gp: [N,k,chi] = [936,2,Mod(529,936)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(936, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 4, 4]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("936.529");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [40,0,-3,0,1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(936, [\chi])\):
\( T_{5}^{40} - T_{5}^{39} + 62 T_{5}^{38} - 81 T_{5}^{37} + 2315 T_{5}^{36} - 3336 T_{5}^{35} + \cdots + 855036081 \)
T5^40 - T5^39 + 62*T5^38 - 81*T5^37 + 2315*T5^36 - 3336*T5^35 + 56717*T5^34 - 88654*T5^33 + 1030681*T5^32 - 1675179*T5^31 + 14034210*T5^30 - 23396079*T5^29 + 148679215*T5^28 - 247494634*T5^27 + 1221227240*T5^26 - 1997054784*T5^25 + 7927623671*T5^24 - 12431518263*T5^23 + 40544176943*T5^22 - 59765866444*T5^21 + 164273236984*T5^20 - 223258407804*T5^19 + 522857403933*T5^18 - 642098638887*T5^17 + 1301941290394*T5^16 - 1423164536119*T5^15 + 2504938396865*T5^14 - 2374251610635*T5^13 + 3650282506847*T5^12 - 2940817912167*T5^11 + 3925533726665*T5^10 - 2542011051784*T5^9 + 2913287758639*T5^8 - 1449916900191*T5^7 + 1414949005194*T5^6 - 442525274748*T5^5 + 305073843084*T5^4 - 28025614764*T5^3 + 35476935660*T5^2 - 4770201294*T5 + 855036081
\( T_{7}^{20} + 7 T_{7}^{19} - 57 T_{7}^{18} - 492 T_{7}^{17} + 1031 T_{7}^{16} + 13819 T_{7}^{15} + \cdots - 2565648 \)
T7^20 + 7*T7^19 - 57*T7^18 - 492*T7^17 + 1031*T7^16 + 13819*T7^15 - 1682*T7^14 - 199539*T7^13 - 166618*T7^12 + 1591548*T7^11 + 2208263*T7^10 - 7082247*T7^9 - 12389470*T7^8 + 17194218*T7^7 + 35162459*T7^6 - 20148206*T7^5 - 49789797*T7^4 + 5410407*T7^3 + 29574882*T7^2 + 5387445*T7 - 2565648