Properties

Label 936.2.r.f.601.11
Level $936$
Weight $2$
Character 936.601
Analytic conductor $7.474$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(601,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.601"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.r (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 601.11
Character \(\chi\) \(=\) 936.601
Dual form 936.2.r.f.841.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.319301 + 1.70237i) q^{3} +(0.766914 + 1.32833i) q^{5} +(1.75740 + 3.04390i) q^{7} +(-2.79609 + 1.08714i) q^{9} +6.38798 q^{11} +(2.60406 - 2.49377i) q^{13} +(-2.01643 + 1.72971i) q^{15} +(-0.550501 + 0.953495i) q^{17} +(-1.13796 + 1.97100i) q^{19} +(-4.62069 + 3.96365i) q^{21} +(1.66408 - 2.88227i) q^{23} +(1.32369 - 2.29269i) q^{25} +(-2.74350 - 4.41285i) q^{27} -1.42965 q^{29} +(-1.93596 - 3.35318i) q^{31} +(2.03969 + 10.8747i) q^{33} +(-2.69554 + 4.66881i) q^{35} +(1.81670 + 3.14662i) q^{37} +(5.07678 + 3.63679i) q^{39} +(-5.99374 + 10.3815i) q^{41} +(-6.27640 - 10.8710i) q^{43} +(-3.58844 - 2.88041i) q^{45} +(-1.23298 + 2.13558i) q^{47} +(-2.67688 + 4.63648i) q^{49} +(-1.79897 - 0.632701i) q^{51} -6.18395 q^{53} +(4.89903 + 8.48537i) q^{55} +(-3.71871 - 1.30788i) q^{57} +4.85609 q^{59} +(-1.54959 - 2.68397i) q^{61} +(-8.22297 - 6.60050i) q^{63} +(5.30965 + 1.54655i) q^{65} +(3.80313 - 6.58721i) q^{67} +(5.43801 + 1.91255i) q^{69} +(2.43267 - 4.21351i) q^{71} -5.40814 q^{73} +(4.32565 + 1.52134i) q^{75} +(11.2262 + 19.4444i) q^{77} +(2.39185 - 4.14281i) q^{79} +(6.63627 - 6.07946i) q^{81} +(-3.19592 + 5.53550i) q^{83} -1.68875 q^{85} +(-0.456489 - 2.43379i) q^{87} +(-4.25286 - 7.36618i) q^{89} +(12.1671 + 3.54395i) q^{91} +(5.09018 - 4.36638i) q^{93} -3.49086 q^{95} +(1.76312 + 3.05381i) q^{97} +(-17.8614 + 6.94460i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + q^{5} + 7 q^{7} + 6 q^{9} + 11 q^{15} - q^{17} + 2 q^{19} - 30 q^{21} - q^{23} - 23 q^{25} - 3 q^{27} - 24 q^{29} + 8 q^{31} + 4 q^{33} - 12 q^{35} + 18 q^{37} + 6 q^{39} - 3 q^{41} + 8 q^{43}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.319301 + 1.70237i 0.184349 + 0.982861i
\(4\) 0 0
\(5\) 0.766914 + 1.32833i 0.342974 + 0.594049i 0.984984 0.172648i \(-0.0552323\pi\)
−0.642009 + 0.766697i \(0.721899\pi\)
\(6\) 0 0
\(7\) 1.75740 + 3.04390i 0.664233 + 1.15049i 0.979493 + 0.201480i \(0.0645750\pi\)
−0.315260 + 0.949005i \(0.602092\pi\)
\(8\) 0 0
\(9\) −2.79609 + 1.08714i −0.932031 + 0.362378i
\(10\) 0 0
\(11\) 6.38798 1.92605 0.963024 0.269414i \(-0.0868301\pi\)
0.963024 + 0.269414i \(0.0868301\pi\)
\(12\) 0 0
\(13\) 2.60406 2.49377i 0.722236 0.691647i
\(14\) 0 0
\(15\) −2.01643 + 1.72971i −0.520641 + 0.446608i
\(16\) 0 0
\(17\) −0.550501 + 0.953495i −0.133516 + 0.231256i −0.925030 0.379895i \(-0.875960\pi\)
0.791514 + 0.611152i \(0.209293\pi\)
\(18\) 0 0
\(19\) −1.13796 + 1.97100i −0.261065 + 0.452179i −0.966525 0.256571i \(-0.917407\pi\)
0.705460 + 0.708750i \(0.250741\pi\)
\(20\) 0 0
\(21\) −4.62069 + 3.96365i −1.00832 + 0.864939i
\(22\) 0 0
\(23\) 1.66408 2.88227i 0.346984 0.600994i −0.638728 0.769432i \(-0.720539\pi\)
0.985712 + 0.168439i \(0.0538725\pi\)
\(24\) 0 0
\(25\) 1.32369 2.29269i 0.264737 0.458538i
\(26\) 0 0
\(27\) −2.74350 4.41285i −0.527986 0.849253i
\(28\) 0 0
\(29\) −1.42965 −0.265479 −0.132740 0.991151i \(-0.542377\pi\)
−0.132740 + 0.991151i \(0.542377\pi\)
\(30\) 0 0
\(31\) −1.93596 3.35318i −0.347708 0.602248i 0.638134 0.769926i \(-0.279707\pi\)
−0.985842 + 0.167677i \(0.946373\pi\)
\(32\) 0 0
\(33\) 2.03969 + 10.8747i 0.355065 + 1.89304i
\(34\) 0 0
\(35\) −2.69554 + 4.66881i −0.455630 + 0.789174i
\(36\) 0 0
\(37\) 1.81670 + 3.14662i 0.298664 + 0.517302i 0.975831 0.218528i \(-0.0701256\pi\)
−0.677166 + 0.735830i \(0.736792\pi\)
\(38\) 0 0
\(39\) 5.07678 + 3.63679i 0.812936 + 0.582353i
\(40\) 0 0
\(41\) −5.99374 + 10.3815i −0.936065 + 1.62131i −0.163342 + 0.986570i \(0.552227\pi\)
−0.772723 + 0.634743i \(0.781106\pi\)
\(42\) 0 0
\(43\) −6.27640 10.8710i −0.957142 1.65782i −0.729389 0.684099i \(-0.760195\pi\)
−0.227753 0.973719i \(-0.573138\pi\)
\(44\) 0 0
\(45\) −3.58844 2.88041i −0.534933 0.429386i
\(46\) 0 0
\(47\) −1.23298 + 2.13558i −0.179848 + 0.311506i −0.941828 0.336094i \(-0.890894\pi\)
0.761980 + 0.647600i \(0.224227\pi\)
\(48\) 0 0
\(49\) −2.67688 + 4.63648i −0.382411 + 0.662355i
\(50\) 0 0
\(51\) −1.79897 0.632701i −0.251906 0.0885958i
\(52\) 0 0
\(53\) −6.18395 −0.849431 −0.424716 0.905327i \(-0.639626\pi\)
−0.424716 + 0.905327i \(0.639626\pi\)
\(54\) 0 0
\(55\) 4.89903 + 8.48537i 0.660585 + 1.14417i
\(56\) 0 0
\(57\) −3.71871 1.30788i −0.492556 0.173232i
\(58\) 0 0
\(59\) 4.85609 0.632209 0.316104 0.948724i \(-0.397625\pi\)
0.316104 + 0.948724i \(0.397625\pi\)
\(60\) 0 0
\(61\) −1.54959 2.68397i −0.198405 0.343647i 0.749607 0.661884i \(-0.230243\pi\)
−0.948011 + 0.318237i \(0.896909\pi\)
\(62\) 0 0
\(63\) −8.22297 6.60050i −1.03600 0.831584i
\(64\) 0 0
\(65\) 5.30965 + 1.54655i 0.658580 + 0.191826i
\(66\) 0 0
\(67\) 3.80313 6.58721i 0.464626 0.804756i −0.534559 0.845131i \(-0.679522\pi\)
0.999185 + 0.0403756i \(0.0128554\pi\)
\(68\) 0 0
\(69\) 5.43801 + 1.91255i 0.654659 + 0.230244i
\(70\) 0 0
\(71\) 2.43267 4.21351i 0.288705 0.500051i −0.684796 0.728735i \(-0.740109\pi\)
0.973501 + 0.228683i \(0.0734421\pi\)
\(72\) 0 0
\(73\) −5.40814 −0.632975 −0.316487 0.948597i \(-0.602504\pi\)
−0.316487 + 0.948597i \(0.602504\pi\)
\(74\) 0 0
\(75\) 4.32565 + 1.52134i 0.499483 + 0.175669i
\(76\) 0 0
\(77\) 11.2262 + 19.4444i 1.27934 + 2.21589i
\(78\) 0 0
\(79\) 2.39185 4.14281i 0.269104 0.466102i −0.699527 0.714607i \(-0.746606\pi\)
0.968631 + 0.248505i \(0.0799391\pi\)
\(80\) 0 0
\(81\) 6.63627 6.07946i 0.737364 0.675496i
\(82\) 0 0
\(83\) −3.19592 + 5.53550i −0.350798 + 0.607600i −0.986390 0.164425i \(-0.947423\pi\)
0.635591 + 0.772026i \(0.280756\pi\)
\(84\) 0 0
\(85\) −1.68875 −0.183170
\(86\) 0 0
\(87\) −0.456489 2.43379i −0.0489408 0.260929i
\(88\) 0 0
\(89\) −4.25286 7.36618i −0.450803 0.780813i 0.547633 0.836718i \(-0.315529\pi\)
−0.998436 + 0.0559053i \(0.982196\pi\)
\(90\) 0 0
\(91\) 12.1671 + 3.54395i 1.27546 + 0.371507i
\(92\) 0 0
\(93\) 5.09018 4.36638i 0.527827 0.452773i
\(94\) 0 0
\(95\) −3.49086 −0.358155
\(96\) 0 0
\(97\) 1.76312 + 3.05381i 0.179017 + 0.310067i 0.941544 0.336889i \(-0.109375\pi\)
−0.762527 + 0.646956i \(0.776042\pi\)
\(98\) 0 0
\(99\) −17.8614 + 6.94460i −1.79514 + 0.697958i
\(100\) 0 0
\(101\) −14.8681 −1.47943 −0.739717 0.672918i \(-0.765041\pi\)
−0.739717 + 0.672918i \(0.765041\pi\)
\(102\) 0 0
\(103\) −5.76469 9.98474i −0.568012 0.983826i −0.996762 0.0804029i \(-0.974379\pi\)
0.428750 0.903423i \(-0.358954\pi\)
\(104\) 0 0
\(105\) −8.80872 3.09804i −0.859643 0.302337i
\(106\) 0 0
\(107\) 4.41074 + 7.63962i 0.426402 + 0.738550i 0.996550 0.0829919i \(-0.0264476\pi\)
−0.570148 + 0.821542i \(0.693114\pi\)
\(108\) 0 0
\(109\) −9.26955 −0.887862 −0.443931 0.896061i \(-0.646416\pi\)
−0.443931 + 0.896061i \(0.646416\pi\)
\(110\) 0 0
\(111\) −4.77663 + 4.09742i −0.453377 + 0.388909i
\(112\) 0 0
\(113\) −6.72485 −0.632621 −0.316310 0.948656i \(-0.602444\pi\)
−0.316310 + 0.948656i \(0.602444\pi\)
\(114\) 0 0
\(115\) 5.10481 0.476026
\(116\) 0 0
\(117\) −4.57012 + 9.80377i −0.422508 + 0.906359i
\(118\) 0 0
\(119\) −3.86979 −0.354743
\(120\) 0 0
\(121\) 29.8063 2.70966
\(122\) 0 0
\(123\) −19.5869 6.88872i −1.76609 0.621135i
\(124\) 0 0
\(125\) 11.7298 1.04914
\(126\) 0 0
\(127\) 7.61299 + 13.1861i 0.675544 + 1.17008i 0.976310 + 0.216378i \(0.0694245\pi\)
−0.300766 + 0.953698i \(0.597242\pi\)
\(128\) 0 0
\(129\) 16.5024 14.1559i 1.45296 1.24635i
\(130\) 0 0
\(131\) 5.89951 + 10.2183i 0.515443 + 0.892773i 0.999839 + 0.0179247i \(0.00570593\pi\)
−0.484396 + 0.874849i \(0.660961\pi\)
\(132\) 0 0
\(133\) −7.99937 −0.693633
\(134\) 0 0
\(135\) 3.75771 7.02855i 0.323412 0.604922i
\(136\) 0 0
\(137\) 7.00266 + 12.1290i 0.598277 + 1.03625i 0.993075 + 0.117479i \(0.0374812\pi\)
−0.394798 + 0.918768i \(0.629185\pi\)
\(138\) 0 0
\(139\) −8.28707 −0.702900 −0.351450 0.936207i \(-0.614311\pi\)
−0.351450 + 0.936207i \(0.614311\pi\)
\(140\) 0 0
\(141\) −4.02922 1.41708i −0.339322 0.119340i
\(142\) 0 0
\(143\) 16.6347 15.9301i 1.39106 1.33215i
\(144\) 0 0
\(145\) −1.09642 1.89905i −0.0910526 0.157708i
\(146\) 0 0
\(147\) −8.74772 3.07658i −0.721500 0.253752i
\(148\) 0 0
\(149\) 3.93701 0.322533 0.161266 0.986911i \(-0.448442\pi\)
0.161266 + 0.986911i \(0.448442\pi\)
\(150\) 0 0
\(151\) 10.1395 17.5621i 0.825138 1.42918i −0.0766753 0.997056i \(-0.524430\pi\)
0.901814 0.432125i \(-0.142236\pi\)
\(152\) 0 0
\(153\) 0.502673 3.26453i 0.0406387 0.263922i
\(154\) 0 0
\(155\) 2.96943 5.14320i 0.238510 0.413111i
\(156\) 0 0
\(157\) −11.7247 20.3078i −0.935735 1.62074i −0.773319 0.634017i \(-0.781405\pi\)
−0.162416 0.986722i \(-0.551929\pi\)
\(158\) 0 0
\(159\) −1.97454 10.5273i −0.156592 0.834873i
\(160\) 0 0
\(161\) 11.6978 0.921913
\(162\) 0 0
\(163\) −1.54310 + 2.67272i −0.120865 + 0.209344i −0.920109 0.391663i \(-0.871900\pi\)
0.799244 + 0.601006i \(0.205233\pi\)
\(164\) 0 0
\(165\) −12.8809 + 11.0493i −1.00278 + 0.860189i
\(166\) 0 0
\(167\) 9.75344 16.8935i 0.754744 1.30726i −0.190757 0.981637i \(-0.561094\pi\)
0.945501 0.325618i \(-0.105572\pi\)
\(168\) 0 0
\(169\) 0.562232 12.9878i 0.0432486 0.999064i
\(170\) 0 0
\(171\) 1.03909 6.74822i 0.0794614 0.516049i
\(172\) 0 0
\(173\) 5.35024 + 9.26689i 0.406771 + 0.704549i 0.994526 0.104491i \(-0.0333212\pi\)
−0.587754 + 0.809039i \(0.699988\pi\)
\(174\) 0 0
\(175\) 9.30496 0.703389
\(176\) 0 0
\(177\) 1.55056 + 8.26684i 0.116547 + 0.621373i
\(178\) 0 0
\(179\) 1.14067 + 1.97569i 0.0852574 + 0.147670i 0.905501 0.424344i \(-0.139495\pi\)
−0.820243 + 0.572015i \(0.806162\pi\)
\(180\) 0 0
\(181\) 10.2756 0.763780 0.381890 0.924208i \(-0.375273\pi\)
0.381890 + 0.924208i \(0.375273\pi\)
\(182\) 0 0
\(183\) 4.07431 3.49496i 0.301182 0.258355i
\(184\) 0 0
\(185\) −2.78651 + 4.82638i −0.204868 + 0.354842i
\(186\) 0 0
\(187\) −3.51659 + 6.09091i −0.257158 + 0.445411i
\(188\) 0 0
\(189\) 8.61085 16.1060i 0.626347 1.17154i
\(190\) 0 0
\(191\) −11.8139 20.4623i −0.854826 1.48060i −0.876806 0.480844i \(-0.840330\pi\)
0.0219799 0.999758i \(-0.493003\pi\)
\(192\) 0 0
\(193\) −5.51975 + 9.56048i −0.397320 + 0.688178i −0.993394 0.114751i \(-0.963393\pi\)
0.596074 + 0.802929i \(0.296726\pi\)
\(194\) 0 0
\(195\) −0.937418 + 9.53277i −0.0671299 + 0.682656i
\(196\) 0 0
\(197\) 4.47677 + 7.75399i 0.318957 + 0.552449i 0.980271 0.197660i \(-0.0633342\pi\)
−0.661314 + 0.750109i \(0.730001\pi\)
\(198\) 0 0
\(199\) 11.6750 20.2217i 0.827620 1.43348i −0.0722797 0.997384i \(-0.523027\pi\)
0.899900 0.436096i \(-0.143639\pi\)
\(200\) 0 0
\(201\) 12.4282 + 4.37101i 0.876616 + 0.308307i
\(202\) 0 0
\(203\) −2.51246 4.35171i −0.176340 0.305430i
\(204\) 0 0
\(205\) −18.3867 −1.28419
\(206\) 0 0
\(207\) −1.51950 + 9.86816i −0.105613 + 0.685884i
\(208\) 0 0
\(209\) −7.26925 + 12.5907i −0.502825 + 0.870918i
\(210\) 0 0
\(211\) 0.0859803 0.148922i 0.00591913 0.0102522i −0.863051 0.505117i \(-0.831449\pi\)
0.868970 + 0.494865i \(0.164783\pi\)
\(212\) 0 0
\(213\) 7.94968 + 2.79591i 0.544703 + 0.191573i
\(214\) 0 0
\(215\) 9.62691 16.6743i 0.656550 1.13718i
\(216\) 0 0
\(217\) 6.80449 11.7857i 0.461919 0.800066i
\(218\) 0 0
\(219\) −1.72683 9.20663i −0.116688 0.622126i
\(220\) 0 0
\(221\) 0.944261 + 3.85578i 0.0635179 + 0.259368i
\(222\) 0 0
\(223\) −1.62625 −0.108902 −0.0544510 0.998516i \(-0.517341\pi\)
−0.0544510 + 0.998516i \(0.517341\pi\)
\(224\) 0 0
\(225\) −1.20868 + 7.84961i −0.0805790 + 0.523307i
\(226\) 0 0
\(227\) 11.2694 + 19.5192i 0.747979 + 1.29554i 0.948790 + 0.315908i \(0.102309\pi\)
−0.200811 + 0.979630i \(0.564358\pi\)
\(228\) 0 0
\(229\) −12.0818 20.9263i −0.798389 1.38285i −0.920665 0.390354i \(-0.872353\pi\)
0.122276 0.992496i \(-0.460981\pi\)
\(230\) 0 0
\(231\) −29.5169 + 25.3197i −1.94207 + 1.66591i
\(232\) 0 0
\(233\) 16.4919 1.08042 0.540211 0.841530i \(-0.318344\pi\)
0.540211 + 0.841530i \(0.318344\pi\)
\(234\) 0 0
\(235\) −3.78235 −0.246733
\(236\) 0 0
\(237\) 7.81629 + 2.74900i 0.507723 + 0.178567i
\(238\) 0 0
\(239\) −5.24014 9.07618i −0.338956 0.587089i 0.645280 0.763946i \(-0.276741\pi\)
−0.984237 + 0.176856i \(0.943407\pi\)
\(240\) 0 0
\(241\) −11.5900 20.0745i −0.746577 1.29311i −0.949454 0.313905i \(-0.898363\pi\)
0.202877 0.979204i \(-0.434971\pi\)
\(242\) 0 0
\(243\) 12.4684 + 9.35618i 0.799850 + 0.600199i
\(244\) 0 0
\(245\) −8.21173 −0.524628
\(246\) 0 0
\(247\) 1.95191 + 7.97040i 0.124197 + 0.507145i
\(248\) 0 0
\(249\) −10.4439 3.67313i −0.661856 0.232775i
\(250\) 0 0
\(251\) −10.1392 + 17.5616i −0.639979 + 1.10848i 0.345458 + 0.938434i \(0.387724\pi\)
−0.985437 + 0.170042i \(0.945610\pi\)
\(252\) 0 0
\(253\) 10.6301 18.4119i 0.668308 1.15754i
\(254\) 0 0
\(255\) −0.539219 2.87486i −0.0337672 0.180031i
\(256\) 0 0
\(257\) 0.362989 0.628715i 0.0226426 0.0392182i −0.854482 0.519481i \(-0.826125\pi\)
0.877125 + 0.480263i \(0.159459\pi\)
\(258\) 0 0
\(259\) −6.38534 + 11.0597i −0.396765 + 0.687218i
\(260\) 0 0
\(261\) 3.99743 1.55422i 0.247435 0.0962040i
\(262\) 0 0
\(263\) −9.62127 −0.593273 −0.296637 0.954990i \(-0.595865\pi\)
−0.296637 + 0.954990i \(0.595865\pi\)
\(264\) 0 0
\(265\) −4.74256 8.21435i −0.291333 0.504604i
\(266\) 0 0
\(267\) 11.1820 9.59196i 0.684326 0.587018i
\(268\) 0 0
\(269\) −6.12405 + 10.6072i −0.373390 + 0.646731i −0.990085 0.140472i \(-0.955138\pi\)
0.616695 + 0.787202i \(0.288471\pi\)
\(270\) 0 0
\(271\) 2.64462 + 4.58062i 0.160650 + 0.278253i 0.935102 0.354379i \(-0.115308\pi\)
−0.774452 + 0.632632i \(0.781974\pi\)
\(272\) 0 0
\(273\) −2.14811 + 21.8445i −0.130009 + 1.32209i
\(274\) 0 0
\(275\) 8.45568 14.6457i 0.509897 0.883167i
\(276\) 0 0
\(277\) −2.96456 5.13476i −0.178123 0.308518i 0.763115 0.646263i \(-0.223669\pi\)
−0.941238 + 0.337745i \(0.890336\pi\)
\(278\) 0 0
\(279\) 9.05847 + 7.27115i 0.542317 + 0.435312i
\(280\) 0 0
\(281\) 16.2879 28.2115i 0.971654 1.68295i 0.281094 0.959680i \(-0.409303\pi\)
0.690561 0.723275i \(-0.257364\pi\)
\(282\) 0 0
\(283\) −9.27398 + 16.0630i −0.551281 + 0.954847i 0.446902 + 0.894583i \(0.352527\pi\)
−0.998183 + 0.0602634i \(0.980806\pi\)
\(284\) 0 0
\(285\) −1.11464 5.94272i −0.0660254 0.352016i
\(286\) 0 0
\(287\) −42.1335 −2.48706
\(288\) 0 0
\(289\) 7.89390 + 13.6726i 0.464347 + 0.804273i
\(290\) 0 0
\(291\) −4.63573 + 3.97655i −0.271751 + 0.233110i
\(292\) 0 0
\(293\) −17.9848 −1.05069 −0.525343 0.850891i \(-0.676063\pi\)
−0.525343 + 0.850891i \(0.676063\pi\)
\(294\) 0 0
\(295\) 3.72420 + 6.45051i 0.216831 + 0.375563i
\(296\) 0 0
\(297\) −17.5254 28.1892i −1.01693 1.63570i
\(298\) 0 0
\(299\) −2.85435 11.6554i −0.165071 0.674050i
\(300\) 0 0
\(301\) 22.0602 38.2094i 1.27153 2.20236i
\(302\) 0 0
\(303\) −4.74741 25.3110i −0.272732 1.45408i
\(304\) 0 0
\(305\) 2.37680 4.11675i 0.136095 0.235724i
\(306\) 0 0
\(307\) 14.0831 0.803768 0.401884 0.915691i \(-0.368356\pi\)
0.401884 + 0.915691i \(0.368356\pi\)
\(308\) 0 0
\(309\) 15.1570 13.0018i 0.862252 0.739644i
\(310\) 0 0
\(311\) 15.3440 + 26.5767i 0.870081 + 1.50702i 0.861912 + 0.507058i \(0.169267\pi\)
0.00816904 + 0.999967i \(0.497400\pi\)
\(312\) 0 0
\(313\) −5.48343 + 9.49757i −0.309942 + 0.536835i −0.978349 0.206961i \(-0.933643\pi\)
0.668408 + 0.743795i \(0.266976\pi\)
\(314\) 0 0
\(315\) 2.46135 15.9849i 0.138682 0.900645i
\(316\) 0 0
\(317\) −1.15353 + 1.99797i −0.0647885 + 0.112217i −0.896600 0.442841i \(-0.853971\pi\)
0.831812 + 0.555058i \(0.187304\pi\)
\(318\) 0 0
\(319\) −9.13258 −0.511326
\(320\) 0 0
\(321\) −11.5971 + 9.94802i −0.647285 + 0.555245i
\(322\) 0 0
\(323\) −1.25289 2.17007i −0.0697128 0.120746i
\(324\) 0 0
\(325\) −2.27049 9.27127i −0.125944 0.514278i
\(326\) 0 0
\(327\) −2.95978 15.7802i −0.163676 0.872645i
\(328\) 0 0
\(329\) −8.66730 −0.477844
\(330\) 0 0
\(331\) 16.8249 + 29.1416i 0.924780 + 1.60177i 0.791914 + 0.610632i \(0.209085\pi\)
0.132866 + 0.991134i \(0.457582\pi\)
\(332\) 0 0
\(333\) −8.50048 6.82325i −0.465823 0.373912i
\(334\) 0 0
\(335\) 11.6667 0.637419
\(336\) 0 0
\(337\) 6.88906 + 11.9322i 0.375271 + 0.649988i 0.990368 0.138464i \(-0.0442164\pi\)
−0.615097 + 0.788452i \(0.710883\pi\)
\(338\) 0 0
\(339\) −2.14725 11.4481i −0.116623 0.621778i
\(340\) 0 0
\(341\) −12.3669 21.4200i −0.669703 1.15996i
\(342\) 0 0
\(343\) 5.78622 0.312427
\(344\) 0 0
\(345\) 1.62997 + 8.69026i 0.0877548 + 0.467868i
\(346\) 0 0
\(347\) 6.32520 0.339555 0.169777 0.985482i \(-0.445695\pi\)
0.169777 + 0.985482i \(0.445695\pi\)
\(348\) 0 0
\(349\) 13.3337 0.713736 0.356868 0.934155i \(-0.383845\pi\)
0.356868 + 0.934155i \(0.383845\pi\)
\(350\) 0 0
\(351\) −18.1488 4.64966i −0.968714 0.248181i
\(352\) 0 0
\(353\) −25.2494 −1.34389 −0.671945 0.740601i \(-0.734541\pi\)
−0.671945 + 0.740601i \(0.734541\pi\)
\(354\) 0 0
\(355\) 7.46259 0.396073
\(356\) 0 0
\(357\) −1.23563 6.58779i −0.0653964 0.348663i
\(358\) 0 0
\(359\) 1.22423 0.0646123 0.0323062 0.999478i \(-0.489715\pi\)
0.0323062 + 0.999478i \(0.489715\pi\)
\(360\) 0 0
\(361\) 6.91010 + 11.9687i 0.363690 + 0.629929i
\(362\) 0 0
\(363\) 9.51719 + 50.7412i 0.499523 + 2.66322i
\(364\) 0 0
\(365\) −4.14758 7.18381i −0.217094 0.376018i
\(366\) 0 0
\(367\) −14.2000 −0.741233 −0.370617 0.928786i \(-0.620854\pi\)
−0.370617 + 0.928786i \(0.620854\pi\)
\(368\) 0 0
\(369\) 5.47301 35.5436i 0.284913 1.85032i
\(370\) 0 0
\(371\) −10.8676 18.8233i −0.564220 0.977258i
\(372\) 0 0
\(373\) −16.7767 −0.868666 −0.434333 0.900752i \(-0.643016\pi\)
−0.434333 + 0.900752i \(0.643016\pi\)
\(374\) 0 0
\(375\) 3.74533 + 19.9683i 0.193408 + 1.03116i
\(376\) 0 0
\(377\) −3.72289 + 3.56522i −0.191739 + 0.183618i
\(378\) 0 0
\(379\) 18.3934 + 31.8583i 0.944807 + 1.63645i 0.756138 + 0.654413i \(0.227084\pi\)
0.188669 + 0.982041i \(0.439583\pi\)
\(380\) 0 0
\(381\) −20.0167 + 17.1704i −1.02549 + 0.879668i
\(382\) 0 0
\(383\) 15.3260 0.783121 0.391561 0.920152i \(-0.371935\pi\)
0.391561 + 0.920152i \(0.371935\pi\)
\(384\) 0 0
\(385\) −17.2191 + 29.8243i −0.877565 + 1.51999i
\(386\) 0 0
\(387\) 29.3677 + 23.5732i 1.49284 + 1.19829i
\(388\) 0 0
\(389\) 4.10671 7.11304i 0.208219 0.360645i −0.742935 0.669364i \(-0.766567\pi\)
0.951153 + 0.308718i \(0.0999001\pi\)
\(390\) 0 0
\(391\) 1.83215 + 3.17338i 0.0926558 + 0.160485i
\(392\) 0 0
\(393\) −15.5115 + 13.3058i −0.782451 + 0.671190i
\(394\) 0 0
\(395\) 7.33737 0.369183
\(396\) 0 0
\(397\) −12.3499 + 21.3906i −0.619822 + 1.07356i 0.369695 + 0.929153i \(0.379462\pi\)
−0.989518 + 0.144411i \(0.953871\pi\)
\(398\) 0 0
\(399\) −2.55421 13.6178i −0.127870 0.681745i
\(400\) 0 0
\(401\) −6.92365 + 11.9921i −0.345750 + 0.598857i −0.985490 0.169735i \(-0.945709\pi\)
0.639739 + 0.768592i \(0.279042\pi\)
\(402\) 0 0
\(403\) −13.4034 3.90404i −0.667671 0.194474i
\(404\) 0 0
\(405\) 13.1650 + 4.15276i 0.654174 + 0.206353i
\(406\) 0 0
\(407\) 11.6051 + 20.1006i 0.575242 + 0.996349i
\(408\) 0 0
\(409\) 18.6508 0.922222 0.461111 0.887342i \(-0.347451\pi\)
0.461111 + 0.887342i \(0.347451\pi\)
\(410\) 0 0
\(411\) −18.4120 + 15.7939i −0.908195 + 0.779054i
\(412\) 0 0
\(413\) 8.53407 + 14.7814i 0.419934 + 0.727347i
\(414\) 0 0
\(415\) −9.80399 −0.481259
\(416\) 0 0
\(417\) −2.64607 14.1076i −0.129579 0.690853i
\(418\) 0 0
\(419\) 7.87761 13.6444i 0.384846 0.666574i −0.606901 0.794777i \(-0.707588\pi\)
0.991748 + 0.128203i \(0.0409211\pi\)
\(420\) 0 0
\(421\) −7.16989 + 12.4186i −0.349439 + 0.605246i −0.986150 0.165856i \(-0.946961\pi\)
0.636711 + 0.771103i \(0.280295\pi\)
\(422\) 0 0
\(423\) 1.12586 7.31168i 0.0547410 0.355506i
\(424\) 0 0
\(425\) 1.45738 + 2.52426i 0.0706933 + 0.122444i
\(426\) 0 0
\(427\) 5.44648 9.43359i 0.263574 0.456523i
\(428\) 0 0
\(429\) 32.4304 + 23.2318i 1.56575 + 1.12164i
\(430\) 0 0
\(431\) 4.49274 + 7.78165i 0.216408 + 0.374829i 0.953707 0.300737i \(-0.0972327\pi\)
−0.737300 + 0.675566i \(0.763899\pi\)
\(432\) 0 0
\(433\) −13.8669 + 24.0182i −0.666401 + 1.15424i 0.312503 + 0.949917i \(0.398833\pi\)
−0.978904 + 0.204323i \(0.934501\pi\)
\(434\) 0 0
\(435\) 2.88279 2.47287i 0.138219 0.118565i
\(436\) 0 0
\(437\) 3.78730 + 6.55979i 0.181171 + 0.313797i
\(438\) 0 0
\(439\) 5.95194 0.284071 0.142035 0.989862i \(-0.454635\pi\)
0.142035 + 0.989862i \(0.454635\pi\)
\(440\) 0 0
\(441\) 2.44431 15.8742i 0.116396 0.755913i
\(442\) 0 0
\(443\) −5.66685 + 9.81526i −0.269240 + 0.466337i −0.968666 0.248368i \(-0.920106\pi\)
0.699426 + 0.714705i \(0.253439\pi\)
\(444\) 0 0
\(445\) 6.52316 11.2984i 0.309227 0.535598i
\(446\) 0 0
\(447\) 1.25709 + 6.70223i 0.0594585 + 0.317005i
\(448\) 0 0
\(449\) 6.47394 11.2132i 0.305524 0.529183i −0.671854 0.740684i \(-0.734502\pi\)
0.977378 + 0.211501i \(0.0678350\pi\)
\(450\) 0 0
\(451\) −38.2879 + 66.3166i −1.80291 + 3.12273i
\(452\) 0 0
\(453\) 33.1346 + 11.6535i 1.55680 + 0.547528i
\(454\) 0 0
\(455\) 4.62360 + 18.8799i 0.216758 + 0.885104i
\(456\) 0 0
\(457\) −19.3479 −0.905058 −0.452529 0.891750i \(-0.649478\pi\)
−0.452529 + 0.891750i \(0.649478\pi\)
\(458\) 0 0
\(459\) 5.71792 0.186636i 0.266890 0.00871140i
\(460\) 0 0
\(461\) −17.3986 30.1353i −0.810334 1.40354i −0.912631 0.408785i \(-0.865953\pi\)
0.102297 0.994754i \(-0.467381\pi\)
\(462\) 0 0
\(463\) 13.0277 + 22.5647i 0.605450 + 1.04867i 0.991980 + 0.126394i \(0.0403402\pi\)
−0.386530 + 0.922277i \(0.626326\pi\)
\(464\) 0 0
\(465\) 9.70374 + 3.41282i 0.450000 + 0.158266i
\(466\) 0 0
\(467\) −39.3170 −1.81937 −0.909686 0.415296i \(-0.863678\pi\)
−0.909686 + 0.415296i \(0.863678\pi\)
\(468\) 0 0
\(469\) 26.7344 1.23448
\(470\) 0 0
\(471\) 30.8276 26.4441i 1.42046 1.21848i
\(472\) 0 0
\(473\) −40.0935 69.4440i −1.84350 3.19304i
\(474\) 0 0
\(475\) 3.01260 + 5.21797i 0.138228 + 0.239417i
\(476\) 0 0
\(477\) 17.2909 6.72279i 0.791696 0.307815i
\(478\) 0 0
\(479\) 24.7294 1.12991 0.564957 0.825120i \(-0.308893\pi\)
0.564957 + 0.825120i \(0.308893\pi\)
\(480\) 0 0
\(481\) 12.5778 + 3.66355i 0.573496 + 0.167044i
\(482\) 0 0
\(483\) 3.73511 + 19.9139i 0.169953 + 0.906112i
\(484\) 0 0
\(485\) −2.70432 + 4.68401i −0.122797 + 0.212690i
\(486\) 0 0
\(487\) 15.5768 26.9798i 0.705853 1.22257i −0.260530 0.965466i \(-0.583897\pi\)
0.966383 0.257107i \(-0.0827694\pi\)
\(488\) 0 0
\(489\) −5.04266 1.77351i −0.228037 0.0802009i
\(490\) 0 0
\(491\) 0.824435 1.42796i 0.0372062 0.0644431i −0.846823 0.531875i \(-0.821487\pi\)
0.884029 + 0.467432i \(0.154821\pi\)
\(492\) 0 0
\(493\) 0.787023 1.36316i 0.0354457 0.0613938i
\(494\) 0 0
\(495\) −22.9229 18.4000i −1.03031 0.827018i
\(496\) 0 0
\(497\) 17.1006 0.767069
\(498\) 0 0
\(499\) −21.3882 37.0455i −0.957468 1.65838i −0.728618 0.684921i \(-0.759837\pi\)
−0.228850 0.973462i \(-0.573496\pi\)
\(500\) 0 0
\(501\) 31.8731 + 11.2098i 1.42399 + 0.500818i
\(502\) 0 0
\(503\) −19.6416 + 34.0203i −0.875777 + 1.51689i −0.0198439 + 0.999803i \(0.506317\pi\)
−0.855933 + 0.517087i \(0.827016\pi\)
\(504\) 0 0
\(505\) −11.4026 19.7498i −0.507408 0.878856i
\(506\) 0 0
\(507\) 22.2896 3.18991i 0.989914 0.141669i
\(508\) 0 0
\(509\) −6.02885 + 10.4423i −0.267224 + 0.462846i −0.968144 0.250394i \(-0.919440\pi\)
0.700920 + 0.713240i \(0.252773\pi\)
\(510\) 0 0
\(511\) −9.50424 16.4618i −0.420443 0.728228i
\(512\) 0 0
\(513\) 11.8197 0.385800i 0.521853 0.0170335i
\(514\) 0 0
\(515\) 8.84205 15.3149i 0.389627 0.674854i
\(516\) 0 0
\(517\) −7.87623 + 13.6420i −0.346396 + 0.599976i
\(518\) 0 0
\(519\) −14.0673 + 12.0670i −0.617486 + 0.529682i
\(520\) 0 0
\(521\) 16.6196 0.728116 0.364058 0.931376i \(-0.381391\pi\)
0.364058 + 0.931376i \(0.381391\pi\)
\(522\) 0 0
\(523\) −0.621458 1.07640i −0.0271745 0.0470676i 0.852118 0.523349i \(-0.175318\pi\)
−0.879293 + 0.476282i \(0.841984\pi\)
\(524\) 0 0
\(525\) 2.97109 + 15.8404i 0.129669 + 0.691333i
\(526\) 0 0
\(527\) 4.26298 0.185698
\(528\) 0 0
\(529\) 5.96170 + 10.3260i 0.259204 + 0.448955i
\(530\) 0 0
\(531\) −13.5781 + 5.27922i −0.589238 + 0.229099i
\(532\) 0 0
\(533\) 10.2809 + 41.9809i 0.445316 + 1.81840i
\(534\) 0 0
\(535\) −6.76531 + 11.7179i −0.292490 + 0.506607i
\(536\) 0 0
\(537\) −2.99913 + 2.57267i −0.129422 + 0.111019i
\(538\) 0 0
\(539\) −17.0998 + 29.6178i −0.736542 + 1.27573i
\(540\) 0 0
\(541\) −41.8105 −1.79757 −0.898787 0.438386i \(-0.855550\pi\)
−0.898787 + 0.438386i \(0.855550\pi\)
\(542\) 0 0
\(543\) 3.28102 + 17.4928i 0.140802 + 0.750690i
\(544\) 0 0
\(545\) −7.10895 12.3131i −0.304514 0.527433i
\(546\) 0 0
\(547\) −0.266912 + 0.462305i −0.0114123 + 0.0197668i −0.871675 0.490084i \(-0.836966\pi\)
0.860263 + 0.509851i \(0.170299\pi\)
\(548\) 0 0
\(549\) 7.25063 + 5.82001i 0.309450 + 0.248392i
\(550\) 0 0
\(551\) 1.62688 2.81784i 0.0693075 0.120044i
\(552\) 0 0
\(553\) 16.8137 0.714991
\(554\) 0 0
\(555\) −9.10600 3.20259i −0.386528 0.135942i
\(556\) 0 0
\(557\) 3.96368 + 6.86530i 0.167947 + 0.290892i 0.937698 0.347452i \(-0.112953\pi\)
−0.769751 + 0.638344i \(0.779620\pi\)
\(558\) 0 0
\(559\) −43.4540 12.6569i −1.83791 0.535331i
\(560\) 0 0
\(561\) −11.4918 4.04168i −0.485184 0.170640i
\(562\) 0 0
\(563\) 31.1732 1.31379 0.656897 0.753980i \(-0.271869\pi\)
0.656897 + 0.753980i \(0.271869\pi\)
\(564\) 0 0
\(565\) −5.15738 8.93284i −0.216973 0.375808i
\(566\) 0 0
\(567\) 30.1678 + 9.51612i 1.26693 + 0.399640i
\(568\) 0 0
\(569\) 21.0506 0.882488 0.441244 0.897387i \(-0.354537\pi\)
0.441244 + 0.897387i \(0.354537\pi\)
\(570\) 0 0
\(571\) −2.80025 4.85017i −0.117187 0.202973i 0.801465 0.598042i \(-0.204054\pi\)
−0.918652 + 0.395068i \(0.870721\pi\)
\(572\) 0 0
\(573\) 31.0622 26.6453i 1.29764 1.11312i
\(574\) 0 0
\(575\) −4.40543 7.63043i −0.183719 0.318211i
\(576\) 0 0
\(577\) −30.6676 −1.27671 −0.638355 0.769742i \(-0.720385\pi\)
−0.638355 + 0.769742i \(0.720385\pi\)
\(578\) 0 0
\(579\) −18.0379 6.34395i −0.749629 0.263645i
\(580\) 0 0
\(581\) −22.4660 −0.932047
\(582\) 0 0
\(583\) −39.5030 −1.63605
\(584\) 0 0
\(585\) −16.5276 + 1.44800i −0.683331 + 0.0598674i
\(586\) 0 0
\(587\) −31.4657 −1.29873 −0.649364 0.760477i \(-0.724965\pi\)
−0.649364 + 0.760477i \(0.724965\pi\)
\(588\) 0 0
\(589\) 8.81215 0.363098
\(590\) 0 0
\(591\) −11.7707 + 10.0970i −0.484181 + 0.415333i
\(592\) 0 0
\(593\) 0.583862 0.0239763 0.0119882 0.999928i \(-0.496184\pi\)
0.0119882 + 0.999928i \(0.496184\pi\)
\(594\) 0 0
\(595\) −2.96779 5.14037i −0.121668 0.210735i
\(596\) 0 0
\(597\) 38.1526 + 13.4183i 1.56148 + 0.549175i
\(598\) 0 0
\(599\) −12.5346 21.7106i −0.512150 0.887069i −0.999901 0.0140866i \(-0.995516\pi\)
0.487751 0.872983i \(-0.337817\pi\)
\(600\) 0 0
\(601\) 15.5243 0.633249 0.316625 0.948551i \(-0.397450\pi\)
0.316625 + 0.948551i \(0.397450\pi\)
\(602\) 0 0
\(603\) −3.47271 + 22.5530i −0.141420 + 0.918428i
\(604\) 0 0
\(605\) 22.8589 + 39.5927i 0.929345 + 1.60967i
\(606\) 0 0
\(607\) 30.8883 1.25372 0.626858 0.779134i \(-0.284341\pi\)
0.626858 + 0.779134i \(0.284341\pi\)
\(608\) 0 0
\(609\) 6.60596 5.66663i 0.267687 0.229623i
\(610\) 0 0
\(611\) 2.11490 + 8.63592i 0.0855595 + 0.349372i
\(612\) 0 0
\(613\) 15.1558 + 26.2506i 0.612138 + 1.06025i 0.990879 + 0.134751i \(0.0430235\pi\)
−0.378742 + 0.925502i \(0.623643\pi\)
\(614\) 0 0
\(615\) −5.87091 31.3009i −0.236738 1.26218i
\(616\) 0 0
\(617\) 11.9498 0.481083 0.240541 0.970639i \(-0.422675\pi\)
0.240541 + 0.970639i \(0.422675\pi\)
\(618\) 0 0
\(619\) −11.3093 + 19.5884i −0.454561 + 0.787323i −0.998663 0.0516965i \(-0.983537\pi\)
0.544102 + 0.839019i \(0.316870\pi\)
\(620\) 0 0
\(621\) −17.2844 + 0.564170i −0.693599 + 0.0226394i
\(622\) 0 0
\(623\) 14.9479 25.8906i 0.598876 1.03728i
\(624\) 0 0
\(625\) 2.37728 + 4.11756i 0.0950911 + 0.164703i
\(626\) 0 0
\(627\) −23.7551 8.35469i −0.948686 0.333654i
\(628\) 0 0
\(629\) −4.00039 −0.159506
\(630\) 0 0
\(631\) 2.92924 5.07359i 0.116611 0.201976i −0.801811 0.597577i \(-0.796130\pi\)
0.918423 + 0.395601i \(0.129464\pi\)
\(632\) 0 0
\(633\) 0.280974 + 0.0988188i 0.0111677 + 0.00392769i
\(634\) 0 0
\(635\) −11.6770 + 20.2252i −0.463388 + 0.802612i
\(636\) 0 0
\(637\) 4.59158 + 18.7492i 0.181925 + 0.742870i
\(638\) 0 0
\(639\) −2.22132 + 14.4260i −0.0878741 + 0.570684i
\(640\) 0 0
\(641\) 6.94265 + 12.0250i 0.274218 + 0.474960i 0.969938 0.243354i \(-0.0782476\pi\)
−0.695719 + 0.718314i \(0.744914\pi\)
\(642\) 0 0
\(643\) 27.9811 1.10347 0.551734 0.834020i \(-0.313966\pi\)
0.551734 + 0.834020i \(0.313966\pi\)
\(644\) 0 0
\(645\) 31.4596 + 11.0644i 1.23872 + 0.435660i
\(646\) 0 0
\(647\) 13.4477 + 23.2920i 0.528682 + 0.915705i 0.999441 + 0.0334425i \(0.0106471\pi\)
−0.470758 + 0.882262i \(0.656020\pi\)
\(648\) 0 0
\(649\) 31.0206 1.21767
\(650\) 0 0
\(651\) 22.2363 + 7.82052i 0.871508 + 0.306510i
\(652\) 0 0
\(653\) 9.69819 16.7978i 0.379519 0.657347i −0.611473 0.791265i \(-0.709423\pi\)
0.990992 + 0.133918i \(0.0427560\pi\)
\(654\) 0 0
\(655\) −9.04884 + 15.6730i −0.353567 + 0.612397i
\(656\) 0 0
\(657\) 15.1217 5.87938i 0.589952 0.229376i
\(658\) 0 0
\(659\) −19.9251 34.5112i −0.776171 1.34437i −0.934134 0.356922i \(-0.883826\pi\)
0.157963 0.987445i \(-0.449507\pi\)
\(660\) 0 0
\(661\) −5.73725 + 9.93720i −0.223153 + 0.386512i −0.955764 0.294136i \(-0.904968\pi\)
0.732611 + 0.680648i \(0.238302\pi\)
\(662\) 0 0
\(663\) −6.26244 + 2.83863i −0.243213 + 0.110243i
\(664\) 0 0
\(665\) −6.13482 10.6258i −0.237898 0.412052i
\(666\) 0 0
\(667\) −2.37905 + 4.12063i −0.0921171 + 0.159551i
\(668\) 0 0
\(669\) −0.519265 2.76848i −0.0200759 0.107036i
\(670\) 0 0
\(671\) −9.89875 17.1451i −0.382137 0.661881i
\(672\) 0 0
\(673\) −36.7086 −1.41501 −0.707506 0.706707i \(-0.750180\pi\)
−0.707506 + 0.706707i \(0.750180\pi\)
\(674\) 0 0
\(675\) −13.7488 + 0.448768i −0.529193 + 0.0172731i
\(676\) 0 0
\(677\) −3.57943 + 6.19976i −0.137569 + 0.238276i −0.926576 0.376108i \(-0.877262\pi\)
0.789007 + 0.614384i \(0.210595\pi\)
\(678\) 0 0
\(679\) −6.19698 + 10.7335i −0.237818 + 0.411914i
\(680\) 0 0
\(681\) −29.6305 + 25.4172i −1.13544 + 0.973990i
\(682\) 0 0
\(683\) 13.2982 23.0331i 0.508841 0.881338i −0.491107 0.871099i \(-0.663408\pi\)
0.999948 0.0102387i \(-0.00325912\pi\)
\(684\) 0 0
\(685\) −10.7409 + 18.6037i −0.410387 + 0.710812i
\(686\) 0 0
\(687\) 31.7665 27.2495i 1.21197 1.03963i
\(688\) 0 0
\(689\) −16.1034 + 15.4214i −0.613490 + 0.587507i
\(690\) 0 0
\(691\) −31.1162 −1.18372 −0.591858 0.806042i \(-0.701605\pi\)
−0.591858 + 0.806042i \(0.701605\pi\)
\(692\) 0 0
\(693\) −52.5282 42.1638i −1.99538 1.60167i
\(694\) 0 0
\(695\) −6.35547 11.0080i −0.241077 0.417557i
\(696\) 0 0
\(697\) −6.59912 11.4300i −0.249959 0.432942i
\(698\) 0 0
\(699\) 5.26589 + 28.0753i 0.199174 + 1.06190i
\(700\) 0 0
\(701\) −38.5419 −1.45571 −0.727854 0.685732i \(-0.759482\pi\)
−0.727854 + 0.685732i \(0.759482\pi\)
\(702\) 0 0
\(703\) −8.26933 −0.311884
\(704\) 0 0
\(705\) −1.20771 6.43893i −0.0454849 0.242504i
\(706\) 0 0
\(707\) −26.1292 45.2570i −0.982688 1.70207i
\(708\) 0 0
\(709\) −0.920397 1.59417i −0.0345662 0.0598705i 0.848225 0.529636i \(-0.177672\pi\)
−0.882791 + 0.469766i \(0.844338\pi\)
\(710\) 0 0
\(711\) −2.18405 + 14.1839i −0.0819081 + 0.531939i
\(712\) 0 0
\(713\) −12.8863 −0.482597
\(714\) 0 0
\(715\) 33.9179 + 9.87934i 1.26846 + 0.369466i
\(716\) 0 0
\(717\) 13.7778 11.8187i 0.514541 0.441376i
\(718\) 0 0
\(719\) 9.15519 15.8573i 0.341431 0.591376i −0.643268 0.765641i \(-0.722422\pi\)
0.984699 + 0.174265i \(0.0557551\pi\)
\(720\) 0 0
\(721\) 20.2617 35.0943i 0.754585 1.30698i
\(722\) 0 0
\(723\) 30.4734 26.1402i 1.13332 0.972164i
\(724\) 0 0
\(725\) −1.89241 + 3.27775i −0.0702823 + 0.121732i
\(726\) 0 0
\(727\) −11.6183 + 20.1235i −0.430900 + 0.746340i −0.996951 0.0780300i \(-0.975137\pi\)
0.566051 + 0.824370i \(0.308470\pi\)
\(728\) 0 0
\(729\) −11.9464 + 24.2133i −0.442461 + 0.896788i
\(730\) 0 0
\(731\) 13.8206 0.511175
\(732\) 0 0
\(733\) −9.62013 16.6626i −0.355328 0.615446i 0.631846 0.775094i \(-0.282297\pi\)
−0.987174 + 0.159648i \(0.948964\pi\)
\(734\) 0 0
\(735\) −2.62202 13.9794i −0.0967145 0.515637i
\(736\) 0 0
\(737\) 24.2943 42.0790i 0.894892 1.55000i
\(738\) 0 0
\(739\) −1.98535 3.43873i −0.0730324 0.126496i 0.827197 0.561913i \(-0.189934\pi\)
−0.900229 + 0.435417i \(0.856601\pi\)
\(740\) 0 0
\(741\) −12.9453 + 5.86783i −0.475557 + 0.215560i
\(742\) 0 0
\(743\) 2.87589 4.98118i 0.105506 0.182742i −0.808439 0.588580i \(-0.799687\pi\)
0.913945 + 0.405838i \(0.133020\pi\)
\(744\) 0 0
\(745\) 3.01935 + 5.22966i 0.110620 + 0.191600i
\(746\) 0 0
\(747\) 2.91826 18.9522i 0.106774 0.693424i
\(748\) 0 0
\(749\) −15.5028 + 26.8517i −0.566460 + 0.981138i
\(750\) 0 0
\(751\) 22.6801 39.2831i 0.827610 1.43346i −0.0722986 0.997383i \(-0.523033\pi\)
0.899908 0.436079i \(-0.143633\pi\)
\(752\) 0 0
\(753\) −33.1337 11.6531i −1.20746 0.424664i
\(754\) 0 0
\(755\) 31.1044 1.13200
\(756\) 0 0
\(757\) 6.54346 + 11.3336i 0.237826 + 0.411927i 0.960090 0.279691i \(-0.0902319\pi\)
−0.722264 + 0.691617i \(0.756899\pi\)
\(758\) 0 0
\(759\) 34.7379 + 12.2174i 1.26091 + 0.443462i
\(760\) 0 0
\(761\) −27.0183 −0.979411 −0.489706 0.871888i \(-0.662896\pi\)
−0.489706 + 0.871888i \(0.662896\pi\)
\(762\) 0 0
\(763\) −16.2903 28.2156i −0.589747 1.02147i
\(764\) 0 0
\(765\) 4.72189 1.83589i 0.170720 0.0663769i
\(766\) 0 0
\(767\) 12.6455 12.1100i 0.456604 0.437265i
\(768\) 0 0
\(769\) −23.1288 + 40.0602i −0.834045 + 1.44461i 0.0607607 + 0.998152i \(0.480647\pi\)
−0.894806 + 0.446456i \(0.852686\pi\)
\(770\) 0 0
\(771\) 1.18621 + 0.417190i 0.0427202 + 0.0150247i
\(772\) 0 0
\(773\) 20.9744 36.3287i 0.754397 1.30665i −0.191276 0.981536i \(-0.561263\pi\)
0.945673 0.325118i \(-0.105404\pi\)
\(774\) 0 0
\(775\) −10.2504 −0.368205
\(776\) 0 0
\(777\) −20.8665 7.33879i −0.748583 0.263277i
\(778\) 0 0
\(779\) −13.6413 23.6273i −0.488749 0.846537i
\(780\) 0 0
\(781\) 15.5398 26.9158i 0.556059 0.963123i
\(782\) 0 0
\(783\) 3.92224 + 6.30883i 0.140169 + 0.225459i
\(784\) 0 0
\(785\) 17.9837 31.1487i 0.641866 1.11174i
\(786\) 0 0
\(787\) 41.0216 1.46226 0.731131 0.682237i \(-0.238993\pi\)
0.731131 + 0.682237i \(0.238993\pi\)
\(788\) 0 0
\(789\) −3.07209 16.3789i −0.109369 0.583105i
\(790\) 0 0
\(791\) −11.8182 20.4698i −0.420207 0.727821i
\(792\) 0 0
\(793\) −10.7284 3.12489i −0.380977 0.110968i
\(794\) 0 0
\(795\) 12.4695 10.6964i 0.442248 0.379363i
\(796\) 0 0
\(797\) 16.5621 0.586660 0.293330 0.956011i \(-0.405236\pi\)
0.293330 + 0.956011i \(0.405236\pi\)
\(798\) 0 0
\(799\) −1.35751 2.35127i −0.0480252 0.0831821i
\(800\) 0 0
\(801\) 19.8994 + 15.9731i 0.703112 + 0.564381i
\(802\) 0 0
\(803\) −34.5471 −1.21914
\(804\) 0 0
\(805\) 8.97117 + 15.5385i 0.316192 + 0.547661i
\(806\) 0 0
\(807\) −20.0127 7.03849i −0.704480 0.247767i
\(808\) 0 0
\(809\) −25.0672 43.4176i −0.881314 1.52648i −0.849880 0.526976i \(-0.823326\pi\)
−0.0314339 0.999506i \(-0.510007\pi\)
\(810\) 0 0
\(811\) −15.2618 −0.535914 −0.267957 0.963431i \(-0.586349\pi\)
−0.267957 + 0.963431i \(0.586349\pi\)
\(812\) 0 0
\(813\) −6.95346 + 5.96472i −0.243869 + 0.209192i
\(814\) 0 0
\(815\) −4.73369 −0.165814
\(816\) 0 0
\(817\) 28.5691 0.999507
\(818\) 0 0
\(819\) −37.8732 + 3.31811i −1.32340 + 0.115944i
\(820\) 0 0
\(821\) −5.12150 −0.178742 −0.0893708 0.995998i \(-0.528486\pi\)
−0.0893708 + 0.995998i \(0.528486\pi\)
\(822\) 0 0
\(823\) −14.9031 −0.519490 −0.259745 0.965677i \(-0.583638\pi\)
−0.259745 + 0.965677i \(0.583638\pi\)
\(824\) 0 0
\(825\) 27.6322 + 9.71828i 0.962029 + 0.338347i
\(826\) 0 0
\(827\) −18.5879 −0.646364 −0.323182 0.946337i \(-0.604753\pi\)
−0.323182 + 0.946337i \(0.604753\pi\)
\(828\) 0 0
\(829\) −10.4298 18.0650i −0.362243 0.627422i 0.626087 0.779753i \(-0.284655\pi\)
−0.988330 + 0.152331i \(0.951322\pi\)
\(830\) 0 0
\(831\) 7.79465 6.68629i 0.270393 0.231945i
\(832\) 0 0
\(833\) −2.94724 5.10477i −0.102116 0.176870i
\(834\) 0 0
\(835\) 29.9202 1.03543
\(836\) 0 0
\(837\) −9.48577 + 17.7425i −0.327876 + 0.613271i
\(838\) 0 0
\(839\) −18.0229 31.2165i −0.622219 1.07771i −0.989072 0.147436i \(-0.952898\pi\)
0.366853 0.930279i \(-0.380435\pi\)
\(840\) 0 0
\(841\) −26.9561 −0.929521
\(842\) 0 0
\(843\) 53.2270 + 18.7200i 1.83323 + 0.644751i
\(844\) 0 0
\(845\) 17.6834 9.21372i 0.608326 0.316962i
\(846\) 0 0
\(847\) 52.3814 + 90.7273i 1.79985 + 3.11743i
\(848\) 0 0
\(849\) −30.3063 10.6588i −1.04011 0.365808i
\(850\) 0 0
\(851\) 12.0925 0.414527
\(852\) 0 0
\(853\) 6.97776 12.0858i 0.238914 0.413811i −0.721489 0.692426i \(-0.756542\pi\)
0.960403 + 0.278615i \(0.0898753\pi\)
\(854\) 0 0
\(855\) 9.76078 3.79504i 0.333812 0.129788i
\(856\) 0 0
\(857\) 8.73939 15.1371i 0.298532 0.517073i −0.677268 0.735736i \(-0.736836\pi\)
0.975800 + 0.218664i \(0.0701697\pi\)
\(858\) 0 0
\(859\) −4.17576 7.23263i −0.142475 0.246774i 0.785953 0.618286i \(-0.212173\pi\)
−0.928428 + 0.371512i \(0.878839\pi\)
\(860\) 0 0
\(861\) −13.4533 71.7266i −0.458487 2.44444i
\(862\) 0 0
\(863\) 4.11501 0.140077 0.0700384 0.997544i \(-0.477688\pi\)
0.0700384 + 0.997544i \(0.477688\pi\)
\(864\) 0 0
\(865\) −8.20635 + 14.2138i −0.279024 + 0.483284i
\(866\) 0 0
\(867\) −20.7553 + 17.8040i −0.704886 + 0.604655i
\(868\) 0 0
\(869\) 15.2791 26.4642i 0.518308 0.897735i
\(870\) 0 0
\(871\) −6.52342 26.6376i −0.221038 0.902581i
\(872\) 0 0
\(873\) −8.24974 6.62198i −0.279211 0.224120i
\(874\) 0 0
\(875\) 20.6138 + 35.7042i 0.696874 + 1.20702i
\(876\) 0 0
\(877\) 10.6198 0.358606 0.179303 0.983794i \(-0.442616\pi\)
0.179303 + 0.983794i \(0.442616\pi\)
\(878\) 0 0
\(879\) −5.74258 30.6168i −0.193693 1.03268i
\(880\) 0 0
\(881\) 15.0048 + 25.9891i 0.505525 + 0.875595i 0.999980 + 0.00639173i \(0.00203456\pi\)
−0.494454 + 0.869204i \(0.664632\pi\)
\(882\) 0 0
\(883\) 21.3674 0.719072 0.359536 0.933131i \(-0.382935\pi\)
0.359536 + 0.933131i \(0.382935\pi\)
\(884\) 0 0
\(885\) −9.79197 + 8.39961i −0.329154 + 0.282350i
\(886\) 0 0
\(887\) −20.1581 + 34.9148i −0.676841 + 1.17232i 0.299086 + 0.954226i \(0.403318\pi\)
−0.975927 + 0.218097i \(0.930015\pi\)
\(888\) 0 0
\(889\) −26.7581 + 46.3464i −0.897437 + 1.55441i
\(890\) 0 0
\(891\) 42.3924 38.8355i 1.42020 1.30104i
\(892\) 0 0
\(893\) −2.80615 4.86039i −0.0939042 0.162647i
\(894\) 0 0
\(895\) −1.74959 + 3.03037i −0.0584822 + 0.101294i
\(896\) 0 0
\(897\) 18.9304 8.58074i 0.632066 0.286502i
\(898\) 0 0
\(899\) 2.76774 + 4.79387i 0.0923094 + 0.159884i
\(900\) 0 0
\(901\) 3.40427 5.89637i 0.113413 0.196436i
\(902\) 0 0
\(903\) 72.0903 + 25.3542i 2.39901 + 0.843736i
\(904\) 0 0
\(905\) 7.88051 + 13.6494i 0.261957 + 0.453723i
\(906\) 0 0
\(907\) 14.7911 0.491131 0.245566 0.969380i \(-0.421026\pi\)
0.245566 + 0.969380i \(0.421026\pi\)
\(908\) 0 0
\(909\) 41.5727 16.1637i 1.37888 0.536115i
\(910\) 0 0
\(911\) −16.1529 + 27.9777i −0.535170 + 0.926942i 0.463985 + 0.885843i \(0.346419\pi\)
−0.999155 + 0.0410987i \(0.986914\pi\)
\(912\) 0 0
\(913\) −20.4155 + 35.3607i −0.675654 + 1.17027i
\(914\) 0 0
\(915\) 7.76712 + 2.73171i 0.256773 + 0.0903074i
\(916\) 0 0
\(917\) −20.7356 + 35.9150i −0.684748 + 1.18602i
\(918\) 0 0
\(919\) 18.5950 32.2075i 0.613392 1.06243i −0.377272 0.926103i \(-0.623138\pi\)
0.990664 0.136324i \(-0.0435289\pi\)
\(920\) 0 0
\(921\) 4.49677 + 23.9747i 0.148174 + 0.789992i
\(922\) 0 0
\(923\) −4.17270 17.0387i −0.137346 0.560837i
\(924\) 0 0
\(925\) 9.61899 0.316270
\(926\) 0 0
\(927\) 26.9734 + 21.6513i 0.885922 + 0.711121i
\(928\) 0 0
\(929\) −7.60222 13.1674i −0.249421 0.432009i 0.713944 0.700202i \(-0.246907\pi\)
−0.963365 + 0.268193i \(0.913574\pi\)
\(930\) 0 0
\(931\) −6.09234 10.5522i −0.199668 0.345836i
\(932\) 0 0
\(933\) −40.3438 + 34.6071i −1.32080 + 1.13299i
\(934\) 0 0
\(935\) −10.7877 −0.352795
\(936\) 0 0
\(937\) 56.1934 1.83576 0.917880 0.396859i \(-0.129900\pi\)
0.917880 + 0.396859i \(0.129900\pi\)
\(938\) 0 0
\(939\) −17.9192 6.30220i −0.584771 0.205665i
\(940\) 0 0
\(941\) 15.6111 + 27.0393i 0.508909 + 0.881455i 0.999947 + 0.0103174i \(0.00328419\pi\)
−0.491038 + 0.871138i \(0.663382\pi\)
\(942\) 0 0
\(943\) 19.9481 + 34.5511i 0.649599 + 1.12514i
\(944\) 0 0
\(945\) 27.9980 0.913866i 0.910774 0.0297281i
\(946\) 0 0
\(947\) −40.6727 −1.32169 −0.660843 0.750524i \(-0.729801\pi\)
−0.660843 + 0.750524i \(0.729801\pi\)
\(948\) 0 0
\(949\) −14.0831 + 13.4867i −0.457157 + 0.437795i
\(950\) 0 0
\(951\) −3.76959 1.32577i −0.122237 0.0429910i
\(952\) 0 0
\(953\) 1.35525 2.34736i 0.0439008 0.0760384i −0.843240 0.537537i \(-0.819355\pi\)
0.887141 + 0.461499i \(0.152688\pi\)
\(954\) 0 0
\(955\) 18.1205 31.3857i 0.586367 1.01562i
\(956\) 0 0
\(957\) −2.91604 15.5470i −0.0942623 0.502562i
\(958\) 0 0
\(959\) −24.6129 + 42.6307i −0.794791 + 1.37662i
\(960\) 0 0
\(961\) 8.00414 13.8636i 0.258198 0.447212i
\(962\) 0 0
\(963\) −20.6381 16.5660i −0.665054 0.533833i
\(964\) 0 0
\(965\) −16.9327 −0.545082
\(966\) 0 0
\(967\) −2.04491 3.54189i −0.0657600 0.113900i 0.831271 0.555868i \(-0.187614\pi\)
−0.897031 + 0.441968i \(0.854280\pi\)
\(968\) 0 0
\(969\) 3.29421 2.82579i 0.105825 0.0907774i
\(970\) 0 0
\(971\) −6.04999 + 10.4789i −0.194153 + 0.336283i −0.946623 0.322344i \(-0.895529\pi\)
0.752469 + 0.658627i \(0.228863\pi\)
\(972\) 0 0
\(973\) −14.5637 25.2250i −0.466890 0.808677i
\(974\) 0 0
\(975\) 15.0581 6.82553i 0.482246 0.218592i
\(976\) 0 0
\(977\) −3.82475 + 6.62467i −0.122365 + 0.211942i −0.920700 0.390272i \(-0.872381\pi\)
0.798335 + 0.602214i \(0.205714\pi\)
\(978\) 0 0
\(979\) −27.1672 47.0550i −0.868268 1.50388i
\(980\) 0 0
\(981\) 25.9185 10.0773i 0.827515 0.321742i
\(982\) 0 0
\(983\) 25.0980 43.4711i 0.800503 1.38651i −0.118783 0.992920i \(-0.537899\pi\)
0.919286 0.393591i \(-0.128767\pi\)
\(984\) 0 0
\(985\) −6.86659 + 11.8933i −0.218788 + 0.378952i
\(986\) 0 0
\(987\) −2.76748 14.7549i −0.0880899 0.469654i
\(988\) 0 0
\(989\) −41.7776 −1.32845
\(990\) 0 0
\(991\) −21.7547 37.6803i −0.691062 1.19695i −0.971490 0.237079i \(-0.923810\pi\)
0.280428 0.959875i \(-0.409523\pi\)
\(992\) 0 0
\(993\) −44.2374 + 37.9471i −1.40383 + 1.20421i
\(994\) 0 0
\(995\) 35.8149 1.13541
\(996\) 0 0
\(997\) 15.1014 + 26.1564i 0.478266 + 0.828381i 0.999690 0.0249170i \(-0.00793213\pi\)
−0.521423 + 0.853298i \(0.674599\pi\)
\(998\) 0 0
\(999\) 8.90145 16.6496i 0.281629 0.526770i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.r.f.601.11 40
3.2 odd 2 2808.2.r.f.289.8 40
9.4 even 3 936.2.s.f.913.17 yes 40
9.5 odd 6 2808.2.s.f.1225.8 40
13.9 even 3 936.2.s.f.529.17 yes 40
39.35 odd 6 2808.2.s.f.1153.8 40
117.22 even 3 inner 936.2.r.f.841.11 yes 40
117.113 odd 6 2808.2.r.f.2089.8 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.r.f.601.11 40 1.1 even 1 trivial
936.2.r.f.841.11 yes 40 117.22 even 3 inner
936.2.s.f.529.17 yes 40 13.9 even 3
936.2.s.f.913.17 yes 40 9.4 even 3
2808.2.r.f.289.8 40 3.2 odd 2
2808.2.r.f.2089.8 40 117.113 odd 6
2808.2.s.f.1153.8 40 39.35 odd 6
2808.2.s.f.1225.8 40 9.5 odd 6