L(s) = 1 | + (−0.766 + 1.32i)5-s − 3.51·7-s + (3.19 − 5.53i)11-s + (−3.46 − 1.00i)13-s + (0.550 − 0.953i)17-s + (−1.13 + 1.97i)19-s + 3.32·23-s + (1.32 + 2.29i)25-s + (−0.714 + 1.23i)29-s + (−1.93 + 3.35i)31-s + (2.69 − 4.66i)35-s + (1.81 + 3.14i)37-s − 11.9·41-s + 12.5·43-s + (1.23 + 2.13i)47-s + ⋯ |
L(s) = 1 | + (−0.342 + 0.594i)5-s − 1.32·7-s + (0.963 − 1.66i)11-s + (−0.960 − 0.279i)13-s + (0.133 − 0.231i)17-s + (−0.261 + 0.452i)19-s + 0.693·23-s + (0.264 + 0.458i)25-s + (−0.132 + 0.229i)29-s + (−0.347 + 0.602i)31-s + (0.455 − 0.789i)35-s + (0.298 + 0.517i)37-s − 1.87·41-s + 1.91·43-s + (0.179 + 0.311i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0260 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0260 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8904554977\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8904554977\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (3.46 + 1.00i)T \) |
good | 5 | \( 1 + (0.766 - 1.32i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + 3.51T + 7T^{2} \) |
| 11 | \( 1 + (-3.19 + 5.53i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.550 + 0.953i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.13 - 1.97i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 3.32T + 23T^{2} \) |
| 29 | \( 1 + (0.714 - 1.23i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.93 - 3.35i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.81 - 3.14i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 11.9T + 41T^{2} \) |
| 43 | \( 1 - 12.5T + 43T^{2} \) |
| 47 | \( 1 + (-1.23 - 2.13i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 6.18T + 53T^{2} \) |
| 59 | \( 1 + (-2.42 - 4.20i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 - 3.09T + 61T^{2} \) |
| 67 | \( 1 + 7.60T + 67T^{2} \) |
| 71 | \( 1 + (2.43 - 4.21i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 5.40T + 73T^{2} \) |
| 79 | \( 1 + (-2.39 - 4.14i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.19 - 5.53i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-4.25 - 7.36i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 3.52T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.047774551012541705391086278829, −8.311991422368531676565107083311, −7.24622408848845352272028618326, −6.77597810426513340390720507982, −6.02838842219633091128188697773, −5.27931210686188670768272596542, −3.94637374557727225595324166079, −3.29480152264743273396547911266, −2.73193657042735935666224273772, −0.979572411654696205006073262328,
0.34470687528149499903669065246, 1.85096082562119844361164077914, 2.85613824268766643238851242971, 4.04429104224418652891939894473, 4.49088876549398521580099626109, 5.47508784810799574207115869685, 6.57940299625703731082702662220, 6.99407958332394339337959478055, 7.70906819205430849139975619165, 8.900317097357933690316413832531