L(s) = 1 | + (0.0896 + 1.72i)3-s + (−1.74 + 3.02i)5-s − 3.26·7-s + (−2.98 + 0.310i)9-s + (−2.07 + 3.59i)11-s + (3.60 + 0.120i)13-s + (−5.39 − 2.75i)15-s + (0.552 − 0.957i)17-s + (2.87 − 4.98i)19-s + (−0.292 − 5.63i)21-s + 0.808·23-s + (−3.60 − 6.24i)25-s + (−0.804 − 5.13i)27-s + (−0.545 + 0.945i)29-s + (0.736 − 1.27i)31-s + ⋯ |
L(s) = 1 | + (0.0517 + 0.998i)3-s + (−0.781 + 1.35i)5-s − 1.23·7-s + (−0.994 + 0.103i)9-s + (−0.626 + 1.08i)11-s + (0.999 + 0.0334i)13-s + (−1.39 − 0.710i)15-s + (0.134 − 0.232i)17-s + (0.660 − 1.14i)19-s + (−0.0637 − 1.23i)21-s + 0.168·23-s + (−0.720 − 1.24i)25-s + (−0.154 − 0.987i)27-s + (−0.101 + 0.175i)29-s + (0.132 − 0.229i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.509 + 0.860i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 936 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.509 + 0.860i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.211249 - 0.370482i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.211249 - 0.370482i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.0896 - 1.72i)T \) |
| 13 | \( 1 + (-3.60 - 0.120i)T \) |
good | 5 | \( 1 + (1.74 - 3.02i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + 3.26T + 7T^{2} \) |
| 11 | \( 1 + (2.07 - 3.59i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.552 + 0.957i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.87 + 4.98i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 0.808T + 23T^{2} \) |
| 29 | \( 1 + (0.545 - 0.945i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.736 + 1.27i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.26 - 5.64i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 6.64T + 41T^{2} \) |
| 43 | \( 1 + 11.2T + 43T^{2} \) |
| 47 | \( 1 + (-0.872 - 1.51i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 7.33T + 53T^{2} \) |
| 59 | \( 1 + (1.70 + 2.95i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 - 13.0T + 61T^{2} \) |
| 67 | \( 1 + 9.98T + 67T^{2} \) |
| 71 | \( 1 + (7.73 - 13.3i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 1.48T + 73T^{2} \) |
| 79 | \( 1 + (6.20 + 10.7i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.53 - 2.66i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (3.25 + 5.63i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 7.51T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.34539164486540815582553660984, −10.05413180237120304118036542966, −9.145088343191139155409897450305, −8.114414500672056554954257089358, −7.06094039715688898899051486935, −6.54446751148453365786513791128, −5.32648797011141855904433999040, −4.20435115329743594438461403741, −3.26805739701886048851810007249, −2.76690517964210519032166823317,
0.21038343020330968426874895774, 1.32504481639329446414382741847, 3.11841050067883467277300437258, 3.83158643712500552719473597535, 5.40793622695838313833932695496, 5.95918733655196390732556033437, 6.98992054246463438395840151484, 8.107157289123249631147953467816, 8.400623886219725037217016643144, 9.230603035975793871069261414801