 even 6 95.2.l.a.8.1 4
95.27 even 12 inner 855.2.cj.d.217.1 4
285.8 odd 12 475.2.p.d.407.1 4
285.122 odd 12 95.2.l.a.27.1 yes 4
285.179 even 6 475.2.p.d.293.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.l.a.8.1 4 57.8 even 6
95.2.l.a.12.1 yes 4 15.2 even 4
95.2.l.a.27.1 yes 4 285.122 odd 12
95.2.l.a.88.1 yes 4 3.2 odd 2
475.2.p.d.107.1 4 15.8 even 4
475.2.p.d.293.1 4 285.179 even 6
475.2.p.d.407.1 4 285.8 odd 12
475.2.p.d.468.1 4 15.14 odd 2
855.2.cj.d.217.1 4 95.27 even 12 inner
855.2.cj.d.388.1 4 19.8 odd 6 inner
855.2.cj.d.487.1 4 5.2 odd 4 inner
855.2.cj.d.658.1 4 1.1 even 1 trivial