L(s) = 1 | + (−1.11 + 1.32i)3-s + (−0.816 + 1.41i)5-s − 0.664·7-s + (−0.511 − 2.95i)9-s + (2.30 − 3.98i)11-s + (−3.59 − 0.333i)13-s + (−0.963 − 2.66i)15-s + (0.691 − 1.19i)17-s + (2.59 − 4.50i)19-s + (0.741 − 0.881i)21-s − 4.31·23-s + (1.16 + 2.01i)25-s + (4.48 + 2.62i)27-s + (0.173 − 0.301i)29-s + (2.78 − 4.81i)31-s + ⋯ |
L(s) = 1 | + (−0.644 + 0.764i)3-s + (−0.365 + 0.632i)5-s − 0.251·7-s + (−0.170 − 0.985i)9-s + (0.693 − 1.20i)11-s + (−0.995 − 0.0923i)13-s + (−0.248 − 0.686i)15-s + (0.167 − 0.290i)17-s + (0.596 − 1.03i)19-s + (0.161 − 0.192i)21-s − 0.899·23-s + (0.233 + 0.403i)25-s + (0.863 + 0.504i)27-s + (0.0323 − 0.0559i)29-s + (0.499 − 0.865i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.864 + 0.501i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.864 + 0.501i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.866416 - 0.233117i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.866416 - 0.233117i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.11 - 1.32i)T \) |
| 13 | \( 1 + (3.59 + 0.333i)T \) |
good | 5 | \( 1 + (0.816 - 1.41i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + 0.664T + 7T^{2} \) |
| 11 | \( 1 + (-2.30 + 3.98i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.691 + 1.19i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.59 + 4.50i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 4.31T + 23T^{2} \) |
| 29 | \( 1 + (-0.173 + 0.301i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.78 + 4.81i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.78 - 4.82i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 2.66T + 41T^{2} \) |
| 43 | \( 1 - 12.7T + 43T^{2} \) |
| 47 | \( 1 + (5.07 + 8.79i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 0.833T + 53T^{2} \) |
| 59 | \( 1 + (3.54 + 6.13i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 - 6.99T + 61T^{2} \) |
| 67 | \( 1 - 12.3T + 67T^{2} \) |
| 71 | \( 1 + (2.13 - 3.69i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 8.70T + 73T^{2} \) |
| 79 | \( 1 + (7.71 + 13.3i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.471 - 0.817i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (6.06 + 10.4i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 15.0T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.878419180791618571442935895623, −9.472246559568779681050456034238, −8.402195770326616996209214939207, −7.29797368170059121376702911667, −6.48216230386278604729915622831, −5.66775179562381048528943192105, −4.66442103371032372689785229919, −3.64174039381168012398263989782, −2.81590950528429591892257548239, −0.53115512715778705967175980273,
1.17999876900789682734549480311, 2.37695416221012475140482471975, 4.07462743221885881080675320182, 4.86849725021575596036191480494, 5.87012376630107035647777209883, 6.76764044738724632052273901092, 7.58189047654200208880840118623, 8.198700625664389115865916360818, 9.445691342945776111020921011405, 10.03012316467969760890347725523