Properties

Label 936.2.s.f.913.17
Level $936$
Weight $2$
Character 936.913
Analytic conductor $7.474$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(529,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,-3,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 913.17
Character \(\chi\) \(=\) 936.913
Dual form 936.2.s.f.529.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.31464 + 1.12771i) q^{3} +(0.766914 - 1.32833i) q^{5} -3.51479 q^{7} +(0.456560 + 2.96506i) q^{9} +(-3.19399 + 5.53215i) q^{11} +(-3.46170 - 1.00830i) q^{13} +(2.50619 - 0.881428i) q^{15} +(-0.550501 + 0.953495i) q^{17} +(-1.13796 + 1.97100i) q^{19} +(-4.62069 - 3.96365i) q^{21} -3.32815 q^{23} +(1.32369 + 2.29269i) q^{25} +(-2.74350 + 4.41285i) q^{27} +(0.714825 - 1.23811i) q^{29} +(-1.93596 + 3.35318i) q^{31} +(-10.4376 + 3.67091i) q^{33} +(-2.69554 + 4.66881i) q^{35} +(1.81670 + 3.14662i) q^{37} +(-3.41383 - 5.22932i) q^{39} +11.9875 q^{41} +12.5528 q^{43} +(4.28873 + 1.66748i) q^{45} +(-1.23298 - 2.13558i) q^{47} +5.35375 q^{49} +(-1.79897 + 0.632701i) q^{51} -6.18395 q^{53} +(4.89903 + 8.48537i) q^{55} +(-3.71871 + 1.30788i) q^{57} +(-2.42804 - 4.20550i) q^{59} +3.09918 q^{61} +(-1.60471 - 10.4215i) q^{63} +(-3.99418 + 3.82501i) q^{65} -7.60626 q^{67} +(-4.37533 - 3.75318i) q^{69} +(2.43267 - 4.21351i) q^{71} -5.40814 q^{73} +(-0.845310 + 4.50679i) q^{75} +(11.2262 - 19.4444i) q^{77} +(2.39185 + 4.14281i) q^{79} +(-8.58311 + 2.70745i) q^{81} +(-3.19592 - 5.53550i) q^{83} +(0.844373 + 1.46250i) q^{85} +(2.33597 - 0.821562i) q^{87} +(-4.25286 - 7.36618i) q^{89} +(12.1671 + 3.54395i) q^{91} +(-6.32649 + 2.22503i) q^{93} +(1.74543 + 3.02318i) q^{95} -3.52623 q^{97} +(-17.8614 - 6.94460i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 3 q^{3} + q^{5} - 14 q^{7} - 9 q^{9} - 3 q^{13} + 2 q^{15} - q^{17} + 2 q^{19} - 30 q^{21} + 2 q^{23} - 23 q^{25} - 3 q^{27} + 12 q^{29} + 8 q^{31} - 5 q^{33} - 12 q^{35} + 18 q^{37} - 6 q^{39}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.31464 + 1.12771i 0.759008 + 0.651081i
\(4\) 0 0
\(5\) 0.766914 1.32833i 0.342974 0.594049i −0.642009 0.766697i \(-0.721899\pi\)
0.984984 + 0.172648i \(0.0552323\pi\)
\(6\) 0 0
\(7\) −3.51479 −1.32847 −0.664233 0.747526i \(-0.731242\pi\)
−0.664233 + 0.747526i \(0.731242\pi\)
\(8\) 0 0
\(9\) 0.456560 + 2.96506i 0.152187 + 0.988352i
\(10\) 0 0
\(11\) −3.19399 + 5.53215i −0.963024 + 1.66801i −0.248192 + 0.968711i \(0.579837\pi\)
−0.714832 + 0.699296i \(0.753497\pi\)
\(12\) 0 0
\(13\) −3.46170 1.00830i −0.960102 0.279651i
\(14\) 0 0
\(15\) 2.50619 0.881428i 0.647094 0.227584i
\(16\) 0 0
\(17\) −0.550501 + 0.953495i −0.133516 + 0.231256i −0.925030 0.379895i \(-0.875960\pi\)
0.791514 + 0.611152i \(0.209293\pi\)
\(18\) 0 0
\(19\) −1.13796 + 1.97100i −0.261065 + 0.452179i −0.966525 0.256571i \(-0.917407\pi\)
0.705460 + 0.708750i \(0.250741\pi\)
\(20\) 0 0
\(21\) −4.62069 3.96365i −1.00832 0.864939i
\(22\) 0 0
\(23\) −3.32815 −0.693968 −0.346984 0.937871i \(-0.612794\pi\)
−0.346984 + 0.937871i \(0.612794\pi\)
\(24\) 0 0
\(25\) 1.32369 + 2.29269i 0.264737 + 0.458538i
\(26\) 0 0
\(27\) −2.74350 + 4.41285i −0.527986 + 0.849253i
\(28\) 0 0
\(29\) 0.714825 1.23811i 0.132740 0.229912i −0.791992 0.610531i \(-0.790956\pi\)
0.924732 + 0.380620i \(0.124289\pi\)
\(30\) 0 0
\(31\) −1.93596 + 3.35318i −0.347708 + 0.602248i −0.985842 0.167677i \(-0.946373\pi\)
0.638134 + 0.769926i \(0.279707\pi\)
\(32\) 0 0
\(33\) −10.4376 + 3.67091i −1.81695 + 0.639024i
\(34\) 0 0
\(35\) −2.69554 + 4.66881i −0.455630 + 0.789174i
\(36\) 0 0
\(37\) 1.81670 + 3.14662i 0.298664 + 0.517302i 0.975831 0.218528i \(-0.0701256\pi\)
−0.677166 + 0.735830i \(0.736792\pi\)
\(38\) 0 0
\(39\) −3.41383 5.22932i −0.546650 0.837361i
\(40\) 0 0
\(41\) 11.9875 1.87213 0.936065 0.351827i \(-0.114439\pi\)
0.936065 + 0.351827i \(0.114439\pi\)
\(42\) 0 0
\(43\) 12.5528 1.91428 0.957142 0.289619i \(-0.0935287\pi\)
0.957142 + 0.289619i \(0.0935287\pi\)
\(44\) 0 0
\(45\) 4.28873 + 1.66748i 0.639325 + 0.248573i
\(46\) 0 0
\(47\) −1.23298 2.13558i −0.179848 0.311506i 0.761980 0.647600i \(-0.224227\pi\)
−0.941828 + 0.336094i \(0.890894\pi\)
\(48\) 0 0
\(49\) 5.35375 0.764821
\(50\) 0 0
\(51\) −1.79897 + 0.632701i −0.251906 + 0.0885958i
\(52\) 0 0
\(53\) −6.18395 −0.849431 −0.424716 0.905327i \(-0.639626\pi\)
−0.424716 + 0.905327i \(0.639626\pi\)
\(54\) 0 0
\(55\) 4.89903 + 8.48537i 0.660585 + 1.14417i
\(56\) 0 0
\(57\) −3.71871 + 1.30788i −0.492556 + 0.173232i
\(58\) 0 0
\(59\) −2.42804 4.20550i −0.316104 0.547509i 0.663567 0.748117i \(-0.269042\pi\)
−0.979672 + 0.200608i \(0.935708\pi\)
\(60\) 0 0
\(61\) 3.09918 0.396809 0.198405 0.980120i \(-0.436424\pi\)
0.198405 + 0.980120i \(0.436424\pi\)
\(62\) 0 0
\(63\) −1.60471 10.4215i −0.202175 1.31299i
\(64\) 0 0
\(65\) −3.99418 + 3.82501i −0.495417 + 0.474434i
\(66\) 0 0
\(67\) −7.60626 −0.929252 −0.464626 0.885507i \(-0.653811\pi\)
−0.464626 + 0.885507i \(0.653811\pi\)
\(68\) 0 0
\(69\) −4.37533 3.75318i −0.526727 0.451829i
\(70\) 0 0
\(71\) 2.43267 4.21351i 0.288705 0.500051i −0.684796 0.728735i \(-0.740109\pi\)
0.973501 + 0.228683i \(0.0734421\pi\)
\(72\) 0 0
\(73\) −5.40814 −0.632975 −0.316487 0.948597i \(-0.602504\pi\)
−0.316487 + 0.948597i \(0.602504\pi\)
\(74\) 0 0
\(75\) −0.845310 + 4.50679i −0.0976080 + 0.520400i
\(76\) 0 0
\(77\) 11.2262 19.4444i 1.27934 2.21589i
\(78\) 0 0
\(79\) 2.39185 + 4.14281i 0.269104 + 0.466102i 0.968631 0.248505i \(-0.0799391\pi\)
−0.699527 + 0.714607i \(0.746606\pi\)
\(80\) 0 0
\(81\) −8.58311 + 2.70745i −0.953678 + 0.300828i
\(82\) 0 0
\(83\) −3.19592 5.53550i −0.350798 0.607600i 0.635591 0.772026i \(-0.280756\pi\)
−0.986390 + 0.164425i \(0.947423\pi\)
\(84\) 0 0
\(85\) 0.844373 + 1.46250i 0.0915851 + 0.158630i
\(86\) 0 0
\(87\) 2.33597 0.821562i 0.250442 0.0880807i
\(88\) 0 0
\(89\) −4.25286 7.36618i −0.450803 0.780813i 0.547633 0.836718i \(-0.315529\pi\)
−0.998436 + 0.0559053i \(0.982196\pi\)
\(90\) 0 0
\(91\) 12.1671 + 3.54395i 1.27546 + 0.371507i
\(92\) 0 0
\(93\) −6.32649 + 2.22503i −0.656026 + 0.230725i
\(94\) 0 0
\(95\) 1.74543 + 3.02318i 0.179077 + 0.310171i
\(96\) 0 0
\(97\) −3.52623 −0.358035 −0.179017 0.983846i \(-0.557292\pi\)
−0.179017 + 0.983846i \(0.557292\pi\)
\(98\) 0 0
\(99\) −17.8614 6.94460i −1.79514 0.697958i
\(100\) 0 0
\(101\) 7.43406 12.8762i 0.739717 1.28123i −0.212906 0.977073i \(-0.568293\pi\)
0.952623 0.304154i \(-0.0983739\pi\)
\(102\) 0 0
\(103\) −5.76469 + 9.98474i −0.568012 + 0.983826i 0.428750 + 0.903423i \(0.358954\pi\)
−0.996762 + 0.0804029i \(0.974379\pi\)
\(104\) 0 0
\(105\) −8.80872 + 3.09804i −0.859643 + 0.302337i
\(106\) 0 0
\(107\) 4.41074 + 7.63962i 0.426402 + 0.738550i 0.996550 0.0829919i \(-0.0264476\pi\)
−0.570148 + 0.821542i \(0.693114\pi\)
\(108\) 0 0
\(109\) −9.26955 −0.887862 −0.443931 0.896061i \(-0.646416\pi\)
−0.443931 + 0.896061i \(0.646416\pi\)
\(110\) 0 0
\(111\) −1.16015 + 6.18539i −0.110117 + 0.587091i
\(112\) 0 0
\(113\) 3.36243 + 5.82389i 0.316310 + 0.547866i 0.979715 0.200395i \(-0.0642226\pi\)
−0.663405 + 0.748261i \(0.730889\pi\)
\(114\) 0 0
\(115\) −2.55241 + 4.42090i −0.238013 + 0.412251i
\(116\) 0 0
\(117\) 1.40918 10.7245i 0.130279 0.991477i
\(118\) 0 0
\(119\) 1.93489 3.35133i 0.177371 0.307216i
\(120\) 0 0
\(121\) −14.9031 25.8130i −1.35483 2.34664i
\(122\) 0 0
\(123\) 15.7592 + 13.5184i 1.42096 + 1.21891i
\(124\) 0 0
\(125\) 11.7298 1.04914
\(126\) 0 0
\(127\) 7.61299 + 13.1861i 0.675544 + 1.17008i 0.976310 + 0.216378i \(0.0694245\pi\)
−0.300766 + 0.953698i \(0.597242\pi\)
\(128\) 0 0
\(129\) 16.5024 + 14.1559i 1.45296 + 1.24635i
\(130\) 0 0
\(131\) 5.89951 10.2183i 0.515443 0.892773i −0.484396 0.874849i \(-0.660961\pi\)
0.999839 0.0179247i \(-0.00570593\pi\)
\(132\) 0 0
\(133\) 3.99968 6.92765i 0.346817 0.600704i
\(134\) 0 0
\(135\) 3.75771 + 7.02855i 0.323412 + 0.604922i
\(136\) 0 0
\(137\) −14.0053 −1.19655 −0.598277 0.801289i \(-0.704148\pi\)
−0.598277 + 0.801289i \(0.704148\pi\)
\(138\) 0 0
\(139\) 4.14354 + 7.17682i 0.351450 + 0.608730i 0.986504 0.163738i \(-0.0523553\pi\)
−0.635054 + 0.772468i \(0.719022\pi\)
\(140\) 0 0
\(141\) 0.787382 4.19795i 0.0663095 0.353531i
\(142\) 0 0
\(143\) 16.6347 15.9301i 1.39106 1.33215i
\(144\) 0 0
\(145\) −1.09642 1.89905i −0.0910526 0.157708i
\(146\) 0 0
\(147\) 7.03826 + 6.03745i 0.580506 + 0.497961i
\(148\) 0 0
\(149\) −1.96851 3.40955i −0.161266 0.279321i 0.774057 0.633116i \(-0.218224\pi\)
−0.935323 + 0.353795i \(0.884891\pi\)
\(150\) 0 0
\(151\) 10.1395 + 17.5621i 0.825138 + 1.42918i 0.901814 + 0.432125i \(0.142236\pi\)
−0.0766753 + 0.997056i \(0.524430\pi\)
\(152\) 0 0
\(153\) −3.07850 1.19694i −0.248882 0.0967666i
\(154\) 0 0
\(155\) 2.96943 + 5.14320i 0.238510 + 0.413111i
\(156\) 0 0
\(157\) −11.7247 + 20.3078i −0.935735 + 1.62074i −0.162416 + 0.986722i \(0.551929\pi\)
−0.773319 + 0.634017i \(0.781405\pi\)
\(158\) 0 0
\(159\) −8.12968 6.97368i −0.644725 0.553049i
\(160\) 0 0
\(161\) 11.6978 0.921913
\(162\) 0 0
\(163\) −1.54310 + 2.67272i −0.120865 + 0.209344i −0.920109 0.391663i \(-0.871900\pi\)
0.799244 + 0.601006i \(0.205233\pi\)
\(164\) 0 0
\(165\) −3.12853 + 16.6799i −0.243556 + 1.29853i
\(166\) 0 0
\(167\) −19.5069 −1.50949 −0.754744 0.656019i \(-0.772239\pi\)
−0.754744 + 0.656019i \(0.772239\pi\)
\(168\) 0 0
\(169\) 10.9667 + 6.98083i 0.843591 + 0.536987i
\(170\) 0 0
\(171\) −6.36367 2.47423i −0.486642 0.189209i
\(172\) 0 0
\(173\) −10.7005 −0.813543 −0.406771 0.913530i \(-0.633345\pi\)
−0.406771 + 0.913530i \(0.633345\pi\)
\(174\) 0 0
\(175\) −4.65248 8.05833i −0.351694 0.609153i
\(176\) 0 0
\(177\) 1.55056 8.26684i 0.116547 0.621373i
\(178\) 0 0
\(179\) 1.14067 + 1.97569i 0.0852574 + 0.147670i 0.905501 0.424344i \(-0.139495\pi\)
−0.820243 + 0.572015i \(0.806162\pi\)
\(180\) 0 0
\(181\) 10.2756 0.763780 0.381890 0.924208i \(-0.375273\pi\)
0.381890 + 0.924208i \(0.375273\pi\)
\(182\) 0 0
\(183\) 4.07431 + 3.49496i 0.301182 + 0.258355i
\(184\) 0 0
\(185\) 5.57302 0.409737
\(186\) 0 0
\(187\) −3.51659 6.09091i −0.257158 0.445411i
\(188\) 0 0
\(189\) 9.64282 15.5102i 0.701412 1.12820i
\(190\) 0 0
\(191\) 23.6279 1.70965 0.854826 0.518914i \(-0.173664\pi\)
0.854826 + 0.518914i \(0.173664\pi\)
\(192\) 0 0
\(193\) 11.0395 0.794640 0.397320 0.917680i \(-0.369940\pi\)
0.397320 + 0.917680i \(0.369940\pi\)
\(194\) 0 0
\(195\) −9.56439 + 0.524262i −0.684920 + 0.0375432i
\(196\) 0 0
\(197\) 4.47677 + 7.75399i 0.318957 + 0.552449i 0.980271 0.197660i \(-0.0633342\pi\)
−0.661314 + 0.750109i \(0.730001\pi\)
\(198\) 0 0
\(199\) 11.6750 20.2217i 0.827620 1.43348i −0.0722797 0.997384i \(-0.523027\pi\)
0.899900 0.436096i \(-0.143639\pi\)
\(200\) 0 0
\(201\) −9.99949 8.57762i −0.705310 0.605018i
\(202\) 0 0
\(203\) −2.51246 + 4.35171i −0.176340 + 0.305430i
\(204\) 0 0
\(205\) 9.19337 15.9234i 0.642093 1.11214i
\(206\) 0 0
\(207\) −1.51950 9.86816i −0.105613 0.685884i
\(208\) 0 0
\(209\) −7.26925 12.5907i −0.502825 0.870918i
\(210\) 0 0
\(211\) −0.171961 −0.0118383 −0.00591913 0.999982i \(-0.501884\pi\)
−0.00591913 + 0.999982i \(0.501884\pi\)
\(212\) 0 0
\(213\) 7.94968 2.79591i 0.544703 0.191573i
\(214\) 0 0
\(215\) 9.62691 16.6743i 0.656550 1.13718i
\(216\) 0 0
\(217\) 6.80449 11.7857i 0.461919 0.800066i
\(218\) 0 0
\(219\) −7.10976 6.09879i −0.480433 0.412118i
\(220\) 0 0
\(221\) 2.86707 2.74564i 0.192860 0.184692i
\(222\) 0 0
\(223\) 0.813127 1.40838i 0.0544510 0.0943119i −0.837515 0.546414i \(-0.815992\pi\)
0.891966 + 0.452102i \(0.149326\pi\)
\(224\) 0 0
\(225\) −6.19362 + 4.97156i −0.412908 + 0.331437i
\(226\) 0 0
\(227\) −22.5389 −1.49596 −0.747979 0.663722i \(-0.768976\pi\)
−0.747979 + 0.663722i \(0.768976\pi\)
\(228\) 0 0
\(229\) −12.0818 + 20.9263i −0.798389 + 1.38285i 0.122276 + 0.992496i \(0.460981\pi\)
−0.920665 + 0.390354i \(0.872353\pi\)
\(230\) 0 0
\(231\) 36.6859 12.9025i 2.41376 0.848921i
\(232\) 0 0
\(233\) 16.4919 1.08042 0.540211 0.841530i \(-0.318344\pi\)
0.540211 + 0.841530i \(0.318344\pi\)
\(234\) 0 0
\(235\) −3.78235 −0.246733
\(236\) 0 0
\(237\) −1.52744 + 8.14360i −0.0992180 + 0.528984i
\(238\) 0 0
\(239\) −5.24014 + 9.07618i −0.338956 + 0.587089i −0.984237 0.176856i \(-0.943407\pi\)
0.645280 + 0.763946i \(0.276741\pi\)
\(240\) 0 0
\(241\) 23.1800 1.49315 0.746577 0.665299i \(-0.231696\pi\)
0.746577 + 0.665299i \(0.231696\pi\)
\(242\) 0 0
\(243\) −14.3369 6.11989i −0.919713 0.392591i
\(244\) 0 0
\(245\) 4.10587 7.11157i 0.262314 0.454341i
\(246\) 0 0
\(247\) 5.92662 5.67561i 0.377102 0.361130i
\(248\) 0 0
\(249\) 2.04093 10.8813i 0.129338 0.689572i
\(250\) 0 0
\(251\) −10.1392 + 17.5616i −0.639979 + 1.10848i 0.345458 + 0.938434i \(0.387724\pi\)
−0.985437 + 0.170042i \(0.945610\pi\)
\(252\) 0 0
\(253\) 10.6301 18.4119i 0.668308 1.15754i
\(254\) 0 0
\(255\) −0.539219 + 2.87486i −0.0337672 + 0.180031i
\(256\) 0 0
\(257\) −0.725978 −0.0452853 −0.0226426 0.999744i \(-0.507208\pi\)
−0.0226426 + 0.999744i \(0.507208\pi\)
\(258\) 0 0
\(259\) −6.38534 11.0597i −0.396765 0.687218i
\(260\) 0 0
\(261\) 3.99743 + 1.55422i 0.247435 + 0.0962040i
\(262\) 0 0
\(263\) 4.81064 8.33227i 0.296637 0.513790i −0.678728 0.734390i \(-0.737468\pi\)
0.975364 + 0.220600i \(0.0708017\pi\)
\(264\) 0 0
\(265\) −4.74256 + 8.21435i −0.291333 + 0.504604i
\(266\) 0 0
\(267\) 2.71589 14.4799i 0.166210 0.886153i
\(268\) 0 0
\(269\) −6.12405 + 10.6072i −0.373390 + 0.646731i −0.990085 0.140472i \(-0.955138\pi\)
0.616695 + 0.787202i \(0.288471\pi\)
\(270\) 0 0
\(271\) 2.64462 + 4.58062i 0.160650 + 0.278253i 0.935102 0.354379i \(-0.115308\pi\)
−0.774452 + 0.632632i \(0.781974\pi\)
\(272\) 0 0
\(273\) 11.9989 + 18.3800i 0.726205 + 1.11241i
\(274\) 0 0
\(275\) −16.9114 −1.01979
\(276\) 0 0
\(277\) 5.92911 0.356246 0.178123 0.984008i \(-0.442998\pi\)
0.178123 + 0.984008i \(0.442998\pi\)
\(278\) 0 0
\(279\) −10.8262 4.20929i −0.648150 0.252004i
\(280\) 0 0
\(281\) 16.2879 + 28.2115i 0.971654 + 1.68295i 0.690561 + 0.723275i \(0.257364\pi\)
0.281094 + 0.959680i \(0.409303\pi\)
\(282\) 0 0
\(283\) 18.5480 1.10256 0.551281 0.834320i \(-0.314139\pi\)
0.551281 + 0.834320i \(0.314139\pi\)
\(284\) 0 0
\(285\) −1.11464 + 5.94272i −0.0660254 + 0.352016i
\(286\) 0 0
\(287\) −42.1335 −2.48706
\(288\) 0 0
\(289\) 7.89390 + 13.6726i 0.464347 + 0.804273i
\(290\) 0 0
\(291\) −4.63573 3.97655i −0.271751 0.233110i
\(292\) 0 0
\(293\) 8.99242 + 15.5753i 0.525343 + 0.909920i 0.999564 + 0.0295149i \(0.00939624\pi\)
−0.474222 + 0.880406i \(0.657270\pi\)
\(294\) 0 0
\(295\) −7.44840 −0.433663
\(296\) 0 0
\(297\) −15.6498 29.2720i −0.908096 1.69854i
\(298\) 0 0
\(299\) 11.5211 + 3.35576i 0.666280 + 0.194069i
\(300\) 0 0
\(301\) −44.1205 −2.54306
\(302\) 0 0
\(303\) 24.2937 8.54411i 1.39563 0.490846i
\(304\) 0 0
\(305\) 2.37680 4.11675i 0.136095 0.235724i
\(306\) 0 0
\(307\) 14.0831 0.803768 0.401884 0.915691i \(-0.368356\pi\)
0.401884 + 0.915691i \(0.368356\pi\)
\(308\) 0 0
\(309\) −18.8384 + 6.62547i −1.07168 + 0.376910i
\(310\) 0 0
\(311\) 15.3440 26.5767i 0.870081 1.50702i 0.00816904 0.999967i \(-0.497400\pi\)
0.861912 0.507058i \(-0.169267\pi\)
\(312\) 0 0
\(313\) −5.48343 9.49757i −0.309942 0.536835i 0.668408 0.743795i \(-0.266976\pi\)
−0.978349 + 0.206961i \(0.933643\pi\)
\(314\) 0 0
\(315\) −15.0740 5.86083i −0.849322 0.330221i
\(316\) 0 0
\(317\) −1.15353 1.99797i −0.0647885 0.112217i 0.831812 0.555058i \(-0.187304\pi\)
−0.896600 + 0.442841i \(0.853971\pi\)
\(318\) 0 0
\(319\) 4.56629 + 7.90904i 0.255663 + 0.442821i
\(320\) 0 0
\(321\) −2.81671 + 15.0174i −0.157213 + 0.838188i
\(322\) 0 0
\(323\) −1.25289 2.17007i −0.0697128 0.120746i
\(324\) 0 0
\(325\) −2.27049 9.27127i −0.125944 0.514278i
\(326\) 0 0
\(327\) −12.1861 10.4533i −0.673894 0.578070i
\(328\) 0 0
\(329\) 4.33365 + 7.50611i 0.238922 + 0.413825i
\(330\) 0 0
\(331\) −33.6498 −1.84956 −0.924780 0.380502i \(-0.875751\pi\)
−0.924780 + 0.380502i \(0.875751\pi\)
\(332\) 0 0
\(333\) −8.50048 + 6.82325i −0.465823 + 0.373912i
\(334\) 0 0
\(335\) −5.83334 + 10.1036i −0.318710 + 0.552021i
\(336\) 0 0
\(337\) 6.88906 11.9322i 0.375271 0.649988i −0.615097 0.788452i \(-0.710883\pi\)
0.990368 + 0.138464i \(0.0442164\pi\)
\(338\) 0 0
\(339\) −2.14725 + 11.4481i −0.116623 + 0.621778i
\(340\) 0 0
\(341\) −12.3669 21.4200i −0.669703 1.15996i
\(342\) 0 0
\(343\) 5.78622 0.312427
\(344\) 0 0
\(345\) −8.34097 + 2.93353i −0.449063 + 0.157936i
\(346\) 0 0
\(347\) −3.16260 5.47778i −0.169777 0.294063i 0.768564 0.639773i \(-0.220971\pi\)
−0.938341 + 0.345710i \(0.887638\pi\)
\(348\) 0 0
\(349\) −6.66685 + 11.5473i −0.356868 + 0.618114i −0.987436 0.158021i \(-0.949489\pi\)
0.630568 + 0.776134i \(0.282822\pi\)
\(350\) 0 0
\(351\) 13.9466 12.5097i 0.744415 0.667717i
\(352\) 0 0
\(353\) 12.6247 21.8666i 0.671945 1.16384i −0.305407 0.952222i \(-0.598792\pi\)
0.977352 0.211621i \(-0.0678742\pi\)
\(354\) 0 0
\(355\) −3.73130 6.46279i −0.198037 0.343010i
\(356\) 0 0
\(357\) 6.32301 2.22381i 0.334649 0.117697i
\(358\) 0 0
\(359\) 1.22423 0.0646123 0.0323062 0.999478i \(-0.489715\pi\)
0.0323062 + 0.999478i \(0.489715\pi\)
\(360\) 0 0
\(361\) 6.91010 + 11.9687i 0.363690 + 0.629929i
\(362\) 0 0
\(363\) 9.51719 50.7412i 0.499523 2.66322i
\(364\) 0 0
\(365\) −4.14758 + 7.18381i −0.217094 + 0.376018i
\(366\) 0 0
\(367\) 7.09999 12.2975i 0.370617 0.641927i −0.619044 0.785356i \(-0.712480\pi\)
0.989661 + 0.143430i \(0.0458131\pi\)
\(368\) 0 0
\(369\) 5.47301 + 35.5436i 0.284913 + 1.85032i
\(370\) 0 0
\(371\) 21.7353 1.12844
\(372\) 0 0
\(373\) 8.38836 + 14.5291i 0.434333 + 0.752287i 0.997241 0.0742329i \(-0.0236508\pi\)
−0.562908 + 0.826520i \(0.690317\pi\)
\(374\) 0 0
\(375\) 15.4204 + 13.2277i 0.796306 + 0.683076i
\(376\) 0 0
\(377\) −3.72289 + 3.56522i −0.191739 + 0.183618i
\(378\) 0 0
\(379\) 18.3934 + 31.8583i 0.944807 + 1.63645i 0.756138 + 0.654413i \(0.227084\pi\)
0.188669 + 0.982041i \(0.439583\pi\)
\(380\) 0 0
\(381\) −4.86168 + 25.9202i −0.249071 + 1.32793i
\(382\) 0 0
\(383\) −7.66299 13.2727i −0.391561 0.678203i 0.601095 0.799178i \(-0.294731\pi\)
−0.992656 + 0.120975i \(0.961398\pi\)
\(384\) 0 0
\(385\) −17.2191 29.8243i −0.877565 1.51999i
\(386\) 0 0
\(387\) 5.73111 + 37.2197i 0.291329 + 1.89199i
\(388\) 0 0
\(389\) 4.10671 + 7.11304i 0.208219 + 0.360645i 0.951153 0.308718i \(-0.0999001\pi\)
−0.742935 + 0.669364i \(0.766567\pi\)
\(390\) 0 0
\(391\) 1.83215 3.17338i 0.0926558 0.160485i
\(392\) 0 0
\(393\) 19.2789 6.78042i 0.972493 0.342027i
\(394\) 0 0
\(395\) 7.33737 0.369183
\(396\) 0 0
\(397\) −12.3499 + 21.3906i −0.619822 + 1.07356i 0.369695 + 0.929153i \(0.379462\pi\)
−0.989518 + 0.144411i \(0.953871\pi\)
\(398\) 0 0
\(399\) 13.0705 4.59691i 0.654343 0.230133i
\(400\) 0 0
\(401\) 13.8473 0.691501 0.345750 0.938327i \(-0.387624\pi\)
0.345750 + 0.938327i \(0.387624\pi\)
\(402\) 0 0
\(403\) 10.0827 9.65566i 0.502255 0.480983i
\(404\) 0 0
\(405\) −2.98610 + 13.4776i −0.148381 + 0.669708i
\(406\) 0 0
\(407\) −23.2101 −1.15048
\(408\) 0 0
\(409\) −9.32539 16.1521i −0.461111 0.798668i 0.537906 0.843005i \(-0.319216\pi\)
−0.999017 + 0.0443375i \(0.985882\pi\)
\(410\) 0 0
\(411\) −18.4120 15.7939i −0.908195 0.779054i
\(412\) 0 0
\(413\) 8.53407 + 14.7814i 0.419934 + 0.727347i
\(414\) 0 0
\(415\) −9.80399 −0.481259
\(416\) 0 0
\(417\) −2.64607 + 14.1076i −0.129579 + 0.690853i
\(418\) 0 0
\(419\) −15.7552 −0.769693 −0.384846 0.922981i \(-0.625746\pi\)
−0.384846 + 0.922981i \(0.625746\pi\)
\(420\) 0 0
\(421\) −7.16989 12.4186i −0.349439 0.605246i 0.636711 0.771103i \(-0.280295\pi\)
−0.986150 + 0.165856i \(0.946961\pi\)
\(422\) 0 0
\(423\) 5.76918 4.63086i 0.280507 0.225160i
\(424\) 0 0
\(425\) −2.91476 −0.141387
\(426\) 0 0
\(427\) −10.8930 −0.527148
\(428\) 0 0
\(429\) 39.8331 2.18341i 1.92316 0.105416i
\(430\) 0 0
\(431\) 4.49274 + 7.78165i 0.216408 + 0.374829i 0.953707 0.300737i \(-0.0972327\pi\)
−0.737300 + 0.675566i \(0.763899\pi\)
\(432\) 0 0
\(433\) −13.8669 + 24.0182i −0.666401 + 1.15424i 0.312503 + 0.949917i \(0.398833\pi\)
−0.978904 + 0.204323i \(0.934501\pi\)
\(434\) 0 0
\(435\) 0.700176 3.73301i 0.0335709 0.178984i
\(436\) 0 0
\(437\) 3.78730 6.55979i 0.181171 0.313797i
\(438\) 0 0
\(439\) −2.97597 + 5.15453i −0.142035 + 0.246012i −0.928263 0.371925i \(-0.878698\pi\)
0.786228 + 0.617937i \(0.212031\pi\)
\(440\) 0 0
\(441\) 2.44431 + 15.8742i 0.116396 + 0.755913i
\(442\) 0 0
\(443\) −5.66685 9.81526i −0.269240 0.466337i 0.699426 0.714705i \(-0.253439\pi\)
−0.968666 + 0.248368i \(0.920106\pi\)
\(444\) 0 0
\(445\) −13.0463 −0.618455
\(446\) 0 0
\(447\) 1.25709 6.70223i 0.0594585 0.317005i
\(448\) 0 0
\(449\) 6.47394 11.2132i 0.305524 0.529183i −0.671854 0.740684i \(-0.734502\pi\)
0.977378 + 0.211501i \(0.0678350\pi\)
\(450\) 0 0
\(451\) −38.2879 + 66.3166i −1.80291 + 3.12273i
\(452\) 0 0
\(453\) −6.47509 + 34.5222i −0.304226 + 1.62199i
\(454\) 0 0
\(455\) 14.0387 13.4441i 0.658144 0.630270i
\(456\) 0 0
\(457\) 9.67396 16.7558i 0.452529 0.783803i −0.546013 0.837776i \(-0.683855\pi\)
0.998542 + 0.0539733i \(0.0171886\pi\)
\(458\) 0 0
\(459\) −2.69733 5.04519i −0.125901 0.235489i
\(460\) 0 0
\(461\) 34.7972 1.62067 0.810334 0.585969i \(-0.199286\pi\)
0.810334 + 0.585969i \(0.199286\pi\)
\(462\) 0 0
\(463\) 13.0277 22.5647i 0.605450 1.04867i −0.386530 0.922277i \(-0.626326\pi\)
0.991980 0.126394i \(-0.0403402\pi\)
\(464\) 0 0
\(465\) −1.89628 + 10.1101i −0.0879380 + 0.468844i
\(466\) 0 0
\(467\) −39.3170 −1.81937 −0.909686 0.415296i \(-0.863678\pi\)
−0.909686 + 0.415296i \(0.863678\pi\)
\(468\) 0 0
\(469\) 26.7344 1.23448
\(470\) 0 0
\(471\) −38.3150 + 13.4754i −1.76546 + 0.620916i
\(472\) 0 0
\(473\) −40.0935 + 69.4440i −1.84350 + 3.19304i
\(474\) 0 0
\(475\) −6.02520 −0.276455
\(476\) 0 0
\(477\) −2.82335 18.3358i −0.129272 0.839537i
\(478\) 0 0
\(479\) −12.3647 + 21.4163i −0.564957 + 0.978534i 0.432097 + 0.901827i \(0.357774\pi\)
−0.997054 + 0.0767069i \(0.975559\pi\)
\(480\) 0 0
\(481\) −3.11615 12.7244i −0.142084 0.580184i
\(482\) 0 0
\(483\) 15.3784 + 13.1916i 0.699739 + 0.600240i
\(484\) 0 0
\(485\) −2.70432 + 4.68401i −0.122797 + 0.212690i
\(486\) 0 0
\(487\) 15.5768 26.9798i 0.705853 1.22257i −0.260530 0.965466i \(-0.583897\pi\)
0.966383 0.257107i \(-0.0827694\pi\)
\(488\) 0 0
\(489\) −5.04266 + 1.77351i −0.228037 + 0.0802009i
\(490\) 0 0
\(491\) −1.64887 −0.0744124 −0.0372062 0.999308i \(-0.511846\pi\)
−0.0372062 + 0.999308i \(0.511846\pi\)
\(492\) 0 0
\(493\) 0.787023 + 1.36316i 0.0354457 + 0.0613938i
\(494\) 0 0
\(495\) −22.9229 + 18.4000i −1.03031 + 0.827018i
\(496\) 0 0
\(497\) −8.55032 + 14.8096i −0.383534 + 0.664301i
\(498\) 0 0
\(499\) −21.3882 + 37.0455i −0.957468 + 1.65838i −0.228850 + 0.973462i \(0.573496\pi\)
−0.728618 + 0.684921i \(0.759837\pi\)
\(500\) 0 0
\(501\) −25.6445 21.9980i −1.14571 0.982799i
\(502\) 0 0
\(503\) −19.6416 + 34.0203i −0.875777 + 1.51689i −0.0198439 + 0.999803i \(0.506317\pi\)
−0.855933 + 0.517087i \(0.827016\pi\)
\(504\) 0 0
\(505\) −11.4026 19.7498i −0.507408 0.878856i
\(506\) 0 0
\(507\) 6.54493 + 21.5445i 0.290670 + 0.956823i
\(508\) 0 0
\(509\) 12.0577 0.534448 0.267224 0.963634i \(-0.413894\pi\)
0.267224 + 0.963634i \(0.413894\pi\)
\(510\) 0 0
\(511\) 19.0085 0.840885
\(512\) 0 0
\(513\) −5.57574 10.4291i −0.246175 0.460455i
\(514\) 0 0
\(515\) 8.84205 + 15.3149i 0.389627 + 0.674854i
\(516\) 0 0
\(517\) 15.7525 0.692792
\(518\) 0 0
\(519\) −14.0673 12.0670i −0.617486 0.529682i
\(520\) 0 0
\(521\) 16.6196 0.728116 0.364058 0.931376i \(-0.381391\pi\)
0.364058 + 0.931376i \(0.381391\pi\)
\(522\) 0 0
\(523\) −0.621458 1.07640i −0.0271745 0.0470676i 0.852118 0.523349i \(-0.175318\pi\)
−0.879293 + 0.476282i \(0.841984\pi\)
\(524\) 0 0
\(525\) 2.97109 15.8404i 0.129669 0.691333i
\(526\) 0 0
\(527\) −2.13149 3.69185i −0.0928492 0.160820i
\(528\) 0 0
\(529\) −11.9234 −0.518409
\(530\) 0 0
\(531\) 11.3610 9.11935i 0.493025 0.395746i
\(532\) 0 0
\(533\) −41.4970 12.0869i −1.79744 0.523543i
\(534\) 0 0
\(535\) 13.5306 0.584980
\(536\) 0 0
\(537\) −0.728433 + 3.88366i −0.0314342 + 0.167592i
\(538\) 0 0
\(539\) −17.0998 + 29.6178i −0.736542 + 1.27573i
\(540\) 0 0
\(541\) −41.8105 −1.79757 −0.898787 0.438386i \(-0.855550\pi\)
−0.898787 + 0.438386i \(0.855550\pi\)
\(542\) 0 0
\(543\) 13.5087 + 11.5879i 0.579715 + 0.497283i
\(544\) 0 0
\(545\) −7.10895 + 12.3131i −0.304514 + 0.527433i
\(546\) 0 0
\(547\) −0.266912 0.462305i −0.0114123 0.0197668i 0.860263 0.509851i \(-0.170299\pi\)
−0.871675 + 0.490084i \(0.836966\pi\)
\(548\) 0 0
\(549\) 1.41496 + 9.18924i 0.0603891 + 0.392187i
\(550\) 0 0
\(551\) 1.62688 + 2.81784i 0.0693075 + 0.120044i
\(552\) 0 0
\(553\) −8.40685 14.5611i −0.357496 0.619201i
\(554\) 0 0
\(555\) 7.32652 + 6.28473i 0.310994 + 0.266772i
\(556\) 0 0
\(557\) 3.96368 + 6.86530i 0.167947 + 0.290892i 0.937698 0.347452i \(-0.112953\pi\)
−0.769751 + 0.638344i \(0.779620\pi\)
\(558\) 0 0
\(559\) −43.4540 12.6569i −1.83791 0.535331i
\(560\) 0 0
\(561\) 2.24570 11.9730i 0.0948136 0.505502i
\(562\) 0 0
\(563\) −15.5866 26.9968i −0.656897 1.13778i −0.981415 0.191899i \(-0.938535\pi\)
0.324518 0.945880i \(-0.394798\pi\)
\(564\) 0 0
\(565\) 10.3148 0.433945
\(566\) 0 0
\(567\) 30.1678 9.51612i 1.26693 0.399640i
\(568\) 0 0
\(569\) −10.5253 + 18.2304i −0.441244 + 0.764257i −0.997782 0.0665652i \(-0.978796\pi\)
0.556538 + 0.830822i \(0.312129\pi\)
\(570\) 0 0
\(571\) −2.80025 + 4.85017i −0.117187 + 0.202973i −0.918652 0.395068i \(-0.870721\pi\)
0.801465 + 0.598042i \(0.204054\pi\)
\(572\) 0 0
\(573\) 31.0622 + 26.6453i 1.29764 + 1.11312i
\(574\) 0 0
\(575\) −4.40543 7.63043i −0.183719 0.318211i
\(576\) 0 0
\(577\) −30.6676 −1.27671 −0.638355 0.769742i \(-0.720385\pi\)
−0.638355 + 0.769742i \(0.720385\pi\)
\(578\) 0 0
\(579\) 14.5130 + 12.4493i 0.603138 + 0.517375i
\(580\) 0 0
\(581\) 11.2330 + 19.4561i 0.466023 + 0.807176i
\(582\) 0 0
\(583\) 19.7515 34.2106i 0.818023 1.41686i
\(584\) 0 0
\(585\) −13.1650 10.0966i −0.544304 0.417443i
\(586\) 0 0
\(587\) 15.7329 27.2501i 0.649364 1.12473i −0.333911 0.942605i \(-0.608368\pi\)
0.983275 0.182127i \(-0.0582983\pi\)
\(588\) 0 0
\(589\) −4.40608 7.63155i −0.181549 0.314452i
\(590\) 0 0
\(591\) −2.85888 + 15.2422i −0.117599 + 0.626980i
\(592\) 0 0
\(593\) 0.583862 0.0239763 0.0119882 0.999928i \(-0.496184\pi\)
0.0119882 + 0.999928i \(0.496184\pi\)
\(594\) 0 0
\(595\) −2.96779 5.14037i −0.121668 0.210735i
\(596\) 0 0
\(597\) 38.1526 13.4183i 1.56148 0.549175i
\(598\) 0 0
\(599\) −12.5346 + 21.7106i −0.512150 + 0.887069i 0.487751 + 0.872983i \(0.337817\pi\)
−0.999901 + 0.0140866i \(0.995516\pi\)
\(600\) 0 0
\(601\) −7.76215 + 13.4444i −0.316625 + 0.548410i −0.979782 0.200071i \(-0.935883\pi\)
0.663157 + 0.748480i \(0.269216\pi\)
\(602\) 0 0
\(603\) −3.47271 22.5530i −0.141420 0.918428i
\(604\) 0 0
\(605\) −45.7177 −1.85869
\(606\) 0 0
\(607\) −15.4441 26.7500i −0.626858 1.08575i −0.988178 0.153308i \(-0.951007\pi\)
0.361321 0.932442i \(-0.382326\pi\)
\(608\) 0 0
\(609\) −8.21043 + 2.88762i −0.332703 + 0.117012i
\(610\) 0 0
\(611\) 2.11490 + 8.63592i 0.0855595 + 0.349372i
\(612\) 0 0
\(613\) 15.1558 + 26.2506i 0.612138 + 1.06025i 0.990879 + 0.134751i \(0.0430235\pi\)
−0.378742 + 0.925502i \(0.623643\pi\)
\(614\) 0 0
\(615\) 30.0429 10.5661i 1.21144 0.426067i
\(616\) 0 0
\(617\) −5.97492 10.3489i −0.240541 0.416630i 0.720327 0.693634i \(-0.243992\pi\)
−0.960869 + 0.277005i \(0.910658\pi\)
\(618\) 0 0
\(619\) −11.3093 19.5884i −0.454561 0.787323i 0.544102 0.839019i \(-0.316870\pi\)
−0.998663 + 0.0516965i \(0.983537\pi\)
\(620\) 0 0
\(621\) 9.13078 14.6866i 0.366406 0.589354i
\(622\) 0 0
\(623\) 14.9479 + 25.8906i 0.598876 + 1.03728i
\(624\) 0 0
\(625\) 2.37728 4.11756i 0.0950911 0.164703i
\(626\) 0 0
\(627\) 4.64216 24.7498i 0.185390 0.988414i
\(628\) 0 0
\(629\) −4.00039 −0.159506
\(630\) 0 0
\(631\) 2.92924 5.07359i 0.116611 0.201976i −0.801811 0.597577i \(-0.796130\pi\)
0.918423 + 0.395601i \(0.129464\pi\)
\(632\) 0 0
\(633\) −0.226066 0.193921i −0.00898533 0.00770766i
\(634\) 0 0
\(635\) 23.3540 0.926777
\(636\) 0 0
\(637\) −18.5331 5.39816i −0.734306 0.213883i
\(638\) 0 0
\(639\) 13.6039 + 5.28928i 0.538164 + 0.209241i
\(640\) 0 0
\(641\) −13.8853 −0.548437 −0.274218 0.961667i \(-0.588419\pi\)
−0.274218 + 0.961667i \(0.588419\pi\)
\(642\) 0 0
\(643\) −13.9906 24.2324i −0.551734 0.955632i −0.998150 0.0608059i \(-0.980633\pi\)
0.446415 0.894826i \(-0.352700\pi\)
\(644\) 0 0
\(645\) 31.4596 11.0644i 1.23872 0.435660i
\(646\) 0 0
\(647\) 13.4477 + 23.2920i 0.528682 + 0.915705i 0.999441 + 0.0334425i \(0.0106471\pi\)
−0.470758 + 0.882262i \(0.656020\pi\)
\(648\) 0 0
\(649\) 31.0206 1.21767
\(650\) 0 0
\(651\) 22.2363 7.82052i 0.871508 0.306510i
\(652\) 0 0
\(653\) −19.3964 −0.759039 −0.379519 0.925184i \(-0.623911\pi\)
−0.379519 + 0.925184i \(0.623911\pi\)
\(654\) 0 0
\(655\) −9.04884 15.6730i −0.353567 0.612397i
\(656\) 0 0
\(657\) −2.46914 16.0354i −0.0963303 0.625602i
\(658\) 0 0
\(659\) 39.8501 1.55234 0.776171 0.630523i \(-0.217159\pi\)
0.776171 + 0.630523i \(0.217159\pi\)
\(660\) 0 0
\(661\) 11.4745 0.446306 0.223153 0.974783i \(-0.428365\pi\)
0.223153 + 0.974783i \(0.428365\pi\)
\(662\) 0 0
\(663\) 6.86544 0.376322i 0.266632 0.0146151i
\(664\) 0 0
\(665\) −6.13482 10.6258i −0.237898 0.412052i
\(666\) 0 0
\(667\) −2.37905 + 4.12063i −0.0921171 + 0.159551i
\(668\) 0 0
\(669\) 2.65720 0.934542i 0.102733 0.0361315i
\(670\) 0 0
\(671\) −9.89875 + 17.1451i −0.382137 + 0.661881i
\(672\) 0 0
\(673\) 18.3543 31.7906i 0.707506 1.22544i −0.258273 0.966072i \(-0.583154\pi\)
0.965779 0.259365i \(-0.0835132\pi\)
\(674\) 0 0
\(675\) −13.7488 0.448768i −0.529193 0.0172731i
\(676\) 0 0
\(677\) −3.57943 6.19976i −0.137569 0.238276i 0.789007 0.614384i \(-0.210595\pi\)
−0.926576 + 0.376108i \(0.877262\pi\)
\(678\) 0 0
\(679\) 12.3940 0.475637
\(680\) 0 0
\(681\) −29.6305 25.4172i −1.13544 0.973990i
\(682\) 0 0
\(683\) 13.2982 23.0331i 0.508841 0.881338i −0.491107 0.871099i \(-0.663408\pi\)
0.999948 0.0102387i \(-0.00325912\pi\)
\(684\) 0 0
\(685\) −10.7409 + 18.6037i −0.410387 + 0.710812i
\(686\) 0 0
\(687\) −39.4820 + 13.8859i −1.50633 + 0.529779i
\(688\) 0 0
\(689\) 21.4070 + 6.23525i 0.815540 + 0.237544i
\(690\) 0 0
\(691\) 15.5581 26.9474i 0.591858 1.02513i −0.402124 0.915585i \(-0.631728\pi\)
0.993982 0.109543i \(-0.0349387\pi\)
\(692\) 0 0
\(693\) 62.7790 + 24.4088i 2.38478 + 0.927214i
\(694\) 0 0
\(695\) 12.7109 0.482154
\(696\) 0 0
\(697\) −6.59912 + 11.4300i −0.249959 + 0.432942i
\(698\) 0 0
\(699\) 21.6810 + 18.5980i 0.820049 + 0.703442i
\(700\) 0 0
\(701\) −38.5419 −1.45571 −0.727854 0.685732i \(-0.759482\pi\)
−0.727854 + 0.685732i \(0.759482\pi\)
\(702\) 0 0
\(703\) −8.26933 −0.311884
\(704\) 0 0
\(705\) −4.97243 4.26537i −0.187272 0.160643i
\(706\) 0 0
\(707\) −26.1292 + 45.2570i −0.982688 + 1.70207i
\(708\) 0 0
\(709\) 1.84079 0.0691325 0.0345662 0.999402i \(-0.488995\pi\)
0.0345662 + 0.999402i \(0.488995\pi\)
\(710\) 0 0
\(711\) −11.1916 + 8.98341i −0.419719 + 0.336904i
\(712\) 0 0
\(713\) 6.44316 11.1599i 0.241298 0.417941i
\(714\) 0 0
\(715\) −8.40319 34.3134i −0.314262 1.28325i
\(716\) 0 0
\(717\) −17.1242 + 6.02259i −0.639513 + 0.224918i
\(718\) 0 0
\(719\) 9.15519 15.8573i 0.341431 0.591376i −0.643268 0.765641i \(-0.722422\pi\)
0.984699 + 0.174265i \(0.0557551\pi\)
\(720\) 0 0
\(721\) 20.2617 35.0943i 0.754585 1.30698i
\(722\) 0 0
\(723\) 30.4734 + 26.1402i 1.13332 + 0.972164i
\(724\) 0 0
\(725\) 3.78482 0.140565
\(726\) 0 0
\(727\) −11.6183 20.1235i −0.430900 0.746340i 0.566051 0.824370i \(-0.308470\pi\)
−0.996951 + 0.0780300i \(0.975137\pi\)
\(728\) 0 0
\(729\) −11.9464 24.2133i −0.442461 0.896788i
\(730\) 0 0
\(731\) −6.91032 + 11.9690i −0.255587 + 0.442691i
\(732\) 0 0
\(733\) −9.62013 + 16.6626i −0.355328 + 0.615446i −0.987174 0.159648i \(-0.948964\pi\)
0.631846 + 0.775094i \(0.282297\pi\)
\(734\) 0 0
\(735\) 13.4175 4.71895i 0.494912 0.174061i
\(736\) 0 0
\(737\) 24.2943 42.0790i 0.894892 1.55000i
\(738\) 0 0
\(739\) −1.98535 3.43873i −0.0730324 0.126496i 0.827197 0.561913i \(-0.189934\pi\)
−0.900229 + 0.435417i \(0.856601\pi\)
\(740\) 0 0
\(741\) 14.1918 0.777907i 0.521348 0.0285771i
\(742\) 0 0
\(743\) −5.75177 −0.211012 −0.105506 0.994419i \(-0.533646\pi\)
−0.105506 + 0.994419i \(0.533646\pi\)
\(744\) 0 0
\(745\) −6.03870 −0.221241
\(746\) 0 0
\(747\) 14.9539 12.0034i 0.547136 0.439181i
\(748\) 0 0
\(749\) −15.5028 26.8517i −0.566460 0.981138i
\(750\) 0 0
\(751\) −45.3603 −1.65522 −0.827610 0.561304i \(-0.810300\pi\)
−0.827610 + 0.561304i \(0.810300\pi\)
\(752\) 0 0
\(753\) −33.1337 + 11.6531i −1.20746 + 0.424664i
\(754\) 0 0
\(755\) 31.1044 1.13200
\(756\) 0 0
\(757\) 6.54346 + 11.3336i 0.237826 + 0.411927i 0.960090 0.279691i \(-0.0902319\pi\)
−0.722264 + 0.691617i \(0.756899\pi\)
\(758\) 0 0
\(759\) 34.7379 12.2174i 1.26091 0.443462i
\(760\) 0 0
\(761\) 13.5091 + 23.3985i 0.489706 + 0.848195i 0.999930 0.0118465i \(-0.00377094\pi\)
−0.510224 + 0.860041i \(0.670438\pi\)
\(762\) 0 0
\(763\) 32.5805 1.17949
\(764\) 0 0
\(765\) −3.95088 + 3.17133i −0.142844 + 0.114660i
\(766\) 0 0
\(767\) 4.16477 + 17.0063i 0.150381 + 0.614063i
\(768\) 0 0
\(769\) 46.2575 1.66809 0.834045 0.551697i \(-0.186019\pi\)
0.834045 + 0.551697i \(0.186019\pi\)
\(770\) 0 0
\(771\) −0.954400 0.818690i −0.0343719 0.0294844i
\(772\) 0 0
\(773\) 20.9744 36.3287i 0.754397 1.30665i −0.191276 0.981536i \(-0.561263\pi\)
0.945673 0.325118i \(-0.105404\pi\)
\(774\) 0 0
\(775\) −10.2504 −0.368205
\(776\) 0 0
\(777\) 4.07769 21.7403i 0.146286 0.779930i
\(778\) 0 0
\(779\) −13.6413 + 23.6273i −0.488749 + 0.846537i
\(780\) 0 0
\(781\) 15.5398 + 26.9158i 0.556059 + 0.963123i
\(782\) 0 0
\(783\) 3.50248 + 6.55117i 0.125169 + 0.234120i
\(784\) 0 0
\(785\) 17.9837 + 31.1487i 0.641866 + 1.11174i
\(786\) 0 0
\(787\) −20.5108 35.5257i −0.731131 1.26636i −0.956400 0.292059i \(-0.905660\pi\)
0.225270 0.974296i \(-0.427674\pi\)
\(788\) 0 0
\(789\) 15.7206 5.52896i 0.559668 0.196836i
\(790\) 0 0
\(791\) −11.8182 20.4698i −0.420207 0.727821i
\(792\) 0 0
\(793\) −10.7284 3.12489i −0.380977 0.110968i
\(794\) 0 0
\(795\) −15.4981 + 5.45071i −0.549662 + 0.193317i
\(796\) 0 0
\(797\) −8.28106 14.3432i −0.293330 0.508063i 0.681265 0.732037i \(-0.261430\pi\)
−0.974595 + 0.223974i \(0.928097\pi\)
\(798\) 0 0
\(799\) 2.71502 0.0960504
\(800\) 0 0
\(801\) 19.8994 15.9731i 0.703112 0.564381i
\(802\) 0 0
\(803\) 17.2735 29.9187i 0.609570 1.05581i
\(804\) 0 0
\(805\) 8.97117 15.5385i 0.316192 0.547661i
\(806\) 0 0
\(807\) −20.0127 + 7.03849i −0.704480 + 0.247767i
\(808\) 0 0
\(809\) −25.0672 43.4176i −0.881314 1.52648i −0.849880 0.526976i \(-0.823326\pi\)
−0.0314339 0.999506i \(-0.510007\pi\)
\(810\) 0 0
\(811\) −15.2618 −0.535914 −0.267957 0.963431i \(-0.586349\pi\)
−0.267957 + 0.963431i \(0.586349\pi\)
\(812\) 0 0
\(813\) −1.68886 + 9.00423i −0.0592311 + 0.315792i
\(814\) 0 0
\(815\) 2.36684 + 4.09950i 0.0829070 + 0.143599i
\(816\) 0 0
\(817\) −14.2846 + 24.7416i −0.499753 + 0.865598i
\(818\) 0 0
\(819\) −4.95297 + 37.6943i −0.173071 + 1.31714i
\(820\) 0 0
\(821\) 2.56075 4.43535i 0.0893708 0.154795i −0.817875 0.575397i \(-0.804848\pi\)
0.907245 + 0.420602i \(0.138181\pi\)
\(822\) 0 0
\(823\) 7.45156 + 12.9065i 0.259745 + 0.449891i 0.966174 0.257893i \(-0.0830282\pi\)
−0.706429 + 0.707784i \(0.749695\pi\)
\(824\) 0 0
\(825\) −22.2324 19.0710i −0.774032 0.663968i
\(826\) 0 0
\(827\) −18.5879 −0.646364 −0.323182 0.946337i \(-0.604753\pi\)
−0.323182 + 0.946337i \(0.604753\pi\)
\(828\) 0 0
\(829\) −10.4298 18.0650i −0.362243 0.627422i 0.626087 0.779753i \(-0.284655\pi\)
−0.988330 + 0.152331i \(0.951322\pi\)
\(830\) 0 0
\(831\) 7.79465 + 6.68629i 0.270393 + 0.231945i
\(832\) 0 0
\(833\) −2.94724 + 5.10477i −0.102116 + 0.176870i
\(834\) 0 0
\(835\) −14.9601 + 25.9117i −0.517716 + 0.896710i
\(836\) 0 0
\(837\) −9.48577 17.7425i −0.327876 0.613271i
\(838\) 0 0
\(839\) 36.0457 1.24444 0.622219 0.782843i \(-0.286231\pi\)
0.622219 + 0.782843i \(0.286231\pi\)
\(840\) 0 0
\(841\) 13.4781 + 23.3447i 0.464760 + 0.804989i
\(842\) 0 0
\(843\) −10.4015 + 55.4559i −0.358247 + 1.91000i
\(844\) 0 0
\(845\) 17.6834 9.21372i 0.608326 0.316962i
\(846\) 0 0
\(847\) 52.3814 + 90.7273i 1.79985 + 3.11743i
\(848\) 0 0
\(849\) 24.3839 + 20.9166i 0.836853 + 0.717857i
\(850\) 0 0
\(851\) −6.04627 10.4724i −0.207263 0.358991i
\(852\) 0 0
\(853\) 6.97776 + 12.0858i 0.238914 + 0.413811i 0.960403 0.278615i \(-0.0898753\pi\)
−0.721489 + 0.692426i \(0.756542\pi\)
\(854\) 0 0
\(855\) −8.16699 + 6.55556i −0.279305 + 0.224195i
\(856\) 0 0
\(857\) 8.73939 + 15.1371i 0.298532 + 0.517073i 0.975800 0.218664i \(-0.0701697\pi\)
−0.677268 + 0.735736i \(0.736836\pi\)
\(858\) 0 0
\(859\) −4.17576 + 7.23263i −0.142475 + 0.246774i −0.928428 0.371512i \(-0.878839\pi\)
0.785953 + 0.618286i \(0.212173\pi\)
\(860\) 0 0
\(861\) −55.3904 47.5142i −1.88770 1.61928i
\(862\) 0 0
\(863\) 4.11501 0.140077 0.0700384 0.997544i \(-0.477688\pi\)
0.0700384 + 0.997544i \(0.477688\pi\)
\(864\) 0 0
\(865\) −8.20635 + 14.2138i −0.279024 + 0.483284i
\(866\) 0 0
\(867\) −5.04107 + 26.8766i −0.171204 + 0.912777i
\(868\) 0 0
\(869\) −30.5582 −1.03662
\(870\) 0 0
\(871\) 26.3305 + 7.66935i 0.892176 + 0.259866i
\(872\) 0 0
\(873\) −1.60994 10.4555i −0.0544881 0.353864i
\(874\) 0 0
\(875\) −41.2276 −1.39375
\(876\) 0 0
\(877\) −5.30991 9.19704i −0.179303 0.310562i 0.762339 0.647178i \(-0.224051\pi\)
−0.941642 + 0.336616i \(0.890718\pi\)
\(878\) 0 0
\(879\) −5.74258 + 30.6168i −0.193693 + 1.03268i
\(880\) 0 0
\(881\) 15.0048 + 25.9891i 0.505525 + 0.875595i 0.999980 + 0.00639173i \(0.00203456\pi\)
−0.494454 + 0.869204i \(0.664632\pi\)
\(882\) 0 0
\(883\) 21.3674 0.719072 0.359536 0.933131i \(-0.382935\pi\)
0.359536 + 0.933131i \(0.382935\pi\)
\(884\) 0 0
\(885\) −9.79197 8.39961i −0.329154 0.282350i
\(886\) 0 0
\(887\) 40.3161 1.35368 0.676841 0.736129i \(-0.263348\pi\)
0.676841 + 0.736129i \(0.263348\pi\)
\(888\) 0 0
\(889\) −26.7581 46.3464i −0.897437 1.55441i
\(890\) 0 0
\(891\) 12.4363 56.1306i 0.416632 1.88045i
\(892\) 0 0
\(893\) 5.61230 0.187808
\(894\) 0 0
\(895\) 3.49917 0.116964
\(896\) 0 0
\(897\) 11.3617 + 17.4040i 0.379357 + 0.581102i
\(898\) 0 0
\(899\) 2.76774 + 4.79387i 0.0923094 + 0.159884i
\(900\) 0 0
\(901\) 3.40427 5.89637i 0.113413 0.196436i
\(902\) 0 0
\(903\) −58.0025 49.7549i −1.93020 1.65574i
\(904\) 0 0
\(905\) 7.88051 13.6494i 0.261957 0.453723i
\(906\) 0 0
\(907\) −7.39556 + 12.8095i −0.245566 + 0.425332i −0.962290 0.272024i \(-0.912307\pi\)
0.716725 + 0.697356i \(0.245640\pi\)
\(908\) 0 0
\(909\) 41.5727 + 16.1637i 1.37888 + 0.536115i
\(910\) 0 0
\(911\) −16.1529 27.9777i −0.535170 0.926942i −0.999155 0.0410987i \(-0.986914\pi\)
0.463985 0.885843i \(-0.346419\pi\)
\(912\) 0 0
\(913\) 40.8310 1.35131
\(914\) 0 0
\(915\) 7.76712 2.73171i 0.256773 0.0903074i
\(916\) 0 0
\(917\) −20.7356 + 35.9150i −0.684748 + 1.18602i
\(918\) 0 0
\(919\) 18.5950 32.2075i 0.613392 1.06243i −0.377272 0.926103i \(-0.623138\pi\)
0.990664 0.136324i \(-0.0435289\pi\)
\(920\) 0 0
\(921\) 18.5143 + 15.8816i 0.610066 + 0.523318i
\(922\) 0 0
\(923\) −12.6696 + 12.1330i −0.417026 + 0.399364i
\(924\) 0 0
\(925\) −4.80949 + 8.33029i −0.158135 + 0.273898i
\(926\) 0 0
\(927\) −32.2372 12.5340i −1.05881 0.411671i
\(928\) 0 0
\(929\) 15.2044 0.498841 0.249421 0.968395i \(-0.419760\pi\)
0.249421 + 0.968395i \(0.419760\pi\)
\(930\) 0 0
\(931\) −6.09234 + 10.5522i −0.199668 + 0.345836i
\(932\) 0 0
\(933\) 50.1426 17.6352i 1.64159 0.577351i
\(934\) 0 0
\(935\) −10.7877 −0.352795
\(936\) 0 0
\(937\) 56.1934 1.83576 0.917880 0.396859i \(-0.129900\pi\)
0.917880 + 0.396859i \(0.129900\pi\)
\(938\) 0 0
\(939\) 3.50173 18.6696i 0.114275 0.609259i
\(940\) 0 0
\(941\) 15.6111 27.0393i 0.508909 0.881455i −0.491038 0.871138i \(-0.663382\pi\)
0.999947 0.0103174i \(-0.00328419\pi\)
\(942\) 0 0
\(943\) −39.8962 −1.29920
\(944\) 0 0
\(945\) −13.2076 24.7039i −0.429642 0.803618i
\(946\) 0 0
\(947\) 20.3364 35.2236i 0.660843 1.14461i −0.319552 0.947569i \(-0.603532\pi\)
0.980395 0.197044i \(-0.0631343\pi\)
\(948\) 0 0
\(949\) 18.7213 + 5.45300i 0.607720 + 0.177012i
\(950\) 0 0
\(951\) 0.736645 3.92745i 0.0238874 0.127356i
\(952\) 0 0
\(953\) 1.35525 2.34736i 0.0439008 0.0760384i −0.843240 0.537537i \(-0.819355\pi\)
0.887141 + 0.461499i \(0.152688\pi\)
\(954\) 0 0
\(955\) 18.1205 31.3857i 0.586367 1.01562i
\(956\) 0 0
\(957\) −2.91604 + 15.5470i −0.0942623 + 0.502562i
\(958\) 0 0
\(959\) 49.2257 1.58958
\(960\) 0 0
\(961\) 8.00414 + 13.8636i 0.258198 + 0.447212i
\(962\) 0 0
\(963\) −20.6381 + 16.5660i −0.665054 + 0.533833i
\(964\) 0 0
\(965\) 8.46634 14.6641i 0.272541 0.472055i
\(966\) 0 0
\(967\) −2.04491 + 3.54189i −0.0657600 + 0.113900i −0.897031 0.441968i \(-0.854280\pi\)
0.831271 + 0.555868i \(0.187614\pi\)
\(968\) 0 0
\(969\) 0.800101 4.26576i 0.0257029 0.137036i
\(970\) 0 0
\(971\) −6.04999 + 10.4789i −0.194153 + 0.336283i −0.946623 0.322344i \(-0.895529\pi\)
0.752469 + 0.658627i \(0.228863\pi\)
\(972\) 0 0
\(973\) −14.5637 25.2250i −0.466890 0.808677i
\(974\) 0 0
\(975\) 7.47039 14.7488i 0.239244 0.472341i
\(976\) 0 0
\(977\) 7.64951 0.244729 0.122365 0.992485i \(-0.460952\pi\)
0.122365 + 0.992485i \(0.460952\pi\)
\(978\) 0 0
\(979\) 54.3344 1.73654
\(980\) 0 0
\(981\) −4.23211 27.4847i −0.135121 0.877520i
\(982\) 0 0
\(983\) 25.0980 + 43.4711i 0.800503 + 1.38651i 0.919286 + 0.393591i \(0.128767\pi\)
−0.118783 + 0.992920i \(0.537899\pi\)
\(984\) 0 0
\(985\) 13.7332 0.437576
\(986\) 0 0
\(987\) −2.76748 + 14.7549i −0.0880899 + 0.469654i
\(988\) 0 0
\(989\) −41.7776 −1.32845
\(990\) 0 0
\(991\) −21.7547 37.6803i −0.691062 1.19695i −0.971490 0.237079i \(-0.923810\pi\)
0.280428 0.959875i \(-0.409523\pi\)
\(992\) 0 0
\(993\) −44.2374 37.9471i −1.40383 1.20421i
\(994\) 0 0
\(995\) −17.9075 31.0167i −0.567705 0.983294i
\(996\) 0 0
\(997\) −30.2028 −0.956532 −0.478266 0.878215i \(-0.658735\pi\)
−0.478266 + 0.878215i \(0.658735\pi\)
\(998\) 0 0
\(999\) −18.8697 0.615915i −0.597011 0.0194867i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.s.f.913.17 yes 40
3.2 odd 2 2808.2.s.f.1225.8 40
9.2 odd 6 2808.2.r.f.289.8 40
9.7 even 3 936.2.r.f.601.11 40
13.9 even 3 936.2.r.f.841.11 yes 40
39.35 odd 6 2808.2.r.f.2089.8 40
117.61 even 3 inner 936.2.s.f.529.17 yes 40
117.74 odd 6 2808.2.s.f.1153.8 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.r.f.601.11 40 9.7 even 3
936.2.r.f.841.11 yes 40 13.9 even 3
936.2.s.f.529.17 yes 40 117.61 even 3 inner
936.2.s.f.913.17 yes 40 1.1 even 1 trivial
2808.2.r.f.289.8 40 9.2 odd 6
2808.2.r.f.2089.8 40 39.35 odd 6
2808.2.s.f.1153.8 40 117.74 odd 6
2808.2.s.f.1225.8 40 3.2 odd 2