Properties

Label 2808.2.r.f.289.8
Level $2808$
Weight $2$
Character 2808.289
Analytic conductor $22.422$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2808,2,Mod(289,2808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2808, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2808.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2808 = 2^{3} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2808.r (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,-1,0,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4219928876\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 936)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.8
Character \(\chi\) \(=\) 2808.289
Dual form 2808.2.r.f.2089.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.766914 - 1.32833i) q^{5} +(1.75740 + 3.04390i) q^{7} -6.38798 q^{11} +(2.60406 - 2.49377i) q^{13} +(0.550501 - 0.953495i) q^{17} +(-1.13796 + 1.97100i) q^{19} +(-1.66408 + 2.88227i) q^{23} +(1.32369 - 2.29269i) q^{25} +1.42965 q^{29} +(-1.93596 - 3.35318i) q^{31} +(2.69554 - 4.66881i) q^{35} +(1.81670 + 3.14662i) q^{37} +(5.99374 - 10.3815i) q^{41} +(-6.27640 - 10.8710i) q^{43} +(1.23298 - 2.13558i) q^{47} +(-2.67688 + 4.63648i) q^{49} +6.18395 q^{53} +(4.89903 + 8.48537i) q^{55} -4.85609 q^{59} +(-1.54959 - 2.68397i) q^{61} +(-5.30965 - 1.54655i) q^{65} +(3.80313 - 6.58721i) q^{67} +(-2.43267 + 4.21351i) q^{71} -5.40814 q^{73} +(-11.2262 - 19.4444i) q^{77} +(2.39185 - 4.14281i) q^{79} +(3.19592 - 5.53550i) q^{83} -1.68875 q^{85} +(4.25286 + 7.36618i) q^{89} +(12.1671 + 3.54395i) q^{91} +3.49086 q^{95} +(1.76312 + 3.05381i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - q^{5} + 7 q^{7} + q^{17} + 2 q^{19} + q^{23} - 23 q^{25} + 24 q^{29} + 8 q^{31} + 12 q^{35} + 18 q^{37} + 3 q^{41} + 8 q^{43} - 4 q^{47} - 23 q^{49} + 40 q^{53} - 14 q^{55} - 8 q^{59} - 3 q^{61}+ \cdots + 35 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2808\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(1081\) \(1405\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.766914 1.32833i −0.342974 0.594049i 0.642009 0.766697i \(-0.278101\pi\)
−0.984984 + 0.172648i \(0.944768\pi\)
\(6\) 0 0
\(7\) 1.75740 + 3.04390i 0.664233 + 1.15049i 0.979493 + 0.201480i \(0.0645750\pi\)
−0.315260 + 0.949005i \(0.602092\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −6.38798 −1.92605 −0.963024 0.269414i \(-0.913170\pi\)
−0.963024 + 0.269414i \(0.913170\pi\)
\(12\) 0 0
\(13\) 2.60406 2.49377i 0.722236 0.691647i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.550501 0.953495i 0.133516 0.231256i −0.791514 0.611152i \(-0.790707\pi\)
0.925030 + 0.379895i \(0.124040\pi\)
\(18\) 0 0
\(19\) −1.13796 + 1.97100i −0.261065 + 0.452179i −0.966525 0.256571i \(-0.917407\pi\)
0.705460 + 0.708750i \(0.250741\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.66408 + 2.88227i −0.346984 + 0.600994i −0.985712 0.168439i \(-0.946128\pi\)
0.638728 + 0.769432i \(0.279461\pi\)
\(24\) 0 0
\(25\) 1.32369 2.29269i 0.264737 0.458538i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.42965 0.265479 0.132740 0.991151i \(-0.457623\pi\)
0.132740 + 0.991151i \(0.457623\pi\)
\(30\) 0 0
\(31\) −1.93596 3.35318i −0.347708 0.602248i 0.638134 0.769926i \(-0.279707\pi\)
−0.985842 + 0.167677i \(0.946373\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.69554 4.66881i 0.455630 0.789174i
\(36\) 0 0
\(37\) 1.81670 + 3.14662i 0.298664 + 0.517302i 0.975831 0.218528i \(-0.0701256\pi\)
−0.677166 + 0.735830i \(0.736792\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.99374 10.3815i 0.936065 1.62131i 0.163342 0.986570i \(-0.447773\pi\)
0.772723 0.634743i \(-0.218894\pi\)
\(42\) 0 0
\(43\) −6.27640 10.8710i −0.957142 1.65782i −0.729389 0.684099i \(-0.760195\pi\)
−0.227753 0.973719i \(-0.573138\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.23298 2.13558i 0.179848 0.311506i −0.761980 0.647600i \(-0.775773\pi\)
0.941828 + 0.336094i \(0.109106\pi\)
\(48\) 0 0
\(49\) −2.67688 + 4.63648i −0.382411 + 0.662355i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.18395 0.849431 0.424716 0.905327i \(-0.360374\pi\)
0.424716 + 0.905327i \(0.360374\pi\)
\(54\) 0 0
\(55\) 4.89903 + 8.48537i 0.660585 + 1.14417i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.85609 −0.632209 −0.316104 0.948724i \(-0.602375\pi\)
−0.316104 + 0.948724i \(0.602375\pi\)
\(60\) 0 0
\(61\) −1.54959 2.68397i −0.198405 0.343647i 0.749607 0.661884i \(-0.230243\pi\)
−0.948011 + 0.318237i \(0.896909\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5.30965 1.54655i −0.658580 0.191826i
\(66\) 0 0
\(67\) 3.80313 6.58721i 0.464626 0.804756i −0.534559 0.845131i \(-0.679522\pi\)
0.999185 + 0.0403756i \(0.0128554\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −2.43267 + 4.21351i −0.288705 + 0.500051i −0.973501 0.228683i \(-0.926558\pi\)
0.684796 + 0.728735i \(0.259891\pi\)
\(72\) 0 0
\(73\) −5.40814 −0.632975 −0.316487 0.948597i \(-0.602504\pi\)
−0.316487 + 0.948597i \(0.602504\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −11.2262 19.4444i −1.27934 2.21589i
\(78\) 0 0
\(79\) 2.39185 4.14281i 0.269104 0.466102i −0.699527 0.714607i \(-0.746606\pi\)
0.968631 + 0.248505i \(0.0799391\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.19592 5.53550i 0.350798 0.607600i −0.635591 0.772026i \(-0.719244\pi\)
0.986390 + 0.164425i \(0.0525770\pi\)
\(84\) 0 0
\(85\) −1.68875 −0.183170
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.25286 + 7.36618i 0.450803 + 0.780813i 0.998436 0.0559053i \(-0.0178045\pi\)
−0.547633 + 0.836718i \(0.684471\pi\)
\(90\) 0 0
\(91\) 12.1671 + 3.54395i 1.27546 + 0.371507i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.49086 0.358155
\(96\) 0 0
\(97\) 1.76312 + 3.05381i 0.179017 + 0.310067i 0.941544 0.336889i \(-0.109375\pi\)
−0.762527 + 0.646956i \(0.776042\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 14.8681 1.47943 0.739717 0.672918i \(-0.234959\pi\)
0.739717 + 0.672918i \(0.234959\pi\)
\(102\) 0 0
\(103\) −5.76469 9.98474i −0.568012 0.983826i −0.996762 0.0804029i \(-0.974379\pi\)
0.428750 0.903423i \(-0.358954\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.41074 7.63962i −0.426402 0.738550i 0.570148 0.821542i \(-0.306886\pi\)
−0.996550 + 0.0829919i \(0.973552\pi\)
\(108\) 0 0
\(109\) −9.26955 −0.887862 −0.443931 0.896061i \(-0.646416\pi\)
−0.443931 + 0.896061i \(0.646416\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.72485 0.632621 0.316310 0.948656i \(-0.397556\pi\)
0.316310 + 0.948656i \(0.397556\pi\)
\(114\) 0 0
\(115\) 5.10481 0.476026
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.86979 0.354743
\(120\) 0 0
\(121\) 29.8063 2.70966
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.7298 −1.04914
\(126\) 0 0
\(127\) 7.61299 + 13.1861i 0.675544 + 1.17008i 0.976310 + 0.216378i \(0.0694245\pi\)
−0.300766 + 0.953698i \(0.597242\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.89951 10.2183i −0.515443 0.892773i −0.999839 0.0179247i \(-0.994294\pi\)
0.484396 0.874849i \(-0.339039\pi\)
\(132\) 0 0
\(133\) −7.99937 −0.693633
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −7.00266 12.1290i −0.598277 1.03625i −0.993075 0.117479i \(-0.962519\pi\)
0.394798 0.918768i \(-0.370815\pi\)
\(138\) 0 0
\(139\) −8.28707 −0.702900 −0.351450 0.936207i \(-0.614311\pi\)
−0.351450 + 0.936207i \(0.614311\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −16.6347 + 15.9301i −1.39106 + 1.33215i
\(144\) 0 0
\(145\) −1.09642 1.89905i −0.0910526 0.157708i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.93701 −0.322533 −0.161266 0.986911i \(-0.551558\pi\)
−0.161266 + 0.986911i \(0.551558\pi\)
\(150\) 0 0
\(151\) 10.1395 17.5621i 0.825138 1.42918i −0.0766753 0.997056i \(-0.524430\pi\)
0.901814 0.432125i \(-0.142236\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.96943 + 5.14320i −0.238510 + 0.413111i
\(156\) 0 0
\(157\) −11.7247 20.3078i −0.935735 1.62074i −0.773319 0.634017i \(-0.781405\pi\)
−0.162416 0.986722i \(-0.551929\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −11.6978 −0.921913
\(162\) 0 0
\(163\) −1.54310 + 2.67272i −0.120865 + 0.209344i −0.920109 0.391663i \(-0.871900\pi\)
0.799244 + 0.601006i \(0.205233\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −9.75344 + 16.8935i −0.754744 + 1.30726i 0.190757 + 0.981637i \(0.438906\pi\)
−0.945501 + 0.325618i \(0.894428\pi\)
\(168\) 0 0
\(169\) 0.562232 12.9878i 0.0432486 0.999064i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −5.35024 9.26689i −0.406771 0.704549i 0.587754 0.809039i \(-0.300012\pi\)
−0.994526 + 0.104491i \(0.966679\pi\)
\(174\) 0 0
\(175\) 9.30496 0.703389
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.14067 1.97569i −0.0852574 0.147670i 0.820243 0.572015i \(-0.193838\pi\)
−0.905501 + 0.424344i \(0.860505\pi\)
\(180\) 0 0
\(181\) 10.2756 0.763780 0.381890 0.924208i \(-0.375273\pi\)
0.381890 + 0.924208i \(0.375273\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.78651 4.82638i 0.204868 0.354842i
\(186\) 0 0
\(187\) −3.51659 + 6.09091i −0.257158 + 0.445411i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.8139 + 20.4623i 0.854826 + 1.48060i 0.876806 + 0.480844i \(0.159670\pi\)
−0.0219799 + 0.999758i \(0.506997\pi\)
\(192\) 0 0
\(193\) −5.51975 + 9.56048i −0.397320 + 0.688178i −0.993394 0.114751i \(-0.963393\pi\)
0.596074 + 0.802929i \(0.296726\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4.47677 7.75399i −0.318957 0.552449i 0.661314 0.750109i \(-0.269999\pi\)
−0.980271 + 0.197660i \(0.936666\pi\)
\(198\) 0 0
\(199\) 11.6750 20.2217i 0.827620 1.43348i −0.0722797 0.997384i \(-0.523027\pi\)
0.899900 0.436096i \(-0.143639\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.51246 + 4.35171i 0.176340 + 0.305430i
\(204\) 0 0
\(205\) −18.3867 −1.28419
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 7.26925 12.5907i 0.502825 0.870918i
\(210\) 0 0
\(211\) 0.0859803 0.148922i 0.00591913 0.0102522i −0.863051 0.505117i \(-0.831449\pi\)
0.868970 + 0.494865i \(0.164783\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −9.62691 + 16.6743i −0.656550 + 1.13718i
\(216\) 0 0
\(217\) 6.80449 11.7857i 0.461919 0.800066i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.944261 3.85578i −0.0635179 0.259368i
\(222\) 0 0
\(223\) −1.62625 −0.108902 −0.0544510 0.998516i \(-0.517341\pi\)
−0.0544510 + 0.998516i \(0.517341\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −11.2694 19.5192i −0.747979 1.29554i −0.948790 0.315908i \(-0.897691\pi\)
0.200811 0.979630i \(-0.435642\pi\)
\(228\) 0 0
\(229\) −12.0818 20.9263i −0.798389 1.38285i −0.920665 0.390354i \(-0.872353\pi\)
0.122276 0.992496i \(-0.460981\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −16.4919 −1.08042 −0.540211 0.841530i \(-0.681656\pi\)
−0.540211 + 0.841530i \(0.681656\pi\)
\(234\) 0 0
\(235\) −3.78235 −0.246733
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5.24014 + 9.07618i 0.338956 + 0.587089i 0.984237 0.176856i \(-0.0565928\pi\)
−0.645280 + 0.763946i \(0.723259\pi\)
\(240\) 0 0
\(241\) −11.5900 20.0745i −0.746577 1.29311i −0.949454 0.313905i \(-0.898363\pi\)
0.202877 0.979204i \(-0.434971\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 8.21173 0.524628
\(246\) 0 0
\(247\) 1.95191 + 7.97040i 0.124197 + 0.507145i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 10.1392 17.5616i 0.639979 1.10848i −0.345458 0.938434i \(-0.612276\pi\)
0.985437 0.170042i \(-0.0543904\pi\)
\(252\) 0 0
\(253\) 10.6301 18.4119i 0.668308 1.15754i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −0.362989 + 0.628715i −0.0226426 + 0.0392182i −0.877125 0.480263i \(-0.840541\pi\)
0.854482 + 0.519481i \(0.173875\pi\)
\(258\) 0 0
\(259\) −6.38534 + 11.0597i −0.396765 + 0.687218i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 9.62127 0.593273 0.296637 0.954990i \(-0.404135\pi\)
0.296637 + 0.954990i \(0.404135\pi\)
\(264\) 0 0
\(265\) −4.74256 8.21435i −0.291333 0.504604i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6.12405 10.6072i 0.373390 0.646731i −0.616695 0.787202i \(-0.711529\pi\)
0.990085 + 0.140472i \(0.0448620\pi\)
\(270\) 0 0
\(271\) 2.64462 + 4.58062i 0.160650 + 0.278253i 0.935102 0.354379i \(-0.115308\pi\)
−0.774452 + 0.632632i \(0.781974\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8.45568 + 14.6457i −0.509897 + 0.883167i
\(276\) 0 0
\(277\) −2.96456 5.13476i −0.178123 0.308518i 0.763115 0.646263i \(-0.223669\pi\)
−0.941238 + 0.337745i \(0.890336\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −16.2879 + 28.2115i −0.971654 + 1.68295i −0.281094 + 0.959680i \(0.590697\pi\)
−0.690561 + 0.723275i \(0.742636\pi\)
\(282\) 0 0
\(283\) −9.27398 + 16.0630i −0.551281 + 0.954847i 0.446902 + 0.894583i \(0.352527\pi\)
−0.998183 + 0.0602634i \(0.980806\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 42.1335 2.48706
\(288\) 0 0
\(289\) 7.89390 + 13.6726i 0.464347 + 0.804273i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 17.9848 1.05069 0.525343 0.850891i \(-0.323937\pi\)
0.525343 + 0.850891i \(0.323937\pi\)
\(294\) 0 0
\(295\) 3.72420 + 6.45051i 0.216831 + 0.375563i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.85435 + 11.6554i 0.165071 + 0.674050i
\(300\) 0 0
\(301\) 22.0602 38.2094i 1.27153 2.20236i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.37680 + 4.11675i −0.136095 + 0.235724i
\(306\) 0 0
\(307\) 14.0831 0.803768 0.401884 0.915691i \(-0.368356\pi\)
0.401884 + 0.915691i \(0.368356\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −15.3440 26.5767i −0.870081 1.50702i −0.861912 0.507058i \(-0.830733\pi\)
−0.00816904 0.999967i \(-0.502600\pi\)
\(312\) 0 0
\(313\) −5.48343 + 9.49757i −0.309942 + 0.536835i −0.978349 0.206961i \(-0.933643\pi\)
0.668408 + 0.743795i \(0.266976\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.15353 1.99797i 0.0647885 0.112217i −0.831812 0.555058i \(-0.812696\pi\)
0.896600 + 0.442841i \(0.146029\pi\)
\(318\) 0 0
\(319\) −9.13258 −0.511326
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.25289 + 2.17007i 0.0697128 + 0.120746i
\(324\) 0 0
\(325\) −2.27049 9.27127i −0.125944 0.514278i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 8.66730 0.477844
\(330\) 0 0
\(331\) 16.8249 + 29.1416i 0.924780 + 1.60177i 0.791914 + 0.610632i \(0.209085\pi\)
0.132866 + 0.991134i \(0.457582\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −11.6667 −0.637419
\(336\) 0 0
\(337\) 6.88906 + 11.9322i 0.375271 + 0.649988i 0.990368 0.138464i \(-0.0442164\pi\)
−0.615097 + 0.788452i \(0.710883\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 12.3669 + 21.4200i 0.669703 + 1.15996i
\(342\) 0 0
\(343\) 5.78622 0.312427
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.32520 −0.339555 −0.169777 0.985482i \(-0.554305\pi\)
−0.169777 + 0.985482i \(0.554305\pi\)
\(348\) 0 0
\(349\) 13.3337 0.713736 0.356868 0.934155i \(-0.383845\pi\)
0.356868 + 0.934155i \(0.383845\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 25.2494 1.34389 0.671945 0.740601i \(-0.265459\pi\)
0.671945 + 0.740601i \(0.265459\pi\)
\(354\) 0 0
\(355\) 7.46259 0.396073
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.22423 −0.0646123 −0.0323062 0.999478i \(-0.510285\pi\)
−0.0323062 + 0.999478i \(0.510285\pi\)
\(360\) 0 0
\(361\) 6.91010 + 11.9687i 0.363690 + 0.629929i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.14758 + 7.18381i 0.217094 + 0.376018i
\(366\) 0 0
\(367\) −14.2000 −0.741233 −0.370617 0.928786i \(-0.620854\pi\)
−0.370617 + 0.928786i \(0.620854\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 10.8676 + 18.8233i 0.564220 + 0.977258i
\(372\) 0 0
\(373\) −16.7767 −0.868666 −0.434333 0.900752i \(-0.643016\pi\)
−0.434333 + 0.900752i \(0.643016\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.72289 3.56522i 0.191739 0.183618i
\(378\) 0 0
\(379\) 18.3934 + 31.8583i 0.944807 + 1.63645i 0.756138 + 0.654413i \(0.227084\pi\)
0.188669 + 0.982041i \(0.439583\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −15.3260 −0.783121 −0.391561 0.920152i \(-0.628065\pi\)
−0.391561 + 0.920152i \(0.628065\pi\)
\(384\) 0 0
\(385\) −17.2191 + 29.8243i −0.877565 + 1.51999i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4.10671 + 7.11304i −0.208219 + 0.360645i −0.951153 0.308718i \(-0.900100\pi\)
0.742935 + 0.669364i \(0.233433\pi\)
\(390\) 0 0
\(391\) 1.83215 + 3.17338i 0.0926558 + 0.160485i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7.33737 −0.369183
\(396\) 0 0
\(397\) −12.3499 + 21.3906i −0.619822 + 1.07356i 0.369695 + 0.929153i \(0.379462\pi\)
−0.989518 + 0.144411i \(0.953871\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.92365 11.9921i 0.345750 0.598857i −0.639739 0.768592i \(-0.720958\pi\)
0.985490 + 0.169735i \(0.0542911\pi\)
\(402\) 0 0
\(403\) −13.4034 3.90404i −0.667671 0.194474i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −11.6051 20.1006i −0.575242 0.996349i
\(408\) 0 0
\(409\) 18.6508 0.922222 0.461111 0.887342i \(-0.347451\pi\)
0.461111 + 0.887342i \(0.347451\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −8.53407 14.7814i −0.419934 0.727347i
\(414\) 0 0
\(415\) −9.80399 −0.481259
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −7.87761 + 13.6444i −0.384846 + 0.666574i −0.991748 0.128203i \(-0.959079\pi\)
0.606901 + 0.794777i \(0.292412\pi\)
\(420\) 0 0
\(421\) −7.16989 + 12.4186i −0.349439 + 0.605246i −0.986150 0.165856i \(-0.946961\pi\)
0.636711 + 0.771103i \(0.280295\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.45738 2.52426i −0.0706933 0.122444i
\(426\) 0 0
\(427\) 5.44648 9.43359i 0.263574 0.456523i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4.49274 7.78165i −0.216408 0.374829i 0.737300 0.675566i \(-0.236101\pi\)
−0.953707 + 0.300737i \(0.902767\pi\)
\(432\) 0 0
\(433\) −13.8669 + 24.0182i −0.666401 + 1.15424i 0.312503 + 0.949917i \(0.398833\pi\)
−0.978904 + 0.204323i \(0.934501\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.78730 6.55979i −0.181171 0.313797i
\(438\) 0 0
\(439\) 5.95194 0.284071 0.142035 0.989862i \(-0.454635\pi\)
0.142035 + 0.989862i \(0.454635\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5.66685 9.81526i 0.269240 0.466337i −0.699426 0.714705i \(-0.746561\pi\)
0.968666 + 0.248368i \(0.0798942\pi\)
\(444\) 0 0
\(445\) 6.52316 11.2984i 0.309227 0.535598i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.47394 + 11.2132i −0.305524 + 0.529183i −0.977378 0.211501i \(-0.932165\pi\)
0.671854 + 0.740684i \(0.265498\pi\)
\(450\) 0 0
\(451\) −38.2879 + 66.3166i −1.80291 + 3.12273i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4.62360 18.8799i −0.216758 0.885104i
\(456\) 0 0
\(457\) −19.3479 −0.905058 −0.452529 0.891750i \(-0.649478\pi\)
−0.452529 + 0.891750i \(0.649478\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 17.3986 + 30.1353i 0.810334 + 1.40354i 0.912631 + 0.408785i \(0.134047\pi\)
−0.102297 + 0.994754i \(0.532619\pi\)
\(462\) 0 0
\(463\) 13.0277 + 22.5647i 0.605450 + 1.04867i 0.991980 + 0.126394i \(0.0403402\pi\)
−0.386530 + 0.922277i \(0.626326\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 39.3170 1.81937 0.909686 0.415296i \(-0.136322\pi\)
0.909686 + 0.415296i \(0.136322\pi\)
\(468\) 0 0
\(469\) 26.7344 1.23448
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 40.0935 + 69.4440i 1.84350 + 3.19304i
\(474\) 0 0
\(475\) 3.01260 + 5.21797i 0.138228 + 0.239417i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −24.7294 −1.12991 −0.564957 0.825120i \(-0.691107\pi\)
−0.564957 + 0.825120i \(0.691107\pi\)
\(480\) 0 0
\(481\) 12.5778 + 3.66355i 0.573496 + 0.167044i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.70432 4.68401i 0.122797 0.212690i
\(486\) 0 0
\(487\) 15.5768 26.9798i 0.705853 1.22257i −0.260530 0.965466i \(-0.583897\pi\)
0.966383 0.257107i \(-0.0827694\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −0.824435 + 1.42796i −0.0372062 + 0.0644431i −0.884029 0.467432i \(-0.845179\pi\)
0.846823 + 0.531875i \(0.178513\pi\)
\(492\) 0 0
\(493\) 0.787023 1.36316i 0.0354457 0.0613938i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −17.1006 −0.767069
\(498\) 0 0
\(499\) −21.3882 37.0455i −0.957468 1.65838i −0.728618 0.684921i \(-0.759837\pi\)
−0.228850 0.973462i \(-0.573496\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 19.6416 34.0203i 0.875777 1.51689i 0.0198439 0.999803i \(-0.493683\pi\)
0.855933 0.517087i \(-0.172984\pi\)
\(504\) 0 0
\(505\) −11.4026 19.7498i −0.507408 0.878856i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6.02885 10.4423i 0.267224 0.462846i −0.700920 0.713240i \(-0.747227\pi\)
0.968144 + 0.250394i \(0.0805602\pi\)
\(510\) 0 0
\(511\) −9.50424 16.4618i −0.420443 0.728228i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8.84205 + 15.3149i −0.389627 + 0.674854i
\(516\) 0 0
\(517\) −7.87623 + 13.6420i −0.346396 + 0.599976i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −16.6196 −0.728116 −0.364058 0.931376i \(-0.618609\pi\)
−0.364058 + 0.931376i \(0.618609\pi\)
\(522\) 0 0
\(523\) −0.621458 1.07640i −0.0271745 0.0470676i 0.852118 0.523349i \(-0.175318\pi\)
−0.879293 + 0.476282i \(0.841984\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4.26298 −0.185698
\(528\) 0 0
\(529\) 5.96170 + 10.3260i 0.259204 + 0.448955i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −10.2809 41.9809i −0.445316 1.81840i
\(534\) 0 0
\(535\) −6.76531 + 11.7179i −0.292490 + 0.506607i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 17.0998 29.6178i 0.736542 1.27573i
\(540\) 0 0
\(541\) −41.8105 −1.79757 −0.898787 0.438386i \(-0.855550\pi\)
−0.898787 + 0.438386i \(0.855550\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.10895 + 12.3131i 0.304514 + 0.527433i
\(546\) 0 0
\(547\) −0.266912 + 0.462305i −0.0114123 + 0.0197668i −0.871675 0.490084i \(-0.836966\pi\)
0.860263 + 0.509851i \(0.170299\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.62688 + 2.81784i −0.0693075 + 0.120044i
\(552\) 0 0
\(553\) 16.8137 0.714991
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −3.96368 6.86530i −0.167947 0.290892i 0.769751 0.638344i \(-0.220380\pi\)
−0.937698 + 0.347452i \(0.887047\pi\)
\(558\) 0 0
\(559\) −43.4540 12.6569i −1.83791 0.535331i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −31.1732 −1.31379 −0.656897 0.753980i \(-0.728131\pi\)
−0.656897 + 0.753980i \(0.728131\pi\)
\(564\) 0 0
\(565\) −5.15738 8.93284i −0.216973 0.375808i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −21.0506 −0.882488 −0.441244 0.897387i \(-0.645463\pi\)
−0.441244 + 0.897387i \(0.645463\pi\)
\(570\) 0 0
\(571\) −2.80025 4.85017i −0.117187 0.202973i 0.801465 0.598042i \(-0.204054\pi\)
−0.918652 + 0.395068i \(0.870721\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.40543 + 7.63043i 0.183719 + 0.318211i
\(576\) 0 0
\(577\) −30.6676 −1.27671 −0.638355 0.769742i \(-0.720385\pi\)
−0.638355 + 0.769742i \(0.720385\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 22.4660 0.932047
\(582\) 0 0
\(583\) −39.5030 −1.63605
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 31.4657 1.29873 0.649364 0.760477i \(-0.275035\pi\)
0.649364 + 0.760477i \(0.275035\pi\)
\(588\) 0 0
\(589\) 8.81215 0.363098
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −0.583862 −0.0239763 −0.0119882 0.999928i \(-0.503816\pi\)
−0.0119882 + 0.999928i \(0.503816\pi\)
\(594\) 0 0
\(595\) −2.96779 5.14037i −0.121668 0.210735i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 12.5346 + 21.7106i 0.512150 + 0.887069i 0.999901 + 0.0140866i \(0.00448405\pi\)
−0.487751 + 0.872983i \(0.662183\pi\)
\(600\) 0 0
\(601\) 15.5243 0.633249 0.316625 0.948551i \(-0.397450\pi\)
0.316625 + 0.948551i \(0.397450\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −22.8589 39.5927i −0.929345 1.60967i
\(606\) 0 0
\(607\) 30.8883 1.25372 0.626858 0.779134i \(-0.284341\pi\)
0.626858 + 0.779134i \(0.284341\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.11490 8.63592i −0.0855595 0.349372i
\(612\) 0 0
\(613\) 15.1558 + 26.2506i 0.612138 + 1.06025i 0.990879 + 0.134751i \(0.0430235\pi\)
−0.378742 + 0.925502i \(0.623643\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −11.9498 −0.481083 −0.240541 0.970639i \(-0.577325\pi\)
−0.240541 + 0.970639i \(0.577325\pi\)
\(618\) 0 0
\(619\) −11.3093 + 19.5884i −0.454561 + 0.787323i −0.998663 0.0516965i \(-0.983537\pi\)
0.544102 + 0.839019i \(0.316870\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −14.9479 + 25.8906i −0.598876 + 1.03728i
\(624\) 0 0
\(625\) 2.37728 + 4.11756i 0.0950911 + 0.164703i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4.00039 0.159506
\(630\) 0 0
\(631\) 2.92924 5.07359i 0.116611 0.201976i −0.801811 0.597577i \(-0.796130\pi\)
0.918423 + 0.395601i \(0.129464\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 11.6770 20.2252i 0.463388 0.802612i
\(636\) 0 0
\(637\) 4.59158 + 18.7492i 0.181925 + 0.742870i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −6.94265 12.0250i −0.274218 0.474960i 0.695719 0.718314i \(-0.255086\pi\)
−0.969938 + 0.243354i \(0.921752\pi\)
\(642\) 0 0
\(643\) 27.9811 1.10347 0.551734 0.834020i \(-0.313966\pi\)
0.551734 + 0.834020i \(0.313966\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −13.4477 23.2920i −0.528682 0.915705i −0.999441 0.0334425i \(-0.989353\pi\)
0.470758 0.882262i \(-0.343980\pi\)
\(648\) 0 0
\(649\) 31.0206 1.21767
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −9.69819 + 16.7978i −0.379519 + 0.657347i −0.990992 0.133918i \(-0.957244\pi\)
0.611473 + 0.791265i \(0.290577\pi\)
\(654\) 0 0
\(655\) −9.04884 + 15.6730i −0.353567 + 0.612397i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 19.9251 + 34.5112i 0.776171 + 1.34437i 0.934134 + 0.356922i \(0.116174\pi\)
−0.157963 + 0.987445i \(0.550493\pi\)
\(660\) 0 0
\(661\) −5.73725 + 9.93720i −0.223153 + 0.386512i −0.955764 0.294136i \(-0.904968\pi\)
0.732611 + 0.680648i \(0.238302\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.13482 + 10.6258i 0.237898 + 0.412052i
\(666\) 0 0
\(667\) −2.37905 + 4.12063i −0.0921171 + 0.159551i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 9.89875 + 17.1451i 0.382137 + 0.661881i
\(672\) 0 0
\(673\) −36.7086 −1.41501 −0.707506 0.706707i \(-0.750180\pi\)
−0.707506 + 0.706707i \(0.750180\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.57943 6.19976i 0.137569 0.238276i −0.789007 0.614384i \(-0.789405\pi\)
0.926576 + 0.376108i \(0.122738\pi\)
\(678\) 0 0
\(679\) −6.19698 + 10.7335i −0.237818 + 0.411914i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −13.2982 + 23.0331i −0.508841 + 0.881338i 0.491107 + 0.871099i \(0.336592\pi\)
−0.999948 + 0.0102387i \(0.996741\pi\)
\(684\) 0 0
\(685\) −10.7409 + 18.6037i −0.410387 + 0.710812i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 16.1034 15.4214i 0.613490 0.587507i
\(690\) 0 0
\(691\) −31.1162 −1.18372 −0.591858 0.806042i \(-0.701605\pi\)
−0.591858 + 0.806042i \(0.701605\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.35547 + 11.0080i 0.241077 + 0.417557i
\(696\) 0 0
\(697\) −6.59912 11.4300i −0.249959 0.432942i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 38.5419 1.45571 0.727854 0.685732i \(-0.240518\pi\)
0.727854 + 0.685732i \(0.240518\pi\)
\(702\) 0 0
\(703\) −8.26933 −0.311884
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 26.1292 + 45.2570i 0.982688 + 1.70207i
\(708\) 0 0
\(709\) −0.920397 1.59417i −0.0345662 0.0598705i 0.848225 0.529636i \(-0.177672\pi\)
−0.882791 + 0.469766i \(0.844338\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 12.8863 0.482597
\(714\) 0 0
\(715\) 33.9179 + 9.87934i 1.26846 + 0.369466i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −9.15519 + 15.8573i −0.341431 + 0.591376i −0.984699 0.174265i \(-0.944245\pi\)
0.643268 + 0.765641i \(0.277578\pi\)
\(720\) 0 0
\(721\) 20.2617 35.0943i 0.754585 1.30698i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.89241 3.27775i 0.0702823 0.121732i
\(726\) 0 0
\(727\) −11.6183 + 20.1235i −0.430900 + 0.746340i −0.996951 0.0780300i \(-0.975137\pi\)
0.566051 + 0.824370i \(0.308470\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −13.8206 −0.511175
\(732\) 0 0
\(733\) −9.62013 16.6626i −0.355328 0.615446i 0.631846 0.775094i \(-0.282297\pi\)
−0.987174 + 0.159648i \(0.948964\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −24.2943 + 42.0790i −0.894892 + 1.55000i
\(738\) 0 0
\(739\) −1.98535 3.43873i −0.0730324 0.126496i 0.827197 0.561913i \(-0.189934\pi\)
−0.900229 + 0.435417i \(0.856601\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −2.87589 + 4.98118i −0.105506 + 0.182742i −0.913945 0.405838i \(-0.866980\pi\)
0.808439 + 0.588580i \(0.200313\pi\)
\(744\) 0 0
\(745\) 3.01935 + 5.22966i 0.110620 + 0.191600i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 15.5028 26.8517i 0.566460 0.981138i
\(750\) 0 0
\(751\) 22.6801 39.2831i 0.827610 1.43346i −0.0722986 0.997383i \(-0.523033\pi\)
0.899908 0.436079i \(-0.143633\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −31.1044 −1.13200
\(756\) 0 0
\(757\) 6.54346 + 11.3336i 0.237826 + 0.411927i 0.960090 0.279691i \(-0.0902319\pi\)
−0.722264 + 0.691617i \(0.756899\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 27.0183 0.979411 0.489706 0.871888i \(-0.337104\pi\)
0.489706 + 0.871888i \(0.337104\pi\)
\(762\) 0 0
\(763\) −16.2903 28.2156i −0.589747 1.02147i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −12.6455 + 12.1100i −0.456604 + 0.437265i
\(768\) 0 0
\(769\) −23.1288 + 40.0602i −0.834045 + 1.44461i 0.0607607 + 0.998152i \(0.480647\pi\)
−0.894806 + 0.446456i \(0.852686\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −20.9744 + 36.3287i −0.754397 + 1.30665i 0.191276 + 0.981536i \(0.438737\pi\)
−0.945673 + 0.325118i \(0.894596\pi\)
\(774\) 0 0
\(775\) −10.2504 −0.368205
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 13.6413 + 23.6273i 0.488749 + 0.846537i
\(780\) 0 0
\(781\) 15.5398 26.9158i 0.556059 0.963123i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −17.9837 + 31.1487i −0.641866 + 1.11174i
\(786\) 0 0
\(787\) 41.0216 1.46226 0.731131 0.682237i \(-0.238993\pi\)
0.731131 + 0.682237i \(0.238993\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 11.8182 + 20.4698i 0.420207 + 0.727821i
\(792\) 0 0
\(793\) −10.7284 3.12489i −0.380977 0.110968i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −16.5621 −0.586660 −0.293330 0.956011i \(-0.594764\pi\)
−0.293330 + 0.956011i \(0.594764\pi\)
\(798\) 0 0
\(799\) −1.35751 2.35127i −0.0480252 0.0831821i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 34.5471 1.21914
\(804\) 0 0
\(805\) 8.97117 + 15.5385i 0.316192 + 0.547661i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 25.0672 + 43.4176i 0.881314 + 1.52648i 0.849880 + 0.526976i \(0.176674\pi\)
0.0314339 + 0.999506i \(0.489993\pi\)
\(810\) 0 0
\(811\) −15.2618 −0.535914 −0.267957 0.963431i \(-0.586349\pi\)
−0.267957 + 0.963431i \(0.586349\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 4.73369 0.165814
\(816\) 0 0
\(817\) 28.5691 0.999507
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.12150 0.178742 0.0893708 0.995998i \(-0.471514\pi\)
0.0893708 + 0.995998i \(0.471514\pi\)
\(822\) 0 0
\(823\) −14.9031 −0.519490 −0.259745 0.965677i \(-0.583638\pi\)
−0.259745 + 0.965677i \(0.583638\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 18.5879 0.646364 0.323182 0.946337i \(-0.395247\pi\)
0.323182 + 0.946337i \(0.395247\pi\)
\(828\) 0 0
\(829\) −10.4298 18.0650i −0.362243 0.627422i 0.626087 0.779753i \(-0.284655\pi\)
−0.988330 + 0.152331i \(0.951322\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.94724 + 5.10477i 0.102116 + 0.176870i
\(834\) 0 0
\(835\) 29.9202 1.03543
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 18.0229 + 31.2165i 0.622219 + 1.07771i 0.989072 + 0.147436i \(0.0471019\pi\)
−0.366853 + 0.930279i \(0.619565\pi\)
\(840\) 0 0
\(841\) −26.9561 −0.929521
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −17.6834 + 9.21372i −0.608326 + 0.316962i
\(846\) 0 0
\(847\) 52.3814 + 90.7273i 1.79985 + 3.11743i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −12.0925 −0.414527
\(852\) 0 0
\(853\) 6.97776 12.0858i 0.238914 0.413811i −0.721489 0.692426i \(-0.756542\pi\)
0.960403 + 0.278615i \(0.0898753\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −8.73939 + 15.1371i −0.298532 + 0.517073i −0.975800 0.218664i \(-0.929830\pi\)
0.677268 + 0.735736i \(0.263164\pi\)
\(858\) 0 0
\(859\) −4.17576 7.23263i −0.142475 0.246774i 0.785953 0.618286i \(-0.212173\pi\)
−0.928428 + 0.371512i \(0.878839\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −4.11501 −0.140077 −0.0700384 0.997544i \(-0.522312\pi\)
−0.0700384 + 0.997544i \(0.522312\pi\)
\(864\) 0 0
\(865\) −8.20635 + 14.2138i −0.279024 + 0.483284i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −15.2791 + 26.4642i −0.518308 + 0.897735i
\(870\) 0 0
\(871\) −6.52342 26.6376i −0.221038 0.902581i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −20.6138 35.7042i −0.696874 1.20702i
\(876\) 0 0
\(877\) 10.6198 0.358606 0.179303 0.983794i \(-0.442616\pi\)
0.179303 + 0.983794i \(0.442616\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −15.0048 25.9891i −0.505525 0.875595i −0.999980 0.00639173i \(-0.997965\pi\)
0.494454 0.869204i \(-0.335368\pi\)
\(882\) 0 0
\(883\) 21.3674 0.719072 0.359536 0.933131i \(-0.382935\pi\)
0.359536 + 0.933131i \(0.382935\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 20.1581 34.9148i 0.676841 1.17232i −0.299086 0.954226i \(-0.596682\pi\)
0.975927 0.218097i \(-0.0699850\pi\)
\(888\) 0 0
\(889\) −26.7581 + 46.3464i −0.897437 + 1.55441i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2.80615 + 4.86039i 0.0939042 + 0.162647i
\(894\) 0 0
\(895\) −1.74959 + 3.03037i −0.0584822 + 0.101294i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.76774 4.79387i −0.0923094 0.159884i
\(900\) 0 0
\(901\) 3.40427 5.89637i 0.113413 0.196436i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7.88051 13.6494i −0.261957 0.453723i
\(906\) 0 0
\(907\) 14.7911 0.491131 0.245566 0.969380i \(-0.421026\pi\)
0.245566 + 0.969380i \(0.421026\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 16.1529 27.9777i 0.535170 0.926942i −0.463985 0.885843i \(-0.653581\pi\)
0.999155 0.0410987i \(-0.0130858\pi\)
\(912\) 0 0
\(913\) −20.4155 + 35.3607i −0.675654 + 1.17027i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 20.7356 35.9150i 0.684748 1.18602i
\(918\) 0 0
\(919\) 18.5950 32.2075i 0.613392 1.06243i −0.377272 0.926103i \(-0.623138\pi\)
0.990664 0.136324i \(-0.0435289\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 4.17270 + 17.0387i 0.137346 + 0.560837i
\(924\) 0 0
\(925\) 9.61899 0.316270
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 7.60222 + 13.1674i 0.249421 + 0.432009i 0.963365 0.268193i \(-0.0864265\pi\)
−0.713944 + 0.700202i \(0.753093\pi\)
\(930\) 0 0
\(931\) −6.09234 10.5522i −0.199668 0.345836i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 10.7877 0.352795
\(936\) 0 0
\(937\) 56.1934 1.83576 0.917880 0.396859i \(-0.129900\pi\)
0.917880 + 0.396859i \(0.129900\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −15.6111 27.0393i −0.508909 0.881455i −0.999947 0.0103174i \(-0.996716\pi\)
0.491038 0.871138i \(-0.336618\pi\)
\(942\) 0 0
\(943\) 19.9481 + 34.5511i 0.649599 + 1.12514i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 40.6727 1.32169 0.660843 0.750524i \(-0.270199\pi\)
0.660843 + 0.750524i \(0.270199\pi\)
\(948\) 0 0
\(949\) −14.0831 + 13.4867i −0.457157 + 0.437795i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.35525 + 2.34736i −0.0439008 + 0.0760384i −0.887141 0.461499i \(-0.847312\pi\)
0.843240 + 0.537537i \(0.180645\pi\)
\(954\) 0 0
\(955\) 18.1205 31.3857i 0.586367 1.01562i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 24.6129 42.6307i 0.794791 1.37662i
\(960\) 0 0
\(961\) 8.00414 13.8636i 0.258198 0.447212i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 16.9327 0.545082
\(966\) 0 0
\(967\) −2.04491 3.54189i −0.0657600 0.113900i 0.831271 0.555868i \(-0.187614\pi\)
−0.897031 + 0.441968i \(0.854280\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 6.04999 10.4789i 0.194153 0.336283i −0.752469 0.658627i \(-0.771137\pi\)
0.946623 + 0.322344i \(0.104471\pi\)
\(972\) 0 0
\(973\) −14.5637 25.2250i −0.466890 0.808677i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.82475 6.62467i 0.122365 0.211942i −0.798335 0.602214i \(-0.794286\pi\)
0.920700 + 0.390272i \(0.127619\pi\)
\(978\) 0 0
\(979\) −27.1672 47.0550i −0.868268 1.50388i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −25.0980 + 43.4711i −0.800503 + 1.38651i 0.118783 + 0.992920i \(0.462101\pi\)
−0.919286 + 0.393591i \(0.871233\pi\)
\(984\) 0 0
\(985\) −6.86659 + 11.8933i −0.218788 + 0.378952i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 41.7776 1.32845
\(990\) 0 0
\(991\) −21.7547 37.6803i −0.691062 1.19695i −0.971490 0.237079i \(-0.923810\pi\)
0.280428 0.959875i \(-0.409523\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −35.8149 −1.13541
\(996\) 0 0
\(997\) 15.1014 + 26.1564i 0.478266 + 0.828381i 0.999690 0.0249170i \(-0.00793213\pi\)
−0.521423 + 0.853298i \(0.674599\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2808.2.r.f.289.8 40
3.2 odd 2 936.2.r.f.601.11 40
9.4 even 3 2808.2.s.f.1225.8 40
9.5 odd 6 936.2.s.f.913.17 yes 40
13.9 even 3 2808.2.s.f.1153.8 40
39.35 odd 6 936.2.s.f.529.17 yes 40
117.22 even 3 inner 2808.2.r.f.2089.8 40
117.113 odd 6 936.2.r.f.841.11 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.r.f.601.11 40 3.2 odd 2
936.2.r.f.841.11 yes 40 117.113 odd 6
936.2.s.f.529.17 yes 40 39.35 odd 6
936.2.s.f.913.17 yes 40 9.5 odd 6
2808.2.r.f.289.8 40 1.1 even 1 trivial
2808.2.r.f.2089.8 40 117.22 even 3 inner
2808.2.s.f.1153.8 40 13.9 even 3
2808.2.s.f.1225.8 40 9.4 even 3