Properties

Label 95.2
Level 95
Weight 2
Dimension 275
Nonzero newspaces 9
Newform subspaces 18
Sturm bound 1440
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 95 = 5 \cdot 19 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 9 \)
Newform subspaces: \( 18 \)
Sturm bound: \(1440\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(95))\).

Total New Old
Modular forms 432 379 53
Cusp forms 289 275 14
Eisenstein series 143 104 39

Trace form

\( 275 q - 21 q^{2} - 22 q^{3} - 25 q^{4} - 28 q^{5} - 66 q^{6} - 26 q^{7} - 33 q^{8} - 31 q^{9} - 30 q^{10} - 66 q^{11} - 22 q^{12} - 8 q^{13} - 6 q^{14} - 13 q^{15} - 13 q^{16} - 18 q^{17} + 15 q^{18} + 5 q^{19}+ \cdots - 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(95))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
95.2.a \(\chi_{95}(1, \cdot)\) 95.2.a.a 3 1
95.2.a.b 4
95.2.b \(\chi_{95}(39, \cdot)\) 95.2.b.a 2 1
95.2.b.b 6
95.2.e \(\chi_{95}(11, \cdot)\) 95.2.e.a 2 2
95.2.e.b 6
95.2.e.c 8
95.2.g \(\chi_{95}(18, \cdot)\) 95.2.g.a 4 2
95.2.g.b 12
95.2.i \(\chi_{95}(49, \cdot)\) 95.2.i.a 4 2
95.2.i.b 12
95.2.k \(\chi_{95}(6, \cdot)\) 95.2.k.a 18 6
95.2.k.b 18
95.2.l \(\chi_{95}(8, \cdot)\) 95.2.l.a 4 4
95.2.l.b 4
95.2.l.c 24
95.2.p \(\chi_{95}(4, \cdot)\) 95.2.p.a 48 6
95.2.r \(\chi_{95}(2, \cdot)\) 95.2.r.a 96 12

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(95))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(95)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 2}\)