Defining parameters
Level: | \( N \) | \(=\) | \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 936.s (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 117 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(936, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 352 | 84 | 268 |
Cusp forms | 320 | 84 | 236 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(936, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
936.2.s.a | $2$ | $7.474$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-3\) | \(-3\) | \(-2\) | \(q+(-2+\zeta_{6})q^{3}-3\zeta_{6}q^{5}-q^{7}+(3+\cdots)q^{9}+\cdots\) |
936.2.s.b | $2$ | $7.474$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(-3\) | \(0\) | \(q+(-1+2\zeta_{6})q^{3}-3\zeta_{6}q^{5}-3q^{9}+\cdots\) |
936.2.s.c | $2$ | $7.474$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(3\) | \(-1\) | \(6\) | \(q+(2-\zeta_{6})q^{3}-\zeta_{6}q^{5}+3q^{7}+(3-3\zeta_{6})q^{9}+\cdots\) |
936.2.s.d | $2$ | $7.474$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(3\) | \(1\) | \(10\) | \(q+(2-\zeta_{6})q^{3}+\zeta_{6}q^{5}+5q^{7}+(3-3\zeta_{6})q^{9}+\cdots\) |
936.2.s.e | $36$ | $7.474$ | None | \(0\) | \(0\) | \(5\) | \(0\) | ||
936.2.s.f | $40$ | $7.474$ | None | \(0\) | \(-3\) | \(1\) | \(-14\) |
Decomposition of \(S_{2}^{\mathrm{old}}(936, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(936, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(234, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(468, [\chi])\)\(^{\oplus 2}\)