Properties

Label 936.2.s.f.913.6
Level $936$
Weight $2$
Character 936.913
Analytic conductor $7.474$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(529,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,-3,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 913.6
Character \(\chi\) \(=\) 936.913
Dual form 936.2.s.f.529.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.11550 + 1.32501i) q^{3} +(-0.816777 + 1.41470i) q^{5} -0.664936 q^{7} +(-0.511312 - 2.95611i) q^{9} +(2.30132 - 3.98600i) q^{11} +(-3.59014 - 0.333001i) q^{13} +(-0.963376 - 2.66034i) q^{15} +(0.691459 - 1.19764i) q^{17} +(2.59815 - 4.50012i) q^{19} +(0.741737 - 0.881048i) q^{21} -4.31354 q^{23} +(1.16575 + 2.01914i) q^{25} +(4.48724 + 2.62005i) q^{27} +(0.173958 - 0.301305i) q^{29} +(2.78262 - 4.81965i) q^{31} +(2.71437 + 7.49567i) q^{33} +(0.543104 - 0.940684i) q^{35} +(2.78525 + 4.82419i) q^{37} +(4.44604 - 4.38552i) q^{39} +2.66959 q^{41} +12.7711 q^{43} +(4.59963 + 1.69113i) q^{45} +(-5.07938 - 8.79774i) q^{47} -6.55786 q^{49} +(0.815566 + 2.25216i) q^{51} -0.833384 q^{53} +(3.75933 + 6.51135i) q^{55} +(3.06448 + 8.46247i) q^{57} +(-3.54267 - 6.13608i) q^{59} +6.99585 q^{61} +(0.339990 + 1.96562i) q^{63} +(3.40344 - 4.80698i) q^{65} +12.3540 q^{67} +(4.81176 - 5.71549i) q^{69} +(-2.13470 + 3.69740i) q^{71} +8.70686 q^{73} +(-3.97579 - 0.707721i) q^{75} +(-1.53023 + 2.65044i) q^{77} +(-7.71985 - 13.3712i) q^{79} +(-8.47712 + 3.02298i) q^{81} +(0.471968 + 0.817473i) q^{83} +(1.12954 + 1.95641i) q^{85} +(0.205181 + 0.566602i) q^{87} +(-6.06011 - 10.4964i) q^{89} +(2.38721 + 0.221424i) q^{91} +(3.28207 + 9.06334i) q^{93} +(4.24421 + 7.35119i) q^{95} -15.0716 q^{97} +(-12.9597 - 4.76486i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 3 q^{3} + q^{5} - 14 q^{7} - 9 q^{9} - 3 q^{13} + 2 q^{15} - q^{17} + 2 q^{19} - 30 q^{21} + 2 q^{23} - 23 q^{25} - 3 q^{27} + 12 q^{29} + 8 q^{31} - 5 q^{33} - 12 q^{35} + 18 q^{37} - 6 q^{39}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.11550 + 1.32501i −0.644035 + 0.764996i
\(4\) 0 0
\(5\) −0.816777 + 1.41470i −0.365274 + 0.632672i −0.988820 0.149114i \(-0.952358\pi\)
0.623546 + 0.781786i \(0.285691\pi\)
\(6\) 0 0
\(7\) −0.664936 −0.251322 −0.125661 0.992073i \(-0.540105\pi\)
−0.125661 + 0.992073i \(0.540105\pi\)
\(8\) 0 0
\(9\) −0.511312 2.95611i −0.170437 0.985369i
\(10\) 0 0
\(11\) 2.30132 3.98600i 0.693874 1.20183i −0.276685 0.960961i \(-0.589236\pi\)
0.970559 0.240864i \(-0.0774309\pi\)
\(12\) 0 0
\(13\) −3.59014 0.333001i −0.995726 0.0923578i
\(14\) 0 0
\(15\) −0.963376 2.66034i −0.248743 0.686896i
\(16\) 0 0
\(17\) 0.691459 1.19764i 0.167703 0.290471i −0.769909 0.638154i \(-0.779698\pi\)
0.937612 + 0.347683i \(0.113032\pi\)
\(18\) 0 0
\(19\) 2.59815 4.50012i 0.596056 1.03240i −0.397341 0.917671i \(-0.630067\pi\)
0.993397 0.114728i \(-0.0365996\pi\)
\(20\) 0 0
\(21\) 0.741737 0.881048i 0.161860 0.192260i
\(22\) 0 0
\(23\) −4.31354 −0.899435 −0.449717 0.893171i \(-0.648475\pi\)
−0.449717 + 0.893171i \(0.648475\pi\)
\(24\) 0 0
\(25\) 1.16575 + 2.01914i 0.233150 + 0.403828i
\(26\) 0 0
\(27\) 4.48724 + 2.62005i 0.863570 + 0.504228i
\(28\) 0 0
\(29\) 0.173958 0.301305i 0.0323032 0.0559508i −0.849422 0.527714i \(-0.823049\pi\)
0.881725 + 0.471764i \(0.156382\pi\)
\(30\) 0 0
\(31\) 2.78262 4.81965i 0.499774 0.865634i −0.500226 0.865895i \(-0.666750\pi\)
1.00000 0.000260735i \(8.29944e-5\pi\)
\(32\) 0 0
\(33\) 2.71437 + 7.49567i 0.472512 + 1.30483i
\(34\) 0 0
\(35\) 0.543104 0.940684i 0.0918014 0.159005i
\(36\) 0 0
\(37\) 2.78525 + 4.82419i 0.457892 + 0.793092i 0.998849 0.0479583i \(-0.0152714\pi\)
−0.540958 + 0.841050i \(0.681938\pi\)
\(38\) 0 0
\(39\) 4.44604 4.38552i 0.711936 0.702244i
\(40\) 0 0
\(41\) 2.66959 0.416919 0.208460 0.978031i \(-0.433155\pi\)
0.208460 + 0.978031i \(0.433155\pi\)
\(42\) 0 0
\(43\) 12.7711 1.94757 0.973786 0.227467i \(-0.0730443\pi\)
0.973786 + 0.227467i \(0.0730443\pi\)
\(44\) 0 0
\(45\) 4.59963 + 1.69113i 0.685672 + 0.252098i
\(46\) 0 0
\(47\) −5.07938 8.79774i −0.740904 1.28328i −0.952084 0.305836i \(-0.901064\pi\)
0.211181 0.977447i \(-0.432269\pi\)
\(48\) 0 0
\(49\) −6.55786 −0.936837
\(50\) 0 0
\(51\) 0.815566 + 2.25216i 0.114202 + 0.315366i
\(52\) 0 0
\(53\) −0.833384 −0.114474 −0.0572371 0.998361i \(-0.518229\pi\)
−0.0572371 + 0.998361i \(0.518229\pi\)
\(54\) 0 0
\(55\) 3.75933 + 6.51135i 0.506908 + 0.877990i
\(56\) 0 0
\(57\) 3.06448 + 8.46247i 0.405900 + 1.12088i
\(58\) 0 0
\(59\) −3.54267 6.13608i −0.461216 0.798850i 0.537806 0.843069i \(-0.319253\pi\)
−0.999022 + 0.0442192i \(0.985920\pi\)
\(60\) 0 0
\(61\) 6.99585 0.895727 0.447864 0.894102i \(-0.352185\pi\)
0.447864 + 0.894102i \(0.352185\pi\)
\(62\) 0 0
\(63\) 0.339990 + 1.96562i 0.0428347 + 0.247645i
\(64\) 0 0
\(65\) 3.40344 4.80698i 0.422145 0.596232i
\(66\) 0 0
\(67\) 12.3540 1.50928 0.754642 0.656136i \(-0.227810\pi\)
0.754642 + 0.656136i \(0.227810\pi\)
\(68\) 0 0
\(69\) 4.81176 5.71549i 0.579268 0.688064i
\(70\) 0 0
\(71\) −2.13470 + 3.69740i −0.253342 + 0.438801i −0.964444 0.264288i \(-0.914863\pi\)
0.711102 + 0.703089i \(0.248196\pi\)
\(72\) 0 0
\(73\) 8.70686 1.01906 0.509530 0.860453i \(-0.329819\pi\)
0.509530 + 0.860453i \(0.329819\pi\)
\(74\) 0 0
\(75\) −3.97579 0.707721i −0.459084 0.0817206i
\(76\) 0 0
\(77\) −1.53023 + 2.65044i −0.174386 + 0.302045i
\(78\) 0 0
\(79\) −7.71985 13.3712i −0.868551 1.50437i −0.863478 0.504387i \(-0.831719\pi\)
−0.00507268 0.999987i \(-0.501615\pi\)
\(80\) 0 0
\(81\) −8.47712 + 3.02298i −0.941902 + 0.335887i
\(82\) 0 0
\(83\) 0.471968 + 0.817473i 0.0518052 + 0.0897293i 0.890765 0.454464i \(-0.150169\pi\)
−0.838960 + 0.544193i \(0.816836\pi\)
\(84\) 0 0
\(85\) 1.12954 + 1.95641i 0.122515 + 0.212203i
\(86\) 0 0
\(87\) 0.205181 + 0.566602i 0.0219977 + 0.0607462i
\(88\) 0 0
\(89\) −6.06011 10.4964i −0.642371 1.11262i −0.984902 0.173112i \(-0.944618\pi\)
0.342531 0.939506i \(-0.388716\pi\)
\(90\) 0 0
\(91\) 2.38721 + 0.221424i 0.250248 + 0.0232116i
\(92\) 0 0
\(93\) 3.28207 + 9.06334i 0.340334 + 0.939824i
\(94\) 0 0
\(95\) 4.24421 + 7.35119i 0.435447 + 0.754216i
\(96\) 0 0
\(97\) −15.0716 −1.53028 −0.765142 0.643861i \(-0.777331\pi\)
−0.765142 + 0.643861i \(0.777331\pi\)
\(98\) 0 0
\(99\) −12.9597 4.76486i −1.30250 0.478886i
\(100\) 0 0
\(101\) 2.43790 4.22257i 0.242580 0.420162i −0.718868 0.695146i \(-0.755340\pi\)
0.961449 + 0.274985i \(0.0886729\pi\)
\(102\) 0 0
\(103\) 4.73932 8.20874i 0.466979 0.808831i −0.532310 0.846550i \(-0.678676\pi\)
0.999288 + 0.0377187i \(0.0120091\pi\)
\(104\) 0 0
\(105\) 0.640584 + 1.76895i 0.0625146 + 0.172632i
\(106\) 0 0
\(107\) 4.16685 + 7.21719i 0.402824 + 0.697712i 0.994066 0.108782i \(-0.0346952\pi\)
−0.591241 + 0.806495i \(0.701362\pi\)
\(108\) 0 0
\(109\) 9.70824 0.929881 0.464941 0.885342i \(-0.346076\pi\)
0.464941 + 0.885342i \(0.346076\pi\)
\(110\) 0 0
\(111\) −9.49905 1.69091i −0.901610 0.160494i
\(112\) 0 0
\(113\) −4.54566 7.87331i −0.427619 0.740659i 0.569042 0.822309i \(-0.307314\pi\)
−0.996661 + 0.0816502i \(0.973981\pi\)
\(114\) 0 0
\(115\) 3.52320 6.10236i 0.328540 0.569048i
\(116\) 0 0
\(117\) 0.851295 + 10.7831i 0.0787022 + 0.996898i
\(118\) 0 0
\(119\) −0.459776 + 0.796356i −0.0421476 + 0.0730018i
\(120\) 0 0
\(121\) −5.09215 8.81986i −0.462923 0.801806i
\(122\) 0 0
\(123\) −2.97793 + 3.53723i −0.268511 + 0.318941i
\(124\) 0 0
\(125\) −11.9764 −1.07120
\(126\) 0 0
\(127\) 0.0953037 + 0.165071i 0.00845684 + 0.0146477i 0.870223 0.492658i \(-0.163975\pi\)
−0.861766 + 0.507306i \(0.830641\pi\)
\(128\) 0 0
\(129\) −14.2462 + 16.9218i −1.25430 + 1.48988i
\(130\) 0 0
\(131\) 5.09811 8.83018i 0.445424 0.771496i −0.552658 0.833408i \(-0.686386\pi\)
0.998082 + 0.0619118i \(0.0197197\pi\)
\(132\) 0 0
\(133\) −1.72760 + 2.99229i −0.149802 + 0.259465i
\(134\) 0 0
\(135\) −7.37165 + 4.20810i −0.634451 + 0.362176i
\(136\) 0 0
\(137\) 5.25697 0.449134 0.224567 0.974459i \(-0.427903\pi\)
0.224567 + 0.974459i \(0.427903\pi\)
\(138\) 0 0
\(139\) −5.79676 10.0403i −0.491675 0.851606i 0.508279 0.861192i \(-0.330282\pi\)
−0.999954 + 0.00958627i \(0.996949\pi\)
\(140\) 0 0
\(141\) 17.3232 + 3.08366i 1.45887 + 0.259691i
\(142\) 0 0
\(143\) −9.58941 + 13.5440i −0.801906 + 1.13260i
\(144\) 0 0
\(145\) 0.284170 + 0.492197i 0.0235990 + 0.0408747i
\(146\) 0 0
\(147\) 7.31530 8.68924i 0.603356 0.716676i
\(148\) 0 0
\(149\) 8.38434 + 14.5221i 0.686872 + 1.18970i 0.972845 + 0.231459i \(0.0743500\pi\)
−0.285973 + 0.958238i \(0.592317\pi\)
\(150\) 0 0
\(151\) 3.77500 + 6.53849i 0.307205 + 0.532095i 0.977750 0.209774i \(-0.0672730\pi\)
−0.670545 + 0.741869i \(0.733940\pi\)
\(152\) 0 0
\(153\) −3.89391 1.43166i −0.314804 0.115743i
\(154\) 0 0
\(155\) 4.54557 + 7.87315i 0.365109 + 0.632387i
\(156\) 0 0
\(157\) 4.76579 8.25459i 0.380351 0.658788i −0.610761 0.791815i \(-0.709136\pi\)
0.991112 + 0.133027i \(0.0424697\pi\)
\(158\) 0 0
\(159\) 0.929642 1.10424i 0.0737254 0.0875722i
\(160\) 0 0
\(161\) 2.86823 0.226048
\(162\) 0 0
\(163\) −5.75947 + 9.97569i −0.451116 + 0.781356i −0.998456 0.0555544i \(-0.982307\pi\)
0.547339 + 0.836911i \(0.315641\pi\)
\(164\) 0 0
\(165\) −12.8212 2.28227i −0.998125 0.177674i
\(166\) 0 0
\(167\) −7.81595 −0.604817 −0.302408 0.953178i \(-0.597791\pi\)
−0.302408 + 0.953178i \(0.597791\pi\)
\(168\) 0 0
\(169\) 12.7782 + 2.39104i 0.982940 + 0.183926i
\(170\) 0 0
\(171\) −14.6313 5.37943i −1.11888 0.411375i
\(172\) 0 0
\(173\) −12.7224 −0.967267 −0.483633 0.875271i \(-0.660683\pi\)
−0.483633 + 0.875271i \(0.660683\pi\)
\(174\) 0 0
\(175\) −0.775151 1.34260i −0.0585959 0.101491i
\(176\) 0 0
\(177\) 12.0822 + 2.15073i 0.908156 + 0.161659i
\(178\) 0 0
\(179\) −10.3196 17.8741i −0.771323 1.33597i −0.936838 0.349764i \(-0.886262\pi\)
0.165515 0.986207i \(-0.447072\pi\)
\(180\) 0 0
\(181\) 1.81730 0.135079 0.0675393 0.997717i \(-0.478485\pi\)
0.0675393 + 0.997717i \(0.478485\pi\)
\(182\) 0 0
\(183\) −7.80388 + 9.26958i −0.576880 + 0.685227i
\(184\) 0 0
\(185\) −9.09969 −0.669023
\(186\) 0 0
\(187\) −3.18254 5.51232i −0.232730 0.403101i
\(188\) 0 0
\(189\) −2.98373 1.74216i −0.217034 0.126724i
\(190\) 0 0
\(191\) −16.0161 −1.15888 −0.579441 0.815014i \(-0.696729\pi\)
−0.579441 + 0.815014i \(0.696729\pi\)
\(192\) 0 0
\(193\) −7.97233 −0.573861 −0.286931 0.957951i \(-0.592635\pi\)
−0.286931 + 0.957951i \(0.592635\pi\)
\(194\) 0 0
\(195\) 2.57276 + 9.87179i 0.184239 + 0.706934i
\(196\) 0 0
\(197\) −6.65872 11.5332i −0.474414 0.821710i 0.525157 0.851006i \(-0.324007\pi\)
−0.999571 + 0.0292961i \(0.990673\pi\)
\(198\) 0 0
\(199\) −9.38627 + 16.2575i −0.665375 + 1.15246i 0.313809 + 0.949486i \(0.398395\pi\)
−0.979184 + 0.202977i \(0.934938\pi\)
\(200\) 0 0
\(201\) −13.7809 + 16.3692i −0.972033 + 1.15460i
\(202\) 0 0
\(203\) −0.115671 + 0.200348i −0.00811852 + 0.0140617i
\(204\) 0 0
\(205\) −2.18045 + 3.77666i −0.152290 + 0.263773i
\(206\) 0 0
\(207\) 2.20556 + 12.7513i 0.153297 + 0.886275i
\(208\) 0 0
\(209\) −11.9583 20.7124i −0.827175 1.43271i
\(210\) 0 0
\(211\) 6.13429 0.422302 0.211151 0.977453i \(-0.432279\pi\)
0.211151 + 0.977453i \(0.432279\pi\)
\(212\) 0 0
\(213\) −2.51784 6.95296i −0.172520 0.476409i
\(214\) 0 0
\(215\) −10.4311 + 18.0672i −0.711396 + 1.23217i
\(216\) 0 0
\(217\) −1.85027 + 3.20476i −0.125604 + 0.217553i
\(218\) 0 0
\(219\) −9.71252 + 11.5367i −0.656311 + 0.779577i
\(220\) 0 0
\(221\) −2.88125 + 4.06945i −0.193814 + 0.273741i
\(222\) 0 0
\(223\) 8.71404 15.0932i 0.583535 1.01071i −0.411521 0.911400i \(-0.635002\pi\)
0.995056 0.0993126i \(-0.0316644\pi\)
\(224\) 0 0
\(225\) 5.37273 4.47850i 0.358182 0.298566i
\(226\) 0 0
\(227\) −6.26522 −0.415837 −0.207919 0.978146i \(-0.566669\pi\)
−0.207919 + 0.978146i \(0.566669\pi\)
\(228\) 0 0
\(229\) −1.00519 + 1.74104i −0.0664249 + 0.115051i −0.897325 0.441370i \(-0.854493\pi\)
0.830900 + 0.556421i \(0.187826\pi\)
\(230\) 0 0
\(231\) −1.80489 4.98414i −0.118753 0.327932i
\(232\) 0 0
\(233\) 9.05233 0.593038 0.296519 0.955027i \(-0.404174\pi\)
0.296519 + 0.955027i \(0.404174\pi\)
\(234\) 0 0
\(235\) 16.5949 1.08253
\(236\) 0 0
\(237\) 26.3285 + 4.68667i 1.71022 + 0.304432i
\(238\) 0 0
\(239\) 13.9602 24.1798i 0.903010 1.56406i 0.0794431 0.996839i \(-0.474686\pi\)
0.823567 0.567219i \(-0.191981\pi\)
\(240\) 0 0
\(241\) 2.57210 0.165683 0.0828417 0.996563i \(-0.473600\pi\)
0.0828417 + 0.996563i \(0.473600\pi\)
\(242\) 0 0
\(243\) 5.45076 14.6044i 0.349666 0.936874i
\(244\) 0 0
\(245\) 5.35631 9.27739i 0.342202 0.592711i
\(246\) 0 0
\(247\) −10.8263 + 15.2909i −0.688858 + 0.972936i
\(248\) 0 0
\(249\) −1.60964 0.286529i −0.102007 0.0181580i
\(250\) 0 0
\(251\) −13.5098 + 23.3997i −0.852733 + 1.47698i 0.0259992 + 0.999662i \(0.491723\pi\)
−0.878732 + 0.477315i \(0.841610\pi\)
\(252\) 0 0
\(253\) −9.92683 + 17.1938i −0.624095 + 1.08096i
\(254\) 0 0
\(255\) −3.85227 0.685734i −0.241238 0.0429423i
\(256\) 0 0
\(257\) 8.61257 0.537238 0.268619 0.963247i \(-0.413433\pi\)
0.268619 + 0.963247i \(0.413433\pi\)
\(258\) 0 0
\(259\) −1.85201 3.20778i −0.115078 0.199322i
\(260\) 0 0
\(261\) −0.979635 0.360178i −0.0606379 0.0222945i
\(262\) 0 0
\(263\) −2.13343 + 3.69520i −0.131553 + 0.227856i −0.924275 0.381727i \(-0.875330\pi\)
0.792723 + 0.609583i \(0.208663\pi\)
\(264\) 0 0
\(265\) 0.680689 1.17899i 0.0418144 0.0724246i
\(266\) 0 0
\(267\) 20.6679 + 3.67906i 1.26486 + 0.225155i
\(268\) 0 0
\(269\) 6.63958 11.5001i 0.404822 0.701173i −0.589478 0.807784i \(-0.700667\pi\)
0.994301 + 0.106611i \(0.0340000\pi\)
\(270\) 0 0
\(271\) 9.70756 + 16.8140i 0.589692 + 1.02138i 0.994273 + 0.106874i \(0.0340842\pi\)
−0.404581 + 0.914502i \(0.632582\pi\)
\(272\) 0 0
\(273\) −2.95633 + 2.91609i −0.178925 + 0.176490i
\(274\) 0 0
\(275\) 10.7311 0.647108
\(276\) 0 0
\(277\) −16.2171 −0.974391 −0.487196 0.873293i \(-0.661980\pi\)
−0.487196 + 0.873293i \(0.661980\pi\)
\(278\) 0 0
\(279\) −15.6702 5.76139i −0.938149 0.344925i
\(280\) 0 0
\(281\) −4.85826 8.41475i −0.289819 0.501982i 0.683947 0.729532i \(-0.260262\pi\)
−0.973766 + 0.227550i \(0.926929\pi\)
\(282\) 0 0
\(283\) −11.4304 −0.679467 −0.339734 0.940522i \(-0.610337\pi\)
−0.339734 + 0.940522i \(0.610337\pi\)
\(284\) 0 0
\(285\) −14.4748 2.57664i −0.857415 0.152627i
\(286\) 0 0
\(287\) −1.77510 −0.104781
\(288\) 0 0
\(289\) 7.54377 + 13.0662i 0.443751 + 0.768599i
\(290\) 0 0
\(291\) 16.8123 19.9700i 0.985557 1.17066i
\(292\) 0 0
\(293\) −2.99310 5.18421i −0.174859 0.302865i 0.765254 0.643729i \(-0.222614\pi\)
−0.940112 + 0.340864i \(0.889280\pi\)
\(294\) 0 0
\(295\) 11.5743 0.673880
\(296\) 0 0
\(297\) 20.7701 11.8566i 1.20520 0.687990i
\(298\) 0 0
\(299\) 15.4862 + 1.43641i 0.895591 + 0.0830698i
\(300\) 0 0
\(301\) −8.49195 −0.489468
\(302\) 0 0
\(303\) 2.87547 + 7.94053i 0.165191 + 0.456172i
\(304\) 0 0
\(305\) −5.71405 + 9.89702i −0.327185 + 0.566702i
\(306\) 0 0
\(307\) 5.39543 0.307934 0.153967 0.988076i \(-0.450795\pi\)
0.153967 + 0.988076i \(0.450795\pi\)
\(308\) 0 0
\(309\) 5.58996 + 15.4365i 0.318002 + 0.878153i
\(310\) 0 0
\(311\) −9.11590 + 15.7892i −0.516915 + 0.895323i 0.482892 + 0.875680i \(0.339586\pi\)
−0.999807 + 0.0196433i \(0.993747\pi\)
\(312\) 0 0
\(313\) −15.9537 27.6326i −0.901756 1.56189i −0.825213 0.564822i \(-0.808945\pi\)
−0.0765432 0.997066i \(-0.524388\pi\)
\(314\) 0 0
\(315\) −3.05846 1.12449i −0.172325 0.0633579i
\(316\) 0 0
\(317\) 10.6884 + 18.5128i 0.600318 + 1.03978i 0.992773 + 0.120010i \(0.0382927\pi\)
−0.392455 + 0.919771i \(0.628374\pi\)
\(318\) 0 0
\(319\) −0.800667 1.38680i −0.0448288 0.0776457i
\(320\) 0 0
\(321\) −14.2110 2.52967i −0.793180 0.141192i
\(322\) 0 0
\(323\) −3.59302 6.22330i −0.199921 0.346274i
\(324\) 0 0
\(325\) −3.51284 7.63720i −0.194857 0.423636i
\(326\) 0 0
\(327\) −10.8296 + 12.8635i −0.598876 + 0.711355i
\(328\) 0 0
\(329\) 3.37746 + 5.84994i 0.186206 + 0.322517i
\(330\) 0 0
\(331\) 28.1723 1.54849 0.774246 0.632885i \(-0.218129\pi\)
0.774246 + 0.632885i \(0.218129\pi\)
\(332\) 0 0
\(333\) 12.8367 10.7001i 0.703446 0.586364i
\(334\) 0 0
\(335\) −10.0905 + 17.4772i −0.551302 + 0.954883i
\(336\) 0 0
\(337\) −17.2030 + 29.7965i −0.937107 + 1.62312i −0.166275 + 0.986079i \(0.553174\pi\)
−0.770833 + 0.637038i \(0.780159\pi\)
\(338\) 0 0
\(339\) 15.5029 + 2.75964i 0.842003 + 0.149883i
\(340\) 0 0
\(341\) −12.8074 22.1831i −0.693561 1.20128i
\(342\) 0 0
\(343\) 9.01511 0.486770
\(344\) 0 0
\(345\) 4.15556 + 11.4755i 0.223728 + 0.617818i
\(346\) 0 0
\(347\) −1.15620 2.00260i −0.0620683 0.107505i 0.833321 0.552789i \(-0.186436\pi\)
−0.895390 + 0.445283i \(0.853103\pi\)
\(348\) 0 0
\(349\) −2.28054 + 3.95000i −0.122074 + 0.211439i −0.920586 0.390541i \(-0.872288\pi\)
0.798511 + 0.601980i \(0.205621\pi\)
\(350\) 0 0
\(351\) −15.2374 10.9006i −0.813310 0.581831i
\(352\) 0 0
\(353\) −1.53379 + 2.65661i −0.0816355 + 0.141397i −0.903953 0.427633i \(-0.859348\pi\)
0.822317 + 0.569030i \(0.192681\pi\)
\(354\) 0 0
\(355\) −3.48714 6.03990i −0.185078 0.320565i
\(356\) 0 0
\(357\) −0.542299 1.49754i −0.0287015 0.0792585i
\(358\) 0 0
\(359\) 32.8421 1.73334 0.866670 0.498881i \(-0.166256\pi\)
0.866670 + 0.498881i \(0.166256\pi\)
\(360\) 0 0
\(361\) −4.00073 6.92947i −0.210565 0.364709i
\(362\) 0 0
\(363\) 17.3667 + 3.09141i 0.911516 + 0.162257i
\(364\) 0 0
\(365\) −7.11156 + 12.3176i −0.372236 + 0.644732i
\(366\) 0 0
\(367\) 6.53536 11.3196i 0.341143 0.590877i −0.643502 0.765444i \(-0.722519\pi\)
0.984645 + 0.174567i \(0.0558527\pi\)
\(368\) 0 0
\(369\) −1.36499 7.89158i −0.0710585 0.410819i
\(370\) 0 0
\(371\) 0.554147 0.0287699
\(372\) 0 0
\(373\) −9.81020 16.9918i −0.507953 0.879800i −0.999958 0.00920747i \(-0.997069\pi\)
0.492005 0.870592i \(-0.336264\pi\)
\(374\) 0 0
\(375\) 13.3597 15.8689i 0.689892 0.819465i
\(376\) 0 0
\(377\) −0.724869 + 1.02380i −0.0373327 + 0.0527282i
\(378\) 0 0
\(379\) −3.69728 6.40388i −0.189917 0.328945i 0.755306 0.655373i \(-0.227488\pi\)
−0.945222 + 0.326427i \(0.894155\pi\)
\(380\) 0 0
\(381\) −0.325032 0.0578583i −0.0166519 0.00296417i
\(382\) 0 0
\(383\) 8.48425 + 14.6951i 0.433525 + 0.750887i 0.997174 0.0751275i \(-0.0239364\pi\)
−0.563649 + 0.826014i \(0.690603\pi\)
\(384\) 0 0
\(385\) −2.49971 4.32963i −0.127397 0.220658i
\(386\) 0 0
\(387\) −6.53000 37.7527i −0.331939 1.91908i
\(388\) 0 0
\(389\) −14.6557 25.3844i −0.743073 1.28704i −0.951090 0.308915i \(-0.900034\pi\)
0.208017 0.978125i \(-0.433299\pi\)
\(390\) 0 0
\(391\) −2.98264 + 5.16608i −0.150838 + 0.261260i
\(392\) 0 0
\(393\) 6.01314 + 16.6051i 0.303323 + 0.837618i
\(394\) 0 0
\(395\) 25.2216 1.26903
\(396\) 0 0
\(397\) 8.31130 14.3956i 0.417132 0.722494i −0.578517 0.815670i \(-0.696368\pi\)
0.995650 + 0.0931756i \(0.0297018\pi\)
\(398\) 0 0
\(399\) −2.03768 5.62700i −0.102012 0.281702i
\(400\) 0 0
\(401\) 31.6115 1.57860 0.789301 0.614007i \(-0.210443\pi\)
0.789301 + 0.614007i \(0.210443\pi\)
\(402\) 0 0
\(403\) −11.5950 + 16.3766i −0.577586 + 0.815776i
\(404\) 0 0
\(405\) 2.64731 14.4617i 0.131546 0.718606i
\(406\) 0 0
\(407\) 25.6390 1.27088
\(408\) 0 0
\(409\) 1.80815 + 3.13181i 0.0894074 + 0.154858i 0.907261 0.420568i \(-0.138169\pi\)
−0.817853 + 0.575427i \(0.804836\pi\)
\(410\) 0 0
\(411\) −5.86416 + 6.96555i −0.289258 + 0.343585i
\(412\) 0 0
\(413\) 2.35565 + 4.08010i 0.115914 + 0.200769i
\(414\) 0 0
\(415\) −1.54197 −0.0756923
\(416\) 0 0
\(417\) 19.7698 + 3.51918i 0.968131 + 0.172335i
\(418\) 0 0
\(419\) −27.5402 −1.34542 −0.672712 0.739904i \(-0.734871\pi\)
−0.672712 + 0.739904i \(0.734871\pi\)
\(420\) 0 0
\(421\) 15.5966 + 27.0140i 0.760129 + 1.31658i 0.942784 + 0.333405i \(0.108198\pi\)
−0.182654 + 0.983177i \(0.558469\pi\)
\(422\) 0 0
\(423\) −23.4099 + 19.5136i −1.13823 + 0.948782i
\(424\) 0 0
\(425\) 3.22428 0.156401
\(426\) 0 0
\(427\) −4.65179 −0.225116
\(428\) 0 0
\(429\) −7.24892 27.8144i −0.349981 1.34289i
\(430\) 0 0
\(431\) −8.66639 15.0106i −0.417445 0.723037i 0.578236 0.815869i \(-0.303741\pi\)
−0.995682 + 0.0928327i \(0.970408\pi\)
\(432\) 0 0
\(433\) −2.73416 + 4.73570i −0.131395 + 0.227583i −0.924215 0.381873i \(-0.875279\pi\)
0.792819 + 0.609457i \(0.208612\pi\)
\(434\) 0 0
\(435\) −0.969159 0.172518i −0.0464676 0.00827160i
\(436\) 0 0
\(437\) −11.2072 + 19.4114i −0.536113 + 0.928576i
\(438\) 0 0
\(439\) 9.12053 15.7972i 0.435299 0.753960i −0.562021 0.827123i \(-0.689976\pi\)
0.997320 + 0.0731628i \(0.0233093\pi\)
\(440\) 0 0
\(441\) 3.35311 + 19.3857i 0.159672 + 0.923130i
\(442\) 0 0
\(443\) 16.5689 + 28.6981i 0.787211 + 1.36349i 0.927669 + 0.373403i \(0.121809\pi\)
−0.140458 + 0.990087i \(0.544858\pi\)
\(444\) 0 0
\(445\) 19.7990 0.938564
\(446\) 0 0
\(447\) −28.5947 5.09008i −1.35248 0.240753i
\(448\) 0 0
\(449\) 13.7300 23.7811i 0.647959 1.12230i −0.335650 0.941987i \(-0.608956\pi\)
0.983610 0.180312i \(-0.0577106\pi\)
\(450\) 0 0
\(451\) 6.14357 10.6410i 0.289289 0.501064i
\(452\) 0 0
\(453\) −12.8746 2.29178i −0.604901 0.107677i
\(454\) 0 0
\(455\) −2.26307 + 3.19633i −0.106094 + 0.149846i
\(456\) 0 0
\(457\) 18.1458 31.4294i 0.848822 1.47020i −0.0334374 0.999441i \(-0.510645\pi\)
0.882260 0.470763i \(-0.156021\pi\)
\(458\) 0 0
\(459\) 6.24063 3.56246i 0.291287 0.166281i
\(460\) 0 0
\(461\) 6.29317 0.293102 0.146551 0.989203i \(-0.453183\pi\)
0.146551 + 0.989203i \(0.453183\pi\)
\(462\) 0 0
\(463\) −8.38617 + 14.5253i −0.389738 + 0.675047i −0.992414 0.122940i \(-0.960768\pi\)
0.602676 + 0.797986i \(0.294101\pi\)
\(464\) 0 0
\(465\) −15.5026 2.75959i −0.718916 0.127973i
\(466\) 0 0
\(467\) 29.7285 1.37567 0.687836 0.725866i \(-0.258561\pi\)
0.687836 + 0.725866i \(0.258561\pi\)
\(468\) 0 0
\(469\) −8.21464 −0.379317
\(470\) 0 0
\(471\) 5.62118 + 15.5227i 0.259010 + 0.715250i
\(472\) 0 0
\(473\) 29.3903 50.9056i 1.35137 2.34064i
\(474\) 0 0
\(475\) 12.1152 0.555883
\(476\) 0 0
\(477\) 0.426119 + 2.46357i 0.0195106 + 0.112799i
\(478\) 0 0
\(479\) −13.9265 + 24.1214i −0.636318 + 1.10213i 0.349917 + 0.936781i \(0.386210\pi\)
−0.986234 + 0.165354i \(0.947123\pi\)
\(480\) 0 0
\(481\) −8.39297 18.2470i −0.382686 0.831992i
\(482\) 0 0
\(483\) −3.19951 + 3.80043i −0.145583 + 0.172926i
\(484\) 0 0
\(485\) 12.3101 21.3217i 0.558972 0.968169i
\(486\) 0 0
\(487\) 0.285544 0.494577i 0.0129392 0.0224114i −0.859483 0.511164i \(-0.829215\pi\)
0.872423 + 0.488752i \(0.162548\pi\)
\(488\) 0 0
\(489\) −6.79321 18.7593i −0.307200 0.848323i
\(490\) 0 0
\(491\) −18.4641 −0.833272 −0.416636 0.909073i \(-0.636791\pi\)
−0.416636 + 0.909073i \(0.636791\pi\)
\(492\) 0 0
\(493\) −0.240570 0.416680i −0.0108347 0.0187663i
\(494\) 0 0
\(495\) 17.3260 14.4423i 0.778748 0.649133i
\(496\) 0 0
\(497\) 1.41944 2.45854i 0.0636704 0.110280i
\(498\) 0 0
\(499\) −9.12938 + 15.8126i −0.408687 + 0.707867i −0.994743 0.102404i \(-0.967347\pi\)
0.586056 + 0.810271i \(0.300680\pi\)
\(500\) 0 0
\(501\) 8.71871 10.3562i 0.389523 0.462682i
\(502\) 0 0
\(503\) 0.524528 0.908510i 0.0233876 0.0405085i −0.854095 0.520117i \(-0.825888\pi\)
0.877482 + 0.479609i \(0.159221\pi\)
\(504\) 0 0
\(505\) 3.98244 + 6.89779i 0.177216 + 0.306948i
\(506\) 0 0
\(507\) −17.4223 + 14.2641i −0.773751 + 0.633490i
\(508\) 0 0
\(509\) −31.2081 −1.38327 −0.691637 0.722245i \(-0.743110\pi\)
−0.691637 + 0.722245i \(0.743110\pi\)
\(510\) 0 0
\(511\) −5.78950 −0.256113
\(512\) 0 0
\(513\) 23.4490 13.3859i 1.03530 0.591001i
\(514\) 0 0
\(515\) 7.74193 + 13.4094i 0.341150 + 0.590889i
\(516\) 0 0
\(517\) −46.7571 −2.05638
\(518\) 0 0
\(519\) 14.1919 16.8573i 0.622954 0.739955i
\(520\) 0 0
\(521\) 37.5709 1.64601 0.823006 0.568033i \(-0.192296\pi\)
0.823006 + 0.568033i \(0.192296\pi\)
\(522\) 0 0
\(523\) −4.27086 7.39736i −0.186752 0.323464i 0.757414 0.652935i \(-0.226463\pi\)
−0.944165 + 0.329472i \(0.893129\pi\)
\(524\) 0 0
\(525\) 2.64364 + 0.470589i 0.115378 + 0.0205382i
\(526\) 0 0
\(527\) −3.84814 6.66518i −0.167628 0.290340i
\(528\) 0 0
\(529\) −4.39338 −0.191017
\(530\) 0 0
\(531\) −16.3275 + 13.6099i −0.708553 + 0.590621i
\(532\) 0 0
\(533\) −9.58419 0.888974i −0.415137 0.0385057i
\(534\) 0 0
\(535\) −13.6135 −0.588565
\(536\) 0 0
\(537\) 35.1949 + 6.26497i 1.51877 + 0.270353i
\(538\) 0 0
\(539\) −15.0917 + 26.1397i −0.650047 + 1.12591i
\(540\) 0 0
\(541\) 11.3495 0.487953 0.243977 0.969781i \(-0.421548\pi\)
0.243977 + 0.969781i \(0.421548\pi\)
\(542\) 0 0
\(543\) −2.02720 + 2.40794i −0.0869954 + 0.103335i
\(544\) 0 0
\(545\) −7.92947 + 13.7342i −0.339661 + 0.588310i
\(546\) 0 0
\(547\) −4.12504 7.14478i −0.176374 0.305489i 0.764262 0.644906i \(-0.223103\pi\)
−0.940636 + 0.339417i \(0.889770\pi\)
\(548\) 0 0
\(549\) −3.57706 20.6805i −0.152665 0.882621i
\(550\) 0 0
\(551\) −0.903938 1.56567i −0.0385091 0.0666996i
\(552\) 0 0
\(553\) 5.13320 + 8.89097i 0.218286 + 0.378083i
\(554\) 0 0
\(555\) 10.1507 12.0572i 0.430874 0.511800i
\(556\) 0 0
\(557\) 14.8382 + 25.7005i 0.628715 + 1.08897i 0.987810 + 0.155665i \(0.0497520\pi\)
−0.359095 + 0.933301i \(0.616915\pi\)
\(558\) 0 0
\(559\) −45.8500 4.25278i −1.93925 0.179873i
\(560\) 0 0
\(561\) 10.8540 + 1.93210i 0.458257 + 0.0815733i
\(562\) 0 0
\(563\) −2.59357 4.49219i −0.109306 0.189323i 0.806183 0.591666i \(-0.201529\pi\)
−0.915489 + 0.402342i \(0.868196\pi\)
\(564\) 0 0
\(565\) 14.8511 0.624792
\(566\) 0 0
\(567\) 5.63674 2.01009i 0.236721 0.0844158i
\(568\) 0 0
\(569\) −19.2800 + 33.3939i −0.808260 + 1.39995i 0.105809 + 0.994386i \(0.466257\pi\)
−0.914068 + 0.405560i \(0.867076\pi\)
\(570\) 0 0
\(571\) 2.65412 4.59707i 0.111071 0.192381i −0.805131 0.593097i \(-0.797905\pi\)
0.916202 + 0.400716i \(0.131238\pi\)
\(572\) 0 0
\(573\) 17.8659 21.2215i 0.746361 0.886540i
\(574\) 0 0
\(575\) −5.02852 8.70965i −0.209704 0.363217i
\(576\) 0 0
\(577\) −20.1830 −0.840228 −0.420114 0.907471i \(-0.638010\pi\)
−0.420114 + 0.907471i \(0.638010\pi\)
\(578\) 0 0
\(579\) 8.89315 10.5634i 0.369587 0.439001i
\(580\) 0 0
\(581\) −0.313829 0.543567i −0.0130198 0.0225510i
\(582\) 0 0
\(583\) −1.91788 + 3.32187i −0.0794306 + 0.137578i
\(584\) 0 0
\(585\) −15.9502 7.60306i −0.659458 0.314348i
\(586\) 0 0
\(587\) 7.51712 13.0200i 0.310265 0.537394i −0.668155 0.744022i \(-0.732916\pi\)
0.978420 + 0.206628i \(0.0662490\pi\)
\(588\) 0 0
\(589\) −14.4593 25.0443i −0.595786 1.03193i
\(590\) 0 0
\(591\) 22.7095 + 4.04247i 0.934144 + 0.166285i
\(592\) 0 0
\(593\) 18.9694 0.778980 0.389490 0.921031i \(-0.372651\pi\)
0.389490 + 0.921031i \(0.372651\pi\)
\(594\) 0 0
\(595\) −0.751069 1.30089i −0.0307908 0.0533313i
\(596\) 0 0
\(597\) −11.0710 30.5722i −0.453105 1.25124i
\(598\) 0 0
\(599\) 12.1207 20.9936i 0.495237 0.857776i −0.504748 0.863267i \(-0.668414\pi\)
0.999985 + 0.00549092i \(0.00174782\pi\)
\(600\) 0 0
\(601\) 0.962996 1.66796i 0.0392814 0.0680374i −0.845716 0.533633i \(-0.820826\pi\)
0.884998 + 0.465595i \(0.154160\pi\)
\(602\) 0 0
\(603\) −6.31676 36.5198i −0.257238 1.48720i
\(604\) 0 0
\(605\) 16.6366 0.676374
\(606\) 0 0
\(607\) 6.97184 + 12.0756i 0.282978 + 0.490133i 0.972117 0.234497i \(-0.0753442\pi\)
−0.689139 + 0.724630i \(0.742011\pi\)
\(608\) 0 0
\(609\) −0.136432 0.376754i −0.00552852 0.0152669i
\(610\) 0 0
\(611\) 15.3060 + 33.2766i 0.619216 + 1.34623i
\(612\) 0 0
\(613\) 10.1080 + 17.5076i 0.408260 + 0.707126i 0.994695 0.102870i \(-0.0328025\pi\)
−0.586435 + 0.809996i \(0.699469\pi\)
\(614\) 0 0
\(615\) −2.57182 7.10200i −0.103706 0.286380i
\(616\) 0 0
\(617\) 20.3557 + 35.2570i 0.819488 + 1.41940i 0.906060 + 0.423149i \(0.139075\pi\)
−0.0865717 + 0.996246i \(0.527591\pi\)
\(618\) 0 0
\(619\) −5.06866 8.77917i −0.203727 0.352865i 0.746000 0.665946i \(-0.231972\pi\)
−0.949726 + 0.313082i \(0.898639\pi\)
\(620\) 0 0
\(621\) −19.3559 11.3017i −0.776725 0.453521i
\(622\) 0 0
\(623\) 4.02959 + 6.97945i 0.161442 + 0.279626i
\(624\) 0 0
\(625\) 3.95328 6.84729i 0.158131 0.273892i
\(626\) 0 0
\(627\) 40.7838 + 7.25983i 1.62875 + 0.289930i
\(628\) 0 0
\(629\) 7.70354 0.307160
\(630\) 0 0
\(631\) −24.1319 + 41.7977i −0.960677 + 1.66394i −0.239870 + 0.970805i \(0.577105\pi\)
−0.720807 + 0.693136i \(0.756229\pi\)
\(632\) 0 0
\(633\) −6.84281 + 8.12801i −0.271977 + 0.323059i
\(634\) 0 0
\(635\) −0.311367 −0.0123562
\(636\) 0 0
\(637\) 23.5436 + 2.18377i 0.932833 + 0.0865242i
\(638\) 0 0
\(639\) 12.0214 + 4.41986i 0.475559 + 0.174847i
\(640\) 0 0
\(641\) 3.38102 0.133542 0.0667711 0.997768i \(-0.478730\pi\)
0.0667711 + 0.997768i \(0.478730\pi\)
\(642\) 0 0
\(643\) 15.6424 + 27.0934i 0.616875 + 1.06846i 0.990053 + 0.140698i \(0.0449348\pi\)
−0.373178 + 0.927760i \(0.621732\pi\)
\(644\) 0 0
\(645\) −12.3034 33.9754i −0.484444 1.33778i
\(646\) 0 0
\(647\) −10.7606 18.6379i −0.423044 0.732733i 0.573192 0.819421i \(-0.305705\pi\)
−0.996235 + 0.0866881i \(0.972372\pi\)
\(648\) 0 0
\(649\) −32.6112 −1.28010
\(650\) 0 0
\(651\) −2.18236 6.02654i −0.0855336 0.236199i
\(652\) 0 0
\(653\) 26.2714 1.02808 0.514041 0.857766i \(-0.328148\pi\)
0.514041 + 0.857766i \(0.328148\pi\)
\(654\) 0 0
\(655\) 8.32803 + 14.4246i 0.325403 + 0.563615i
\(656\) 0 0
\(657\) −4.45192 25.7384i −0.173686 1.00415i
\(658\) 0 0
\(659\) 16.7286 0.651653 0.325826 0.945430i \(-0.394358\pi\)
0.325826 + 0.945430i \(0.394358\pi\)
\(660\) 0 0
\(661\) 10.6486 0.414183 0.207091 0.978322i \(-0.433600\pi\)
0.207091 + 0.978322i \(0.433600\pi\)
\(662\) 0 0
\(663\) −2.17803 8.35717i −0.0845875 0.324566i
\(664\) 0 0
\(665\) −2.82213 4.88807i −0.109437 0.189551i
\(666\) 0 0
\(667\) −0.750376 + 1.29969i −0.0290547 + 0.0503241i
\(668\) 0 0
\(669\) 10.2781 + 28.3827i 0.397374 + 1.09734i
\(670\) 0 0
\(671\) 16.0997 27.8855i 0.621522 1.07651i
\(672\) 0 0
\(673\) −2.79201 + 4.83591i −0.107624 + 0.186410i −0.914807 0.403891i \(-0.867658\pi\)
0.807183 + 0.590301i \(0.200991\pi\)
\(674\) 0 0
\(675\) −0.0592339 + 12.1147i −0.00227991 + 0.466295i
\(676\) 0 0
\(677\) 16.0457 + 27.7919i 0.616684 + 1.06813i 0.990086 + 0.140459i \(0.0448579\pi\)
−0.373402 + 0.927670i \(0.621809\pi\)
\(678\) 0 0
\(679\) 10.0216 0.384594
\(680\) 0 0
\(681\) 6.98886 8.30149i 0.267814 0.318114i
\(682\) 0 0
\(683\) −0.113469 + 0.196534i −0.00434178 + 0.00752018i −0.868188 0.496235i \(-0.834715\pi\)
0.863846 + 0.503755i \(0.168049\pi\)
\(684\) 0 0
\(685\) −4.29377 + 7.43703i −0.164057 + 0.284154i
\(686\) 0 0
\(687\) −1.18561 3.27403i −0.0452338 0.124912i
\(688\) 0 0
\(689\) 2.99197 + 0.277518i 0.113985 + 0.0105726i
\(690\) 0 0
\(691\) 6.77795 11.7398i 0.257845 0.446601i −0.707819 0.706394i \(-0.750321\pi\)
0.965664 + 0.259792i \(0.0836541\pi\)
\(692\) 0 0
\(693\) 8.61740 + 3.16832i 0.327348 + 0.120355i
\(694\) 0 0
\(695\) 18.9386 0.718384
\(696\) 0 0
\(697\) 1.84591 3.19721i 0.0699188 0.121103i
\(698\) 0 0
\(699\) −10.0979 + 11.9944i −0.381937 + 0.453671i
\(700\) 0 0
\(701\) −33.6536 −1.27108 −0.635540 0.772068i \(-0.719222\pi\)
−0.635540 + 0.772068i \(0.719222\pi\)
\(702\) 0 0
\(703\) 28.9459 1.09172
\(704\) 0 0
\(705\) −18.5116 + 21.9884i −0.697188 + 0.828131i
\(706\) 0 0
\(707\) −1.62105 + 2.80774i −0.0609658 + 0.105596i
\(708\) 0 0
\(709\) 1.35327 0.0508233 0.0254116 0.999677i \(-0.491910\pi\)
0.0254116 + 0.999677i \(0.491910\pi\)
\(710\) 0 0
\(711\) −35.5793 + 29.6575i −1.33433 + 1.11224i
\(712\) 0 0
\(713\) −12.0030 + 20.7897i −0.449514 + 0.778582i
\(714\) 0 0
\(715\) −11.3282 24.6285i −0.423652 0.921054i
\(716\) 0 0
\(717\) 16.4658 + 45.4700i 0.614928 + 1.69811i
\(718\) 0 0
\(719\) −16.6891 + 28.9064i −0.622398 + 1.07803i 0.366639 + 0.930363i \(0.380508\pi\)
−0.989038 + 0.147663i \(0.952825\pi\)
\(720\) 0 0
\(721\) −3.15134 + 5.45829i −0.117362 + 0.203277i
\(722\) 0 0
\(723\) −2.86918 + 3.40806i −0.106706 + 0.126747i
\(724\) 0 0
\(725\) 0.811169 0.0301261
\(726\) 0 0
\(727\) 6.68899 + 11.5857i 0.248081 + 0.429689i 0.962993 0.269525i \(-0.0868667\pi\)
−0.714912 + 0.699214i \(0.753533\pi\)
\(728\) 0 0
\(729\) 13.2707 + 23.5136i 0.491508 + 0.870873i
\(730\) 0 0
\(731\) 8.83068 15.2952i 0.326615 0.565713i
\(732\) 0 0
\(733\) −14.3874 + 24.9197i −0.531410 + 0.920429i 0.467918 + 0.883772i \(0.345004\pi\)
−0.999328 + 0.0366568i \(0.988329\pi\)
\(734\) 0 0
\(735\) 6.31769 + 17.4461i 0.233031 + 0.643510i
\(736\) 0 0
\(737\) 28.4306 49.2432i 1.04725 1.81390i
\(738\) 0 0
\(739\) −9.01328 15.6115i −0.331559 0.574277i 0.651259 0.758856i \(-0.274241\pi\)
−0.982818 + 0.184579i \(0.940908\pi\)
\(740\) 0 0
\(741\) −8.18389 31.4019i −0.300643 1.15358i
\(742\) 0 0
\(743\) −19.7552 −0.724747 −0.362373 0.932033i \(-0.618033\pi\)
−0.362373 + 0.932033i \(0.618033\pi\)
\(744\) 0 0
\(745\) −27.3925 −1.00358
\(746\) 0 0
\(747\) 2.17521 1.81317i 0.0795869 0.0663405i
\(748\) 0 0
\(749\) −2.77069 4.79897i −0.101239 0.175351i
\(750\) 0 0
\(751\) −39.9837 −1.45903 −0.729513 0.683967i \(-0.760253\pi\)
−0.729513 + 0.683967i \(0.760253\pi\)
\(752\) 0 0
\(753\) −15.9347 44.0031i −0.580691 1.60356i
\(754\) 0 0
\(755\) −12.3333 −0.448855
\(756\) 0 0
\(757\) 1.13756 + 1.97031i 0.0413454 + 0.0716123i 0.885958 0.463766i \(-0.153502\pi\)
−0.844612 + 0.535379i \(0.820169\pi\)
\(758\) 0 0
\(759\) −11.7086 32.3329i −0.424994 1.17361i
\(760\) 0 0
\(761\) 8.06709 + 13.9726i 0.292432 + 0.506507i 0.974384 0.224890i \(-0.0722022\pi\)
−0.681952 + 0.731397i \(0.738869\pi\)
\(762\) 0 0
\(763\) −6.45536 −0.233700
\(764\) 0 0
\(765\) 5.20582 4.33936i 0.188217 0.156890i
\(766\) 0 0
\(767\) 10.6754 + 23.2091i 0.385465 + 0.838032i
\(768\) 0 0
\(769\) −38.5720 −1.39094 −0.695471 0.718554i \(-0.744804\pi\)
−0.695471 + 0.718554i \(0.744804\pi\)
\(770\) 0 0
\(771\) −9.60734 + 11.4118i −0.346000 + 0.410984i
\(772\) 0 0
\(773\) −9.95027 + 17.2344i −0.357886 + 0.619877i −0.987608 0.156944i \(-0.949836\pi\)
0.629721 + 0.776821i \(0.283169\pi\)
\(774\) 0 0
\(775\) 12.9754 0.466090
\(776\) 0 0
\(777\) 6.31626 + 1.12434i 0.226595 + 0.0403356i
\(778\) 0 0
\(779\) 6.93597 12.0135i 0.248507 0.430427i
\(780\) 0 0
\(781\) 9.82524 + 17.0178i 0.351575 + 0.608945i
\(782\) 0 0
\(783\) 1.57002 0.896248i 0.0561081 0.0320293i
\(784\) 0 0
\(785\) 7.78517 + 13.4843i 0.277865 + 0.481276i
\(786\) 0 0
\(787\) 12.3659 + 21.4184i 0.440797 + 0.763483i 0.997749 0.0670616i \(-0.0213624\pi\)
−0.556951 + 0.830545i \(0.688029\pi\)
\(788\) 0 0
\(789\) −2.51635 6.94882i −0.0895843 0.247385i
\(790\) 0 0
\(791\) 3.02257 + 5.23525i 0.107470 + 0.186144i
\(792\) 0 0
\(793\) −25.1161 2.32962i −0.891899 0.0827274i
\(794\) 0 0
\(795\) 0.802862 + 2.21708i 0.0284746 + 0.0786318i
\(796\) 0 0
\(797\) 16.7586 + 29.0268i 0.593621 + 1.02818i 0.993740 + 0.111719i \(0.0356355\pi\)
−0.400119 + 0.916463i \(0.631031\pi\)
\(798\) 0 0
\(799\) −14.0487 −0.497009
\(800\) 0 0
\(801\) −27.9299 + 23.2813i −0.986856 + 0.822603i
\(802\) 0 0
\(803\) 20.0373 34.7056i 0.707100 1.22473i
\(804\) 0 0
\(805\) −2.34270 + 4.05768i −0.0825694 + 0.143014i
\(806\) 0 0
\(807\) 7.83129 + 21.6259i 0.275674 + 0.761267i
\(808\) 0 0
\(809\) 19.8782 + 34.4301i 0.698882 + 1.21050i 0.968854 + 0.247631i \(0.0796520\pi\)
−0.269973 + 0.962868i \(0.587015\pi\)
\(810\) 0 0
\(811\) −2.74775 −0.0964867 −0.0482434 0.998836i \(-0.515362\pi\)
−0.0482434 + 0.998836i \(0.515362\pi\)
\(812\) 0 0
\(813\) −33.1075 5.89340i −1.16113 0.206691i
\(814\) 0 0
\(815\) −9.40840 16.2958i −0.329562 0.570818i
\(816\) 0 0
\(817\) 33.1811 57.4714i 1.16086 2.01067i
\(818\) 0 0
\(819\) −0.566057 7.17007i −0.0197796 0.250543i
\(820\) 0 0
\(821\) −17.7476 + 30.7397i −0.619395 + 1.07282i 0.370202 + 0.928951i \(0.379289\pi\)
−0.989596 + 0.143871i \(0.954045\pi\)
\(822\) 0 0
\(823\) −22.8848 39.6376i −0.797713 1.38168i −0.921102 0.389320i \(-0.872710\pi\)
0.123390 0.992358i \(-0.460623\pi\)
\(824\) 0 0
\(825\) −11.9705 + 14.2188i −0.416760 + 0.495035i
\(826\) 0 0
\(827\) −18.2377 −0.634188 −0.317094 0.948394i \(-0.602707\pi\)
−0.317094 + 0.948394i \(0.602707\pi\)
\(828\) 0 0
\(829\) 12.9490 + 22.4284i 0.449739 + 0.778971i 0.998369 0.0570946i \(-0.0181837\pi\)
−0.548630 + 0.836065i \(0.684850\pi\)
\(830\) 0 0
\(831\) 18.0902 21.4878i 0.627542 0.745405i
\(832\) 0 0
\(833\) −4.53449 + 7.85397i −0.157111 + 0.272124i
\(834\) 0 0
\(835\) 6.38389 11.0572i 0.220924 0.382651i
\(836\) 0 0
\(837\) 25.1140 14.3363i 0.868068 0.495536i
\(838\) 0 0
\(839\) −3.59367 −0.124067 −0.0620336 0.998074i \(-0.519759\pi\)
−0.0620336 + 0.998074i \(0.519759\pi\)
\(840\) 0 0
\(841\) 14.4395 + 25.0099i 0.497913 + 0.862411i
\(842\) 0 0
\(843\) 16.5690 + 2.94942i 0.570668 + 0.101583i
\(844\) 0 0
\(845\) −13.8196 + 16.1244i −0.475407 + 0.554696i
\(846\) 0 0
\(847\) 3.38595 + 5.86464i 0.116343 + 0.201512i
\(848\) 0 0
\(849\) 12.7506 15.1454i 0.437601 0.519790i
\(850\) 0 0
\(851\) −12.0143 20.8093i −0.411844 0.713334i
\(852\) 0 0
\(853\) 17.0535 + 29.5375i 0.583901 + 1.01135i 0.995011 + 0.0997604i \(0.0318076\pi\)
−0.411111 + 0.911585i \(0.634859\pi\)
\(854\) 0 0
\(855\) 19.5608 16.3051i 0.668964 0.557622i
\(856\) 0 0
\(857\) −15.7794 27.3308i −0.539015 0.933601i −0.998957 0.0456525i \(-0.985463\pi\)
0.459943 0.887949i \(-0.347870\pi\)
\(858\) 0 0
\(859\) 13.4662 23.3241i 0.459460 0.795807i −0.539473 0.842003i \(-0.681376\pi\)
0.998932 + 0.0461957i \(0.0147098\pi\)
\(860\) 0 0
\(861\) 1.98013 2.35203i 0.0674827 0.0801571i
\(862\) 0 0
\(863\) −38.0216 −1.29427 −0.647135 0.762376i \(-0.724033\pi\)
−0.647135 + 0.762376i \(0.724033\pi\)
\(864\) 0 0
\(865\) 10.3914 17.9984i 0.353317 0.611963i
\(866\) 0 0
\(867\) −25.7279 4.57978i −0.873767 0.155537i
\(868\) 0 0
\(869\) −71.0634 −2.41066
\(870\) 0 0
\(871\) −44.3527 4.11390i −1.50283 0.139394i
\(872\) 0 0
\(873\) 7.70626 + 44.5531i 0.260817 + 1.50789i
\(874\) 0 0
\(875\) 7.96354 0.269217
\(876\) 0 0
\(877\) 24.5692 + 42.5550i 0.829642 + 1.43698i 0.898320 + 0.439342i \(0.144789\pi\)
−0.0686781 + 0.997639i \(0.521878\pi\)
\(878\) 0 0
\(879\) 10.2079 + 1.81710i 0.344305 + 0.0612891i
\(880\) 0 0
\(881\) 17.4459 + 30.2172i 0.587768 + 1.01804i 0.994524 + 0.104507i \(0.0333265\pi\)
−0.406756 + 0.913537i \(0.633340\pi\)
\(882\) 0 0
\(883\) −40.3318 −1.35727 −0.678636 0.734475i \(-0.737429\pi\)
−0.678636 + 0.734475i \(0.737429\pi\)
\(884\) 0 0
\(885\) −12.9111 + 15.3360i −0.434003 + 0.515515i
\(886\) 0 0
\(887\) 6.74768 0.226565 0.113283 0.993563i \(-0.463863\pi\)
0.113283 + 0.993563i \(0.463863\pi\)
\(888\) 0 0
\(889\) −0.0633709 0.109762i −0.00212539 0.00368128i
\(890\) 0 0
\(891\) −7.45895 + 40.7467i −0.249884 + 1.36507i
\(892\) 0 0
\(893\) −52.7879 −1.76648
\(894\) 0 0
\(895\) 33.7152 1.12698
\(896\) 0 0
\(897\) −19.1782 + 18.9171i −0.640340 + 0.631623i
\(898\) 0 0
\(899\) −0.968121 1.67683i −0.0322886 0.0559256i
\(900\) 0 0
\(901\) −0.576251 + 0.998096i −0.0191977 + 0.0332514i
\(902\) 0 0
\(903\) 9.47279 11.2519i 0.315235 0.374441i
\(904\) 0 0
\(905\) −1.48433 + 2.57093i −0.0493406 + 0.0854605i
\(906\) 0 0
\(907\) −17.2965 + 29.9583i −0.574319 + 0.994750i 0.421796 + 0.906691i \(0.361400\pi\)
−0.996115 + 0.0880593i \(0.971933\pi\)
\(908\) 0 0
\(909\) −13.7289 5.04765i −0.455359 0.167420i
\(910\) 0 0
\(911\) −29.8143 51.6399i −0.987793 1.71091i −0.628799 0.777568i \(-0.716453\pi\)
−0.358994 0.933340i \(-0.616880\pi\)
\(912\) 0 0
\(913\) 4.34460 0.143785
\(914\) 0 0
\(915\) −6.73964 18.6113i −0.222806 0.615271i
\(916\) 0 0
\(917\) −3.38992 + 5.87151i −0.111945 + 0.193894i
\(918\) 0 0
\(919\) 22.3087 38.6399i 0.735897 1.27461i −0.218431 0.975852i \(-0.570094\pi\)
0.954328 0.298759i \(-0.0965728\pi\)
\(920\) 0 0
\(921\) −6.01861 + 7.14901i −0.198320 + 0.235568i
\(922\) 0 0
\(923\) 8.89510 12.5633i 0.292786 0.413527i
\(924\) 0 0
\(925\) −6.49381 + 11.2476i −0.213515 + 0.369819i
\(926\) 0 0
\(927\) −26.6892 9.81270i −0.876587 0.322291i
\(928\) 0 0
\(929\) −22.5988 −0.741441 −0.370721 0.928744i \(-0.620889\pi\)
−0.370721 + 0.928744i \(0.620889\pi\)
\(930\) 0 0
\(931\) −17.0383 + 29.5112i −0.558407 + 0.967189i
\(932\) 0 0
\(933\) −10.7521 29.6915i −0.352007 0.972058i
\(934\) 0 0
\(935\) 10.3977 0.340041
\(936\) 0 0
\(937\) −50.3581 −1.64513 −0.822564 0.568672i \(-0.807457\pi\)
−0.822564 + 0.568672i \(0.807457\pi\)
\(938\) 0 0
\(939\) 54.4099 + 9.68540i 1.77560 + 0.316071i
\(940\) 0 0
\(941\) 28.8445 49.9601i 0.940304 1.62865i 0.175412 0.984495i \(-0.443874\pi\)
0.764892 0.644158i \(-0.222792\pi\)
\(942\) 0 0
\(943\) −11.5154 −0.374992
\(944\) 0 0
\(945\) 4.90168 2.79812i 0.159452 0.0910228i
\(946\) 0 0
\(947\) −1.23791 + 2.14413i −0.0402267 + 0.0696748i −0.885438 0.464758i \(-0.846141\pi\)
0.845211 + 0.534433i \(0.179475\pi\)
\(948\) 0 0
\(949\) −31.2588 2.89939i −1.01471 0.0941182i
\(950\) 0 0
\(951\) −36.4525 6.48884i −1.18205 0.210415i
\(952\) 0 0
\(953\) −4.94384 + 8.56298i −0.160147 + 0.277382i −0.934921 0.354856i \(-0.884530\pi\)
0.774774 + 0.632238i \(0.217863\pi\)
\(954\) 0 0
\(955\) 13.0815 22.6579i 0.423309 0.733192i
\(956\) 0 0
\(957\) 2.73067 + 0.486080i 0.0882699 + 0.0157127i
\(958\) 0 0
\(959\) −3.49555 −0.112877
\(960\) 0 0
\(961\) 0.0139977 + 0.0242447i 0.000451538 + 0.000782086i
\(962\) 0 0
\(963\) 19.2042 16.0079i 0.618848 0.515847i
\(964\) 0 0
\(965\) 6.51162 11.2784i 0.209616 0.363066i
\(966\) 0 0
\(967\) −13.4158 + 23.2369i −0.431425 + 0.747249i −0.996996 0.0774499i \(-0.975322\pi\)
0.565572 + 0.824699i \(0.308656\pi\)
\(968\) 0 0
\(969\) 12.2540 + 2.18130i 0.393654 + 0.0700736i
\(970\) 0 0
\(971\) 21.6035 37.4183i 0.693289 1.20081i −0.277466 0.960736i \(-0.589494\pi\)
0.970754 0.240076i \(-0.0771722\pi\)
\(972\) 0 0
\(973\) 3.85448 + 6.67615i 0.123569 + 0.214028i
\(974\) 0 0
\(975\) 14.0380 + 3.86476i 0.449574 + 0.123771i
\(976\) 0 0
\(977\) −43.0153 −1.37618 −0.688090 0.725625i \(-0.741551\pi\)
−0.688090 + 0.725625i \(0.741551\pi\)
\(978\) 0 0
\(979\) −55.7850 −1.78290
\(980\) 0 0
\(981\) −4.96394 28.6986i −0.158486 0.916276i
\(982\) 0 0
\(983\) 15.6828 + 27.1635i 0.500205 + 0.866380i 1.00000 0.000236510i \(7.52834e-5\pi\)
−0.499795 + 0.866144i \(0.666591\pi\)
\(984\) 0 0
\(985\) 21.7547 0.693164
\(986\) 0 0
\(987\) −11.5188 2.05044i −0.366647 0.0652662i
\(988\) 0 0
\(989\) −55.0886 −1.75171
\(990\) 0 0
\(991\) −3.61332 6.25845i −0.114781 0.198806i 0.802911 0.596099i \(-0.203283\pi\)
−0.917692 + 0.397292i \(0.869950\pi\)
\(992\) 0 0
\(993\) −31.4263 + 37.3287i −0.997283 + 1.18459i
\(994\) 0 0
\(995\) −15.3330 26.5575i −0.486088 0.841929i
\(996\) 0 0
\(997\) −0.473222 −0.0149871 −0.00749354 0.999972i \(-0.502385\pi\)
−0.00749354 + 0.999972i \(0.502385\pi\)
\(998\) 0 0
\(999\) −0.141523 + 28.9448i −0.00447760 + 0.915772i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.s.f.913.6 yes 40
3.2 odd 2 2808.2.s.f.1225.15 40
9.2 odd 6 2808.2.r.f.289.15 40
9.7 even 3 936.2.r.f.601.18 40
13.9 even 3 936.2.r.f.841.18 yes 40
39.35 odd 6 2808.2.r.f.2089.15 40
117.61 even 3 inner 936.2.s.f.529.6 yes 40
117.74 odd 6 2808.2.s.f.1153.15 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.r.f.601.18 40 9.7 even 3
936.2.r.f.841.18 yes 40 13.9 even 3
936.2.s.f.529.6 yes 40 117.61 even 3 inner
936.2.s.f.913.6 yes 40 1.1 even 1 trivial
2808.2.r.f.289.15 40 9.2 odd 6
2808.2.r.f.2089.15 40 39.35 odd 6
2808.2.s.f.1153.15 40 117.74 odd 6
2808.2.s.f.1225.15 40 3.2 odd 2