Properties

Label 936.2.s
Level $936$
Weight $2$
Character orbit 936.s
Rep. character $\chi_{936}(529,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $84$
Newform subspaces $6$
Sturm bound $336$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.s (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 117 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 6 \)
Sturm bound: \(336\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(936, [\chi])\).

Total New Old
Modular forms 352 84 268
Cusp forms 320 84 236
Eisenstein series 32 0 32

Trace form

\( 84 q + 8 q^{15} + 8 q^{17} - 16 q^{21} - 8 q^{23} - 42 q^{25} + 6 q^{27} + 12 q^{29} + 6 q^{31} + 2 q^{33} - 30 q^{35} - 20 q^{39} - 12 q^{43} + 12 q^{45} + 6 q^{47} + 84 q^{49} + 18 q^{51} - 32 q^{53}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(936, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
936.2.s.a 936.s 117.f $2$ $7.474$ \(\Q(\sqrt{-3}) \) None 936.2.r.b \(0\) \(-3\) \(-3\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2+\zeta_{6})q^{3}-3\zeta_{6}q^{5}-q^{7}+(3+\cdots)q^{9}+\cdots\)
936.2.s.b 936.s 117.f $2$ $7.474$ \(\Q(\sqrt{-3}) \) None 936.2.r.a \(0\) \(0\) \(-3\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+2\zeta_{6})q^{3}-3\zeta_{6}q^{5}-3q^{9}+\cdots\)
936.2.s.c 936.s 117.f $2$ $7.474$ \(\Q(\sqrt{-3}) \) None 936.2.r.c \(0\) \(3\) \(-1\) \(6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(2-\zeta_{6})q^{3}-\zeta_{6}q^{5}+3q^{7}+(3-3\zeta_{6})q^{9}+\cdots\)
936.2.s.d 936.s 117.f $2$ $7.474$ \(\Q(\sqrt{-3}) \) None 936.2.r.d \(0\) \(3\) \(1\) \(10\) $\mathrm{SU}(2)[C_{3}]$ \(q+(2-\zeta_{6})q^{3}+\zeta_{6}q^{5}+5q^{7}+(3-3\zeta_{6})q^{9}+\cdots\)
936.2.s.e 936.s 117.f $36$ $7.474$ None 936.2.r.e \(0\) \(0\) \(5\) \(0\) $\mathrm{SU}(2)[C_{3}]$
936.2.s.f 936.s 117.f $40$ $7.474$ None 936.2.r.f \(0\) \(-3\) \(1\) \(-14\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{2}^{\mathrm{old}}(936, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(936, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(234, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(468, [\chi])\)\(^{\oplus 2}\)