L(s) = 1 | + (−0.813 + 1.52i)3-s + (0.950 − 1.64i)5-s − 2.76·7-s + (−1.67 − 2.48i)9-s + (0.759 − 1.31i)11-s + (3.30 + 1.44i)13-s + (1.74 + 2.79i)15-s + (−1.83 + 3.17i)17-s + (−3.58 + 6.21i)19-s + (2.24 − 4.22i)21-s − 6.96·23-s + (0.694 + 1.20i)25-s + (5.16 − 0.543i)27-s + (−2.66 + 4.60i)29-s + (−4.05 + 7.02i)31-s + ⋯ |
L(s) = 1 | + (−0.469 + 0.882i)3-s + (0.424 − 0.735i)5-s − 1.04·7-s + (−0.559 − 0.828i)9-s + (0.228 − 0.396i)11-s + (0.916 + 0.400i)13-s + (0.450 + 0.720i)15-s + (−0.444 + 0.769i)17-s + (−0.823 + 1.42i)19-s + (0.490 − 0.922i)21-s − 1.45·23-s + (0.138 + 0.240i)25-s + (0.994 − 0.104i)27-s + (−0.493 + 0.855i)29-s + (−0.728 + 1.26i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.911 - 0.410i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.911 - 0.410i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.108724 + 0.506188i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.108724 + 0.506188i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.813 - 1.52i)T \) |
| 13 | \( 1 + (-3.30 - 1.44i)T \) |
good | 5 | \( 1 + (-0.950 + 1.64i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + 2.76T + 7T^{2} \) |
| 11 | \( 1 + (-0.759 + 1.31i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (1.83 - 3.17i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.58 - 6.21i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 6.96T + 23T^{2} \) |
| 29 | \( 1 + (2.66 - 4.60i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.05 - 7.02i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (4.41 + 7.65i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 1.81T + 41T^{2} \) |
| 43 | \( 1 + 0.791T + 43T^{2} \) |
| 47 | \( 1 + (0.382 + 0.661i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 6.15T + 53T^{2} \) |
| 59 | \( 1 + (0.779 + 1.34i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + 13.1T + 61T^{2} \) |
| 67 | \( 1 + 1.10T + 67T^{2} \) |
| 71 | \( 1 + (-7.35 + 12.7i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 1.28T + 73T^{2} \) |
| 79 | \( 1 + (-2.49 - 4.32i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.82 - 8.35i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-7.48 - 12.9i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 13.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57309935640666022502297601327, −9.469574313624572198389067285445, −9.003707279231329294250328378070, −8.237954704577970565512101546030, −6.62273526554293110097018456517, −6.03216884466656196034471842309, −5.33664250022843803689669744210, −3.97447118228547486093934340143, −3.56946260383317137437379905835, −1.66055166281792815461491133897,
0.24602625007944148615389993479, 2.08184803495466863221551483533, 2.95583070122369960621680008706, 4.32746371330521104890149609151, 5.72378039106887631849502024404, 6.40366580732957868296332070763, 6.86346337436781547610964874301, 7.83475127157397612033078281475, 8.885978675401472907713075529841, 9.795495300897277833757889895681