Properties

Label 2808.2.s.f.1225.8
Level $2808$
Weight $2$
Character 2808.1225
Analytic conductor $22.422$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2808,2,Mod(1153,2808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2808, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2808.1153"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2808 = 2^{3} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2808.s (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,-1,0,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4219928876\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 936)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1225.8
Character \(\chi\) \(=\) 2808.1225
Dual form 2808.2.s.f.1153.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.766914 + 1.32833i) q^{5} -3.51479 q^{7} +(3.19399 - 5.53215i) q^{11} +(-3.46170 - 1.00830i) q^{13} +(0.550501 - 0.953495i) q^{17} +(-1.13796 + 1.97100i) q^{19} +3.32815 q^{23} +(1.32369 + 2.29269i) q^{25} +(-0.714825 + 1.23811i) q^{29} +(-1.93596 + 3.35318i) q^{31} +(2.69554 - 4.66881i) q^{35} +(1.81670 + 3.14662i) q^{37} -11.9875 q^{41} +12.5528 q^{43} +(1.23298 + 2.13558i) q^{47} +5.35375 q^{49} +6.18395 q^{53} +(4.89903 + 8.48537i) q^{55} +(2.42804 + 4.20550i) q^{59} +3.09918 q^{61} +(3.99418 - 3.82501i) q^{65} -7.60626 q^{67} +(-2.43267 + 4.21351i) q^{71} -5.40814 q^{73} +(-11.2262 + 19.4444i) q^{77} +(2.39185 + 4.14281i) q^{79} +(3.19592 + 5.53550i) q^{83} +(0.844373 + 1.46250i) q^{85} +(4.25286 + 7.36618i) q^{89} +(12.1671 + 3.54395i) q^{91} +(-1.74543 - 3.02318i) q^{95} -3.52623 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - q^{5} - 14 q^{7} - 3 q^{13} + q^{17} + 2 q^{19} - 2 q^{23} - 23 q^{25} - 12 q^{29} + 8 q^{31} + 12 q^{35} + 18 q^{37} - 6 q^{41} - 16 q^{43} - 4 q^{47} + 46 q^{49} + 40 q^{53} - 14 q^{55} + 4 q^{59}+ \cdots - 70 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2808\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(1081\) \(1405\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.766914 + 1.32833i −0.342974 + 0.594049i −0.984984 0.172648i \(-0.944768\pi\)
0.642009 + 0.766697i \(0.278101\pi\)
\(6\) 0 0
\(7\) −3.51479 −1.32847 −0.664233 0.747526i \(-0.731242\pi\)
−0.664233 + 0.747526i \(0.731242\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.19399 5.53215i 0.963024 1.66801i 0.248192 0.968711i \(-0.420163\pi\)
0.714832 0.699296i \(-0.246503\pi\)
\(12\) 0 0
\(13\) −3.46170 1.00830i −0.960102 0.279651i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.550501 0.953495i 0.133516 0.231256i −0.791514 0.611152i \(-0.790707\pi\)
0.925030 + 0.379895i \(0.124040\pi\)
\(18\) 0 0
\(19\) −1.13796 + 1.97100i −0.261065 + 0.452179i −0.966525 0.256571i \(-0.917407\pi\)
0.705460 + 0.708750i \(0.250741\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.32815 0.693968 0.346984 0.937871i \(-0.387206\pi\)
0.346984 + 0.937871i \(0.387206\pi\)
\(24\) 0 0
\(25\) 1.32369 + 2.29269i 0.264737 + 0.458538i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.714825 + 1.23811i −0.132740 + 0.229912i −0.924732 0.380620i \(-0.875711\pi\)
0.791992 + 0.610531i \(0.209044\pi\)
\(30\) 0 0
\(31\) −1.93596 + 3.35318i −0.347708 + 0.602248i −0.985842 0.167677i \(-0.946373\pi\)
0.638134 + 0.769926i \(0.279707\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.69554 4.66881i 0.455630 0.789174i
\(36\) 0 0
\(37\) 1.81670 + 3.14662i 0.298664 + 0.517302i 0.975831 0.218528i \(-0.0701256\pi\)
−0.677166 + 0.735830i \(0.736792\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −11.9875 −1.87213 −0.936065 0.351827i \(-0.885561\pi\)
−0.936065 + 0.351827i \(0.885561\pi\)
\(42\) 0 0
\(43\) 12.5528 1.91428 0.957142 0.289619i \(-0.0935287\pi\)
0.957142 + 0.289619i \(0.0935287\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.23298 + 2.13558i 0.179848 + 0.311506i 0.941828 0.336094i \(-0.109106\pi\)
−0.761980 + 0.647600i \(0.775773\pi\)
\(48\) 0 0
\(49\) 5.35375 0.764821
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.18395 0.849431 0.424716 0.905327i \(-0.360374\pi\)
0.424716 + 0.905327i \(0.360374\pi\)
\(54\) 0 0
\(55\) 4.89903 + 8.48537i 0.660585 + 1.14417i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.42804 + 4.20550i 0.316104 + 0.547509i 0.979672 0.200608i \(-0.0642917\pi\)
−0.663567 + 0.748117i \(0.730958\pi\)
\(60\) 0 0
\(61\) 3.09918 0.396809 0.198405 0.980120i \(-0.436424\pi\)
0.198405 + 0.980120i \(0.436424\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.99418 3.82501i 0.495417 0.474434i
\(66\) 0 0
\(67\) −7.60626 −0.929252 −0.464626 0.885507i \(-0.653811\pi\)
−0.464626 + 0.885507i \(0.653811\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −2.43267 + 4.21351i −0.288705 + 0.500051i −0.973501 0.228683i \(-0.926558\pi\)
0.684796 + 0.728735i \(0.259891\pi\)
\(72\) 0 0
\(73\) −5.40814 −0.632975 −0.316487 0.948597i \(-0.602504\pi\)
−0.316487 + 0.948597i \(0.602504\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −11.2262 + 19.4444i −1.27934 + 2.21589i
\(78\) 0 0
\(79\) 2.39185 + 4.14281i 0.269104 + 0.466102i 0.968631 0.248505i \(-0.0799391\pi\)
−0.699527 + 0.714607i \(0.746606\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.19592 + 5.53550i 0.350798 + 0.607600i 0.986390 0.164425i \(-0.0525770\pi\)
−0.635591 + 0.772026i \(0.719244\pi\)
\(84\) 0 0
\(85\) 0.844373 + 1.46250i 0.0915851 + 0.158630i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.25286 + 7.36618i 0.450803 + 0.780813i 0.998436 0.0559053i \(-0.0178045\pi\)
−0.547633 + 0.836718i \(0.684471\pi\)
\(90\) 0 0
\(91\) 12.1671 + 3.54395i 1.27546 + 0.371507i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.74543 3.02318i −0.179077 0.310171i
\(96\) 0 0
\(97\) −3.52623 −0.358035 −0.179017 0.983846i \(-0.557292\pi\)
−0.179017 + 0.983846i \(0.557292\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −7.43406 + 12.8762i −0.739717 + 1.28123i 0.212906 + 0.977073i \(0.431707\pi\)
−0.952623 + 0.304154i \(0.901626\pi\)
\(102\) 0 0
\(103\) −5.76469 + 9.98474i −0.568012 + 0.983826i 0.428750 + 0.903423i \(0.358954\pi\)
−0.996762 + 0.0804029i \(0.974379\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.41074 7.63962i −0.426402 0.738550i 0.570148 0.821542i \(-0.306886\pi\)
−0.996550 + 0.0829919i \(0.973552\pi\)
\(108\) 0 0
\(109\) −9.26955 −0.887862 −0.443931 0.896061i \(-0.646416\pi\)
−0.443931 + 0.896061i \(0.646416\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −3.36243 5.82389i −0.316310 0.547866i 0.663405 0.748261i \(-0.269111\pi\)
−0.979715 + 0.200395i \(0.935777\pi\)
\(114\) 0 0
\(115\) −2.55241 + 4.42090i −0.238013 + 0.412251i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.93489 + 3.35133i −0.177371 + 0.307216i
\(120\) 0 0
\(121\) −14.9031 25.8130i −1.35483 2.34664i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.7298 −1.04914
\(126\) 0 0
\(127\) 7.61299 + 13.1861i 0.675544 + 1.17008i 0.976310 + 0.216378i \(0.0694245\pi\)
−0.300766 + 0.953698i \(0.597242\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.89951 + 10.2183i −0.515443 + 0.892773i 0.484396 + 0.874849i \(0.339039\pi\)
−0.999839 + 0.0179247i \(0.994294\pi\)
\(132\) 0 0
\(133\) 3.99968 6.92765i 0.346817 0.600704i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 14.0053 1.19655 0.598277 0.801289i \(-0.295852\pi\)
0.598277 + 0.801289i \(0.295852\pi\)
\(138\) 0 0
\(139\) 4.14354 + 7.17682i 0.351450 + 0.608730i 0.986504 0.163738i \(-0.0523553\pi\)
−0.635054 + 0.772468i \(0.719022\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −16.6347 + 15.9301i −1.39106 + 1.33215i
\(144\) 0 0
\(145\) −1.09642 1.89905i −0.0910526 0.157708i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.96851 + 3.40955i 0.161266 + 0.279321i 0.935323 0.353795i \(-0.115109\pi\)
−0.774057 + 0.633116i \(0.781776\pi\)
\(150\) 0 0
\(151\) 10.1395 + 17.5621i 0.825138 + 1.42918i 0.901814 + 0.432125i \(0.142236\pi\)
−0.0766753 + 0.997056i \(0.524430\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.96943 5.14320i −0.238510 0.413111i
\(156\) 0 0
\(157\) −11.7247 + 20.3078i −0.935735 + 1.62074i −0.162416 + 0.986722i \(0.551929\pi\)
−0.773319 + 0.634017i \(0.781405\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −11.6978 −0.921913
\(162\) 0 0
\(163\) −1.54310 + 2.67272i −0.120865 + 0.209344i −0.920109 0.391663i \(-0.871900\pi\)
0.799244 + 0.601006i \(0.205233\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 19.5069 1.50949 0.754744 0.656019i \(-0.227761\pi\)
0.754744 + 0.656019i \(0.227761\pi\)
\(168\) 0 0
\(169\) 10.9667 + 6.98083i 0.843591 + 0.536987i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 10.7005 0.813543 0.406771 0.913530i \(-0.366655\pi\)
0.406771 + 0.913530i \(0.366655\pi\)
\(174\) 0 0
\(175\) −4.65248 8.05833i −0.351694 0.609153i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.14067 1.97569i −0.0852574 0.147670i 0.820243 0.572015i \(-0.193838\pi\)
−0.905501 + 0.424344i \(0.860505\pi\)
\(180\) 0 0
\(181\) 10.2756 0.763780 0.381890 0.924208i \(-0.375273\pi\)
0.381890 + 0.924208i \(0.375273\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.57302 −0.409737
\(186\) 0 0
\(187\) −3.51659 6.09091i −0.257158 0.445411i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −23.6279 −1.70965 −0.854826 0.518914i \(-0.826336\pi\)
−0.854826 + 0.518914i \(0.826336\pi\)
\(192\) 0 0
\(193\) 11.0395 0.794640 0.397320 0.917680i \(-0.369940\pi\)
0.397320 + 0.917680i \(0.369940\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4.47677 7.75399i −0.318957 0.552449i 0.661314 0.750109i \(-0.269999\pi\)
−0.980271 + 0.197660i \(0.936666\pi\)
\(198\) 0 0
\(199\) 11.6750 20.2217i 0.827620 1.43348i −0.0722797 0.997384i \(-0.523027\pi\)
0.899900 0.436096i \(-0.143639\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.51246 4.35171i 0.176340 0.305430i
\(204\) 0 0
\(205\) 9.19337 15.9234i 0.642093 1.11214i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 7.26925 + 12.5907i 0.502825 + 0.870918i
\(210\) 0 0
\(211\) −0.171961 −0.0118383 −0.00591913 0.999982i \(-0.501884\pi\)
−0.00591913 + 0.999982i \(0.501884\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −9.62691 + 16.6743i −0.656550 + 1.13718i
\(216\) 0 0
\(217\) 6.80449 11.7857i 0.461919 0.800066i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.86707 + 2.74564i −0.192860 + 0.184692i
\(222\) 0 0
\(223\) 0.813127 1.40838i 0.0544510 0.0943119i −0.837515 0.546414i \(-0.815992\pi\)
0.891966 + 0.452102i \(0.149326\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 22.5389 1.49596 0.747979 0.663722i \(-0.231024\pi\)
0.747979 + 0.663722i \(0.231024\pi\)
\(228\) 0 0
\(229\) −12.0818 + 20.9263i −0.798389 + 1.38285i 0.122276 + 0.992496i \(0.460981\pi\)
−0.920665 + 0.390354i \(0.872353\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −16.4919 −1.08042 −0.540211 0.841530i \(-0.681656\pi\)
−0.540211 + 0.841530i \(0.681656\pi\)
\(234\) 0 0
\(235\) −3.78235 −0.246733
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5.24014 9.07618i 0.338956 0.587089i −0.645280 0.763946i \(-0.723259\pi\)
0.984237 + 0.176856i \(0.0565928\pi\)
\(240\) 0 0
\(241\) 23.1800 1.49315 0.746577 0.665299i \(-0.231696\pi\)
0.746577 + 0.665299i \(0.231696\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −4.10587 + 7.11157i −0.262314 + 0.454341i
\(246\) 0 0
\(247\) 5.92662 5.67561i 0.377102 0.361130i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.1392 17.5616i 0.639979 1.10848i −0.345458 0.938434i \(-0.612276\pi\)
0.985437 0.170042i \(-0.0543904\pi\)
\(252\) 0 0
\(253\) 10.6301 18.4119i 0.668308 1.15754i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.725978 0.0452853 0.0226426 0.999744i \(-0.492792\pi\)
0.0226426 + 0.999744i \(0.492792\pi\)
\(258\) 0 0
\(259\) −6.38534 11.0597i −0.396765 0.687218i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −4.81064 + 8.33227i −0.296637 + 0.513790i −0.975364 0.220600i \(-0.929198\pi\)
0.678728 + 0.734390i \(0.262532\pi\)
\(264\) 0 0
\(265\) −4.74256 + 8.21435i −0.291333 + 0.504604i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6.12405 10.6072i 0.373390 0.646731i −0.616695 0.787202i \(-0.711529\pi\)
0.990085 + 0.140472i \(0.0448620\pi\)
\(270\) 0 0
\(271\) 2.64462 + 4.58062i 0.160650 + 0.278253i 0.935102 0.354379i \(-0.115308\pi\)
−0.774452 + 0.632632i \(0.781974\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 16.9114 1.01979
\(276\) 0 0
\(277\) 5.92911 0.356246 0.178123 0.984008i \(-0.442998\pi\)
0.178123 + 0.984008i \(0.442998\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −16.2879 28.2115i −0.971654 1.68295i −0.690561 0.723275i \(-0.742636\pi\)
−0.281094 0.959680i \(-0.590697\pi\)
\(282\) 0 0
\(283\) 18.5480 1.10256 0.551281 0.834320i \(-0.314139\pi\)
0.551281 + 0.834320i \(0.314139\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 42.1335 2.48706
\(288\) 0 0
\(289\) 7.89390 + 13.6726i 0.464347 + 0.804273i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −8.99242 15.5753i −0.525343 0.909920i −0.999564 0.0295149i \(-0.990604\pi\)
0.474222 0.880406i \(-0.342730\pi\)
\(294\) 0 0
\(295\) −7.44840 −0.433663
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −11.5211 3.35576i −0.666280 0.194069i
\(300\) 0 0
\(301\) −44.1205 −2.54306
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.37680 + 4.11675i −0.136095 + 0.235724i
\(306\) 0 0
\(307\) 14.0831 0.803768 0.401884 0.915691i \(-0.368356\pi\)
0.401884 + 0.915691i \(0.368356\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −15.3440 + 26.5767i −0.870081 + 1.50702i −0.00816904 + 0.999967i \(0.502600\pi\)
−0.861912 + 0.507058i \(0.830733\pi\)
\(312\) 0 0
\(313\) −5.48343 9.49757i −0.309942 0.536835i 0.668408 0.743795i \(-0.266976\pi\)
−0.978349 + 0.206961i \(0.933643\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.15353 + 1.99797i 0.0647885 + 0.112217i 0.896600 0.442841i \(-0.146029\pi\)
−0.831812 + 0.555058i \(0.812696\pi\)
\(318\) 0 0
\(319\) 4.56629 + 7.90904i 0.255663 + 0.442821i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.25289 + 2.17007i 0.0697128 + 0.120746i
\(324\) 0 0
\(325\) −2.27049 9.27127i −0.125944 0.514278i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.33365 7.50611i −0.238922 0.413825i
\(330\) 0 0
\(331\) −33.6498 −1.84956 −0.924780 0.380502i \(-0.875751\pi\)
−0.924780 + 0.380502i \(0.875751\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.83334 10.1036i 0.318710 0.552021i
\(336\) 0 0
\(337\) 6.88906 11.9322i 0.375271 0.649988i −0.615097 0.788452i \(-0.710883\pi\)
0.990368 + 0.138464i \(0.0442164\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12.3669 + 21.4200i 0.669703 + 1.15996i
\(342\) 0 0
\(343\) 5.78622 0.312427
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.16260 + 5.47778i 0.169777 + 0.294063i 0.938341 0.345710i \(-0.112362\pi\)
−0.768564 + 0.639773i \(0.779029\pi\)
\(348\) 0 0
\(349\) −6.66685 + 11.5473i −0.356868 + 0.618114i −0.987436 0.158021i \(-0.949489\pi\)
0.630568 + 0.776134i \(0.282822\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −12.6247 + 21.8666i −0.671945 + 1.16384i 0.305407 + 0.952222i \(0.401208\pi\)
−0.977352 + 0.211621i \(0.932126\pi\)
\(354\) 0 0
\(355\) −3.73130 6.46279i −0.198037 0.343010i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.22423 −0.0646123 −0.0323062 0.999478i \(-0.510285\pi\)
−0.0323062 + 0.999478i \(0.510285\pi\)
\(360\) 0 0
\(361\) 6.91010 + 11.9687i 0.363690 + 0.629929i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.14758 7.18381i 0.217094 0.376018i
\(366\) 0 0
\(367\) 7.09999 12.2975i 0.370617 0.641927i −0.619044 0.785356i \(-0.712480\pi\)
0.989661 + 0.143430i \(0.0458131\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −21.7353 −1.12844
\(372\) 0 0
\(373\) 8.38836 + 14.5291i 0.434333 + 0.752287i 0.997241 0.0742329i \(-0.0236508\pi\)
−0.562908 + 0.826520i \(0.690317\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.72289 3.56522i 0.191739 0.183618i
\(378\) 0 0
\(379\) 18.3934 + 31.8583i 0.944807 + 1.63645i 0.756138 + 0.654413i \(0.227084\pi\)
0.188669 + 0.982041i \(0.439583\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7.66299 + 13.2727i 0.391561 + 0.678203i 0.992656 0.120975i \(-0.0386020\pi\)
−0.601095 + 0.799178i \(0.705269\pi\)
\(384\) 0 0
\(385\) −17.2191 29.8243i −0.877565 1.51999i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4.10671 7.11304i −0.208219 0.360645i 0.742935 0.669364i \(-0.233433\pi\)
−0.951153 + 0.308718i \(0.900100\pi\)
\(390\) 0 0
\(391\) 1.83215 3.17338i 0.0926558 0.160485i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7.33737 −0.369183
\(396\) 0 0
\(397\) −12.3499 + 21.3906i −0.619822 + 1.07356i 0.369695 + 0.929153i \(0.379462\pi\)
−0.989518 + 0.144411i \(0.953871\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −13.8473 −0.691501 −0.345750 0.938327i \(-0.612376\pi\)
−0.345750 + 0.938327i \(0.612376\pi\)
\(402\) 0 0
\(403\) 10.0827 9.65566i 0.502255 0.480983i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 23.2101 1.15048
\(408\) 0 0
\(409\) −9.32539 16.1521i −0.461111 0.798668i 0.537906 0.843005i \(-0.319216\pi\)
−0.999017 + 0.0443375i \(0.985882\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −8.53407 14.7814i −0.419934 0.727347i
\(414\) 0 0
\(415\) −9.80399 −0.481259
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 15.7552 0.769693 0.384846 0.922981i \(-0.374254\pi\)
0.384846 + 0.922981i \(0.374254\pi\)
\(420\) 0 0
\(421\) −7.16989 12.4186i −0.349439 0.605246i 0.636711 0.771103i \(-0.280295\pi\)
−0.986150 + 0.165856i \(0.946961\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.91476 0.141387
\(426\) 0 0
\(427\) −10.8930 −0.527148
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4.49274 7.78165i −0.216408 0.374829i 0.737300 0.675566i \(-0.236101\pi\)
−0.953707 + 0.300737i \(0.902767\pi\)
\(432\) 0 0
\(433\) −13.8669 + 24.0182i −0.666401 + 1.15424i 0.312503 + 0.949917i \(0.398833\pi\)
−0.978904 + 0.204323i \(0.934501\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.78730 + 6.55979i −0.181171 + 0.313797i
\(438\) 0 0
\(439\) −2.97597 + 5.15453i −0.142035 + 0.246012i −0.928263 0.371925i \(-0.878698\pi\)
0.786228 + 0.617937i \(0.212031\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5.66685 + 9.81526i 0.269240 + 0.466337i 0.968666 0.248368i \(-0.0798942\pi\)
−0.699426 + 0.714705i \(0.746561\pi\)
\(444\) 0 0
\(445\) −13.0463 −0.618455
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.47394 + 11.2132i −0.305524 + 0.529183i −0.977378 0.211501i \(-0.932165\pi\)
0.671854 + 0.740684i \(0.265498\pi\)
\(450\) 0 0
\(451\) −38.2879 + 66.3166i −1.80291 + 3.12273i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −14.0387 + 13.4441i −0.658144 + 0.630270i
\(456\) 0 0
\(457\) 9.67396 16.7558i 0.452529 0.783803i −0.546013 0.837776i \(-0.683855\pi\)
0.998542 + 0.0539733i \(0.0171886\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −34.7972 −1.62067 −0.810334 0.585969i \(-0.800714\pi\)
−0.810334 + 0.585969i \(0.800714\pi\)
\(462\) 0 0
\(463\) 13.0277 22.5647i 0.605450 1.04867i −0.386530 0.922277i \(-0.626326\pi\)
0.991980 0.126394i \(-0.0403402\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 39.3170 1.81937 0.909686 0.415296i \(-0.136322\pi\)
0.909686 + 0.415296i \(0.136322\pi\)
\(468\) 0 0
\(469\) 26.7344 1.23448
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 40.0935 69.4440i 1.84350 3.19304i
\(474\) 0 0
\(475\) −6.02520 −0.276455
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12.3647 21.4163i 0.564957 0.978534i −0.432097 0.901827i \(-0.642226\pi\)
0.997054 0.0767069i \(-0.0244406\pi\)
\(480\) 0 0
\(481\) −3.11615 12.7244i −0.142084 0.580184i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.70432 4.68401i 0.122797 0.212690i
\(486\) 0 0
\(487\) 15.5768 26.9798i 0.705853 1.22257i −0.260530 0.965466i \(-0.583897\pi\)
0.966383 0.257107i \(-0.0827694\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.64887 0.0744124 0.0372062 0.999308i \(-0.488154\pi\)
0.0372062 + 0.999308i \(0.488154\pi\)
\(492\) 0 0
\(493\) 0.787023 + 1.36316i 0.0354457 + 0.0613938i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8.55032 14.8096i 0.383534 0.664301i
\(498\) 0 0
\(499\) −21.3882 + 37.0455i −0.957468 + 1.65838i −0.228850 + 0.973462i \(0.573496\pi\)
−0.728618 + 0.684921i \(0.759837\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 19.6416 34.0203i 0.875777 1.51689i 0.0198439 0.999803i \(-0.493683\pi\)
0.855933 0.517087i \(-0.172984\pi\)
\(504\) 0 0
\(505\) −11.4026 19.7498i −0.507408 0.878856i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −12.0577 −0.534448 −0.267224 0.963634i \(-0.586106\pi\)
−0.267224 + 0.963634i \(0.586106\pi\)
\(510\) 0 0
\(511\) 19.0085 0.840885
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8.84205 15.3149i −0.389627 0.674854i
\(516\) 0 0
\(517\) 15.7525 0.692792
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −16.6196 −0.728116 −0.364058 0.931376i \(-0.618609\pi\)
−0.364058 + 0.931376i \(0.618609\pi\)
\(522\) 0 0
\(523\) −0.621458 1.07640i −0.0271745 0.0470676i 0.852118 0.523349i \(-0.175318\pi\)
−0.879293 + 0.476282i \(0.841984\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.13149 + 3.69185i 0.0928492 + 0.160820i
\(528\) 0 0
\(529\) −11.9234 −0.518409
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 41.4970 + 12.0869i 1.79744 + 0.523543i
\(534\) 0 0
\(535\) 13.5306 0.584980
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 17.0998 29.6178i 0.736542 1.27573i
\(540\) 0 0
\(541\) −41.8105 −1.79757 −0.898787 0.438386i \(-0.855550\pi\)
−0.898787 + 0.438386i \(0.855550\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.10895 12.3131i 0.304514 0.527433i
\(546\) 0 0
\(547\) −0.266912 0.462305i −0.0114123 0.0197668i 0.860263 0.509851i \(-0.170299\pi\)
−0.871675 + 0.490084i \(0.836966\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.62688 2.81784i −0.0693075 0.120044i
\(552\) 0 0
\(553\) −8.40685 14.5611i −0.357496 0.619201i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −3.96368 6.86530i −0.167947 0.290892i 0.769751 0.638344i \(-0.220380\pi\)
−0.937698 + 0.347452i \(0.887047\pi\)
\(558\) 0 0
\(559\) −43.4540 12.6569i −1.83791 0.535331i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 15.5866 + 26.9968i 0.656897 + 1.13778i 0.981415 + 0.191899i \(0.0614647\pi\)
−0.324518 + 0.945880i \(0.605202\pi\)
\(564\) 0 0
\(565\) 10.3148 0.433945
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 10.5253 18.2304i 0.441244 0.764257i −0.556538 0.830822i \(-0.687871\pi\)
0.997782 + 0.0665652i \(0.0212040\pi\)
\(570\) 0 0
\(571\) −2.80025 + 4.85017i −0.117187 + 0.202973i −0.918652 0.395068i \(-0.870721\pi\)
0.801465 + 0.598042i \(0.204054\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.40543 + 7.63043i 0.183719 + 0.318211i
\(576\) 0 0
\(577\) −30.6676 −1.27671 −0.638355 0.769742i \(-0.720385\pi\)
−0.638355 + 0.769742i \(0.720385\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −11.2330 19.4561i −0.466023 0.807176i
\(582\) 0 0
\(583\) 19.7515 34.2106i 0.818023 1.41686i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −15.7329 + 27.2501i −0.649364 + 1.12473i 0.333911 + 0.942605i \(0.391632\pi\)
−0.983275 + 0.182127i \(0.941702\pi\)
\(588\) 0 0
\(589\) −4.40608 7.63155i −0.181549 0.314452i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −0.583862 −0.0239763 −0.0119882 0.999928i \(-0.503816\pi\)
−0.0119882 + 0.999928i \(0.503816\pi\)
\(594\) 0 0
\(595\) −2.96779 5.14037i −0.121668 0.210735i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 12.5346 21.7106i 0.512150 0.887069i −0.487751 0.872983i \(-0.662183\pi\)
0.999901 0.0140866i \(-0.00448405\pi\)
\(600\) 0 0
\(601\) −7.76215 + 13.4444i −0.316625 + 0.548410i −0.979782 0.200071i \(-0.935883\pi\)
0.663157 + 0.748480i \(0.269216\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 45.7177 1.85869
\(606\) 0 0
\(607\) −15.4441 26.7500i −0.626858 1.08575i −0.988178 0.153308i \(-0.951007\pi\)
0.361321 0.932442i \(-0.382326\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.11490 8.63592i −0.0855595 0.349372i
\(612\) 0 0
\(613\) 15.1558 + 26.2506i 0.612138 + 1.06025i 0.990879 + 0.134751i \(0.0430235\pi\)
−0.378742 + 0.925502i \(0.623643\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5.97492 + 10.3489i 0.240541 + 0.416630i 0.960869 0.277005i \(-0.0893417\pi\)
−0.720327 + 0.693634i \(0.756008\pi\)
\(618\) 0 0
\(619\) −11.3093 19.5884i −0.454561 0.787323i 0.544102 0.839019i \(-0.316870\pi\)
−0.998663 + 0.0516965i \(0.983537\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −14.9479 25.8906i −0.598876 1.03728i
\(624\) 0 0
\(625\) 2.37728 4.11756i 0.0950911 0.164703i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4.00039 0.159506
\(630\) 0 0
\(631\) 2.92924 5.07359i 0.116611 0.201976i −0.801811 0.597577i \(-0.796130\pi\)
0.918423 + 0.395601i \(0.129464\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −23.3540 −0.926777
\(636\) 0 0
\(637\) −18.5331 5.39816i −0.734306 0.213883i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 13.8853 0.548437 0.274218 0.961667i \(-0.411581\pi\)
0.274218 + 0.961667i \(0.411581\pi\)
\(642\) 0 0
\(643\) −13.9906 24.2324i −0.551734 0.955632i −0.998150 0.0608059i \(-0.980633\pi\)
0.446415 0.894826i \(-0.352700\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −13.4477 23.2920i −0.528682 0.915705i −0.999441 0.0334425i \(-0.989353\pi\)
0.470758 0.882262i \(-0.343980\pi\)
\(648\) 0 0
\(649\) 31.0206 1.21767
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 19.3964 0.759039 0.379519 0.925184i \(-0.376089\pi\)
0.379519 + 0.925184i \(0.376089\pi\)
\(654\) 0 0
\(655\) −9.04884 15.6730i −0.353567 0.612397i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −39.8501 −1.55234 −0.776171 0.630523i \(-0.782841\pi\)
−0.776171 + 0.630523i \(0.782841\pi\)
\(660\) 0 0
\(661\) 11.4745 0.446306 0.223153 0.974783i \(-0.428365\pi\)
0.223153 + 0.974783i \(0.428365\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.13482 + 10.6258i 0.237898 + 0.412052i
\(666\) 0 0
\(667\) −2.37905 + 4.12063i −0.0921171 + 0.159551i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 9.89875 17.1451i 0.382137 0.661881i
\(672\) 0 0
\(673\) 18.3543 31.7906i 0.707506 1.22544i −0.258273 0.966072i \(-0.583154\pi\)
0.965779 0.259365i \(-0.0835132\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.57943 + 6.19976i 0.137569 + 0.238276i 0.926576 0.376108i \(-0.122738\pi\)
−0.789007 + 0.614384i \(0.789405\pi\)
\(678\) 0 0
\(679\) 12.3940 0.475637
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −13.2982 + 23.0331i −0.508841 + 0.881338i 0.491107 + 0.871099i \(0.336592\pi\)
−0.999948 + 0.0102387i \(0.996741\pi\)
\(684\) 0 0
\(685\) −10.7409 + 18.6037i −0.410387 + 0.710812i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −21.4070 6.23525i −0.815540 0.237544i
\(690\) 0 0
\(691\) 15.5581 26.9474i 0.591858 1.02513i −0.402124 0.915585i \(-0.631728\pi\)
0.993982 0.109543i \(-0.0349387\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −12.7109 −0.482154
\(696\) 0 0
\(697\) −6.59912 + 11.4300i −0.249959 + 0.432942i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 38.5419 1.45571 0.727854 0.685732i \(-0.240518\pi\)
0.727854 + 0.685732i \(0.240518\pi\)
\(702\) 0 0
\(703\) −8.26933 −0.311884
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 26.1292 45.2570i 0.982688 1.70207i
\(708\) 0 0
\(709\) 1.84079 0.0691325 0.0345662 0.999402i \(-0.488995\pi\)
0.0345662 + 0.999402i \(0.488995\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −6.44316 + 11.1599i −0.241298 + 0.417941i
\(714\) 0 0
\(715\) −8.40319 34.3134i −0.314262 1.28325i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −9.15519 + 15.8573i −0.341431 + 0.591376i −0.984699 0.174265i \(-0.944245\pi\)
0.643268 + 0.765641i \(0.277578\pi\)
\(720\) 0 0
\(721\) 20.2617 35.0943i 0.754585 1.30698i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3.78482 −0.140565
\(726\) 0 0
\(727\) −11.6183 20.1235i −0.430900 0.746340i 0.566051 0.824370i \(-0.308470\pi\)
−0.996951 + 0.0780300i \(0.975137\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 6.91032 11.9690i 0.255587 0.442691i
\(732\) 0 0
\(733\) −9.62013 + 16.6626i −0.355328 + 0.615446i −0.987174 0.159648i \(-0.948964\pi\)
0.631846 + 0.775094i \(0.282297\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −24.2943 + 42.0790i −0.894892 + 1.55000i
\(738\) 0 0
\(739\) −1.98535 3.43873i −0.0730324 0.126496i 0.827197 0.561913i \(-0.189934\pi\)
−0.900229 + 0.435417i \(0.856601\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.75177 0.211012 0.105506 0.994419i \(-0.466354\pi\)
0.105506 + 0.994419i \(0.466354\pi\)
\(744\) 0 0
\(745\) −6.03870 −0.221241
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 15.5028 + 26.8517i 0.566460 + 0.981138i
\(750\) 0 0
\(751\) −45.3603 −1.65522 −0.827610 0.561304i \(-0.810300\pi\)
−0.827610 + 0.561304i \(0.810300\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −31.1044 −1.13200
\(756\) 0 0
\(757\) 6.54346 + 11.3336i 0.237826 + 0.411927i 0.960090 0.279691i \(-0.0902319\pi\)
−0.722264 + 0.691617i \(0.756899\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −13.5091 23.3985i −0.489706 0.848195i 0.510224 0.860041i \(-0.329562\pi\)
−0.999930 + 0.0118465i \(0.996229\pi\)
\(762\) 0 0
\(763\) 32.5805 1.17949
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −4.16477 17.0063i −0.150381 0.614063i
\(768\) 0 0
\(769\) 46.2575 1.66809 0.834045 0.551697i \(-0.186019\pi\)
0.834045 + 0.551697i \(0.186019\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −20.9744 + 36.3287i −0.754397 + 1.30665i 0.191276 + 0.981536i \(0.438737\pi\)
−0.945673 + 0.325118i \(0.894596\pi\)
\(774\) 0 0
\(775\) −10.2504 −0.368205
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 13.6413 23.6273i 0.488749 0.846537i
\(780\) 0 0
\(781\) 15.5398 + 26.9158i 0.556059 + 0.963123i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −17.9837 31.1487i −0.641866 1.11174i
\(786\) 0 0
\(787\) −20.5108 35.5257i −0.731131 1.26636i −0.956400 0.292059i \(-0.905660\pi\)
0.225270 0.974296i \(-0.427674\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 11.8182 + 20.4698i 0.420207 + 0.727821i
\(792\) 0 0
\(793\) −10.7284 3.12489i −0.380977 0.110968i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 8.28106 + 14.3432i 0.293330 + 0.508063i 0.974595 0.223974i \(-0.0719031\pi\)
−0.681265 + 0.732037i \(0.738570\pi\)
\(798\) 0 0
\(799\) 2.71502 0.0960504
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −17.2735 + 29.9187i −0.609570 + 1.05581i
\(804\) 0 0
\(805\) 8.97117 15.5385i 0.316192 0.547661i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 25.0672 + 43.4176i 0.881314 + 1.52648i 0.849880 + 0.526976i \(0.176674\pi\)
0.0314339 + 0.999506i \(0.489993\pi\)
\(810\) 0 0
\(811\) −15.2618 −0.535914 −0.267957 0.963431i \(-0.586349\pi\)
−0.267957 + 0.963431i \(0.586349\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2.36684 4.09950i −0.0829070 0.143599i
\(816\) 0 0
\(817\) −14.2846 + 24.7416i −0.499753 + 0.865598i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.56075 + 4.43535i −0.0893708 + 0.154795i −0.907245 0.420602i \(-0.861819\pi\)
0.817875 + 0.575397i \(0.195152\pi\)
\(822\) 0 0
\(823\) 7.45156 + 12.9065i 0.259745 + 0.449891i 0.966174 0.257893i \(-0.0830282\pi\)
−0.706429 + 0.707784i \(0.749695\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 18.5879 0.646364 0.323182 0.946337i \(-0.395247\pi\)
0.323182 + 0.946337i \(0.395247\pi\)
\(828\) 0 0
\(829\) −10.4298 18.0650i −0.362243 0.627422i 0.626087 0.779753i \(-0.284655\pi\)
−0.988330 + 0.152331i \(0.951322\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.94724 5.10477i 0.102116 0.176870i
\(834\) 0 0
\(835\) −14.9601 + 25.9117i −0.517716 + 0.896710i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −36.0457 −1.24444 −0.622219 0.782843i \(-0.713769\pi\)
−0.622219 + 0.782843i \(0.713769\pi\)
\(840\) 0 0
\(841\) 13.4781 + 23.3447i 0.464760 + 0.804989i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −17.6834 + 9.21372i −0.608326 + 0.316962i
\(846\) 0 0
\(847\) 52.3814 + 90.7273i 1.79985 + 3.11743i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6.04627 + 10.4724i 0.207263 + 0.358991i
\(852\) 0 0
\(853\) 6.97776 + 12.0858i 0.238914 + 0.413811i 0.960403 0.278615i \(-0.0898753\pi\)
−0.721489 + 0.692426i \(0.756542\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −8.73939 15.1371i −0.298532 0.517073i 0.677268 0.735736i \(-0.263164\pi\)
−0.975800 + 0.218664i \(0.929830\pi\)
\(858\) 0 0
\(859\) −4.17576 + 7.23263i −0.142475 + 0.246774i −0.928428 0.371512i \(-0.878839\pi\)
0.785953 + 0.618286i \(0.212173\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −4.11501 −0.140077 −0.0700384 0.997544i \(-0.522312\pi\)
−0.0700384 + 0.997544i \(0.522312\pi\)
\(864\) 0 0
\(865\) −8.20635 + 14.2138i −0.279024 + 0.483284i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 30.5582 1.03662
\(870\) 0 0
\(871\) 26.3305 + 7.66935i 0.892176 + 0.259866i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 41.2276 1.39375
\(876\) 0 0
\(877\) −5.30991 9.19704i −0.179303 0.310562i 0.762339 0.647178i \(-0.224051\pi\)
−0.941642 + 0.336616i \(0.890718\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −15.0048 25.9891i −0.505525 0.875595i −0.999980 0.00639173i \(-0.997965\pi\)
0.494454 0.869204i \(-0.335368\pi\)
\(882\) 0 0
\(883\) 21.3674 0.719072 0.359536 0.933131i \(-0.382935\pi\)
0.359536 + 0.933131i \(0.382935\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −40.3161 −1.35368 −0.676841 0.736129i \(-0.736652\pi\)
−0.676841 + 0.736129i \(0.736652\pi\)
\(888\) 0 0
\(889\) −26.7581 46.3464i −0.897437 1.55441i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −5.61230 −0.187808
\(894\) 0 0
\(895\) 3.49917 0.116964
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.76774 4.79387i −0.0923094 0.159884i
\(900\) 0 0
\(901\) 3.40427 5.89637i 0.113413 0.196436i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7.88051 + 13.6494i −0.261957 + 0.453723i
\(906\) 0 0
\(907\) −7.39556 + 12.8095i −0.245566 + 0.425332i −0.962290 0.272024i \(-0.912307\pi\)
0.716725 + 0.697356i \(0.245640\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 16.1529 + 27.9777i 0.535170 + 0.926942i 0.999155 + 0.0410987i \(0.0130858\pi\)
−0.463985 + 0.885843i \(0.653581\pi\)
\(912\) 0 0
\(913\) 40.8310 1.35131
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 20.7356 35.9150i 0.684748 1.18602i
\(918\) 0 0
\(919\) 18.5950 32.2075i 0.613392 1.06243i −0.377272 0.926103i \(-0.623138\pi\)
0.990664 0.136324i \(-0.0435289\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 12.6696 12.1330i 0.417026 0.399364i
\(924\) 0 0
\(925\) −4.80949 + 8.33029i −0.158135 + 0.273898i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −15.2044 −0.498841 −0.249421 0.968395i \(-0.580240\pi\)
−0.249421 + 0.968395i \(0.580240\pi\)
\(930\) 0 0
\(931\) −6.09234 + 10.5522i −0.199668 + 0.345836i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 10.7877 0.352795
\(936\) 0 0
\(937\) 56.1934 1.83576 0.917880 0.396859i \(-0.129900\pi\)
0.917880 + 0.396859i \(0.129900\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −15.6111 + 27.0393i −0.508909 + 0.881455i 0.491038 + 0.871138i \(0.336618\pi\)
−0.999947 + 0.0103174i \(0.996716\pi\)
\(942\) 0 0
\(943\) −39.8962 −1.29920
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −20.3364 + 35.2236i −0.660843 + 1.14461i 0.319552 + 0.947569i \(0.396468\pi\)
−0.980395 + 0.197044i \(0.936866\pi\)
\(948\) 0 0
\(949\) 18.7213 + 5.45300i 0.607720 + 0.177012i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.35525 + 2.34736i −0.0439008 + 0.0760384i −0.887141 0.461499i \(-0.847312\pi\)
0.843240 + 0.537537i \(0.180645\pi\)
\(954\) 0 0
\(955\) 18.1205 31.3857i 0.586367 1.01562i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −49.2257 −1.58958
\(960\) 0 0
\(961\) 8.00414 + 13.8636i 0.258198 + 0.447212i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −8.46634 + 14.6641i −0.272541 + 0.472055i
\(966\) 0 0
\(967\) −2.04491 + 3.54189i −0.0657600 + 0.113900i −0.897031 0.441968i \(-0.854280\pi\)
0.831271 + 0.555868i \(0.187614\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 6.04999 10.4789i 0.194153 0.336283i −0.752469 0.658627i \(-0.771137\pi\)
0.946623 + 0.322344i \(0.104471\pi\)
\(972\) 0 0
\(973\) −14.5637 25.2250i −0.466890 0.808677i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −7.64951 −0.244729 −0.122365 0.992485i \(-0.539048\pi\)
−0.122365 + 0.992485i \(0.539048\pi\)
\(978\) 0 0
\(979\) 54.3344 1.73654
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −25.0980 43.4711i −0.800503 1.38651i −0.919286 0.393591i \(-0.871233\pi\)
0.118783 0.992920i \(-0.462101\pi\)
\(984\) 0 0
\(985\) 13.7332 0.437576
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 41.7776 1.32845
\(990\) 0 0
\(991\) −21.7547 37.6803i −0.691062 1.19695i −0.971490 0.237079i \(-0.923810\pi\)
0.280428 0.959875i \(-0.409523\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 17.9075 + 31.0167i 0.567705 + 0.983294i
\(996\) 0 0
\(997\) −30.2028 −0.956532 −0.478266 0.878215i \(-0.658735\pi\)
−0.478266 + 0.878215i \(0.658735\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2808.2.s.f.1225.8 40
3.2 odd 2 936.2.s.f.913.17 yes 40
9.2 odd 6 936.2.r.f.601.11 40
9.7 even 3 2808.2.r.f.289.8 40
13.9 even 3 2808.2.r.f.2089.8 40
39.35 odd 6 936.2.r.f.841.11 yes 40
117.61 even 3 inner 2808.2.s.f.1153.8 40
117.74 odd 6 936.2.s.f.529.17 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.r.f.601.11 40 9.2 odd 6
936.2.r.f.841.11 yes 40 39.35 odd 6
936.2.s.f.529.17 yes 40 117.74 odd 6
936.2.s.f.913.17 yes 40 3.2 odd 2
2808.2.r.f.289.8 40 9.7 even 3
2808.2.r.f.2089.8 40 13.9 even 3
2808.2.s.f.1153.8 40 117.61 even 3 inner
2808.2.s.f.1225.8 40 1.1 even 1 trivial