L(s) = 1 | + (−0.983 − 1.42i)3-s + (−0.702 + 1.21i)5-s − 2.51·7-s + (−1.06 + 2.80i)9-s + (1.01 − 1.76i)11-s + (0.489 − 3.57i)13-s + (2.42 − 0.194i)15-s + (−3.08 + 5.34i)17-s + (0.189 − 0.328i)19-s + (2.47 + 3.58i)21-s + 8.73·23-s + (1.51 + 2.62i)25-s + (5.04 − 1.23i)27-s + (−1.04 + 1.81i)29-s + (−2.09 + 3.62i)31-s + ⋯ |
L(s) = 1 | + (−0.567 − 0.823i)3-s + (−0.314 + 0.543i)5-s − 0.949·7-s + (−0.355 + 0.934i)9-s + (0.306 − 0.530i)11-s + (0.135 − 0.990i)13-s + (0.626 − 0.0502i)15-s + (−0.748 + 1.29i)17-s + (0.0435 − 0.0754i)19-s + (0.539 + 0.781i)21-s + 1.82·23-s + (0.302 + 0.524i)25-s + (0.971 − 0.237i)27-s + (−0.194 + 0.337i)29-s + (−0.376 + 0.651i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.892 - 0.450i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.892 - 0.450i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.887680 + 0.211053i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.887680 + 0.211053i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.983 + 1.42i)T \) |
| 13 | \( 1 + (-0.489 + 3.57i)T \) |
good | 5 | \( 1 + (0.702 - 1.21i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + 2.51T + 7T^{2} \) |
| 11 | \( 1 + (-1.01 + 1.76i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (3.08 - 5.34i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.189 + 0.328i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 8.73T + 23T^{2} \) |
| 29 | \( 1 + (1.04 - 1.81i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (2.09 - 3.62i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.87 - 8.43i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 4.57T + 41T^{2} \) |
| 43 | \( 1 - 1.60T + 43T^{2} \) |
| 47 | \( 1 + (0.0950 + 0.164i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 10.9T + 53T^{2} \) |
| 59 | \( 1 + (-3.80 - 6.59i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + 7.59T + 61T^{2} \) |
| 67 | \( 1 - 3.81T + 67T^{2} \) |
| 71 | \( 1 + (-5.34 + 9.25i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 8.57T + 73T^{2} \) |
| 79 | \( 1 + (5.34 + 9.26i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.605 - 1.04i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-4.08 - 7.06i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 16.8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.51073217681533124011377796528, −9.177367175571984240907463984518, −8.371330910235564588917328956765, −7.39413109362712746767936736761, −6.65586950942643180066368305551, −6.06434819868132882909094159865, −5.05864168715777361796713665212, −3.56403419244089974001593820082, −2.74147508067386546411987594536, −1.05066884334917137470419013023,
0.57929918585128782365365550367, 2.65158675793137705732867676847, 3.95383629189523429760629186285, 4.57059635036551553948185867778, 5.52639068392244015701627127278, 6.62663704179198246228202313785, 7.17676974635360594793114933314, 8.707069464735516490814930742866, 9.387086546742273308712137714014, 9.683713213968085884896388786719