Properties

Label 925.2.y.b.732.6
Level $925$
Weight $2$
Character 925.732
Analytic conductor $7.386$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(193,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.y (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 732.6
Character \(\chi\) \(=\) 925.732
Dual form 925.2.y.b.393.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.983757 + 0.567972i) q^{2} +(-1.02118 + 0.273625i) q^{3} +(-0.354815 + 0.614557i) q^{4} +(0.849185 - 0.849185i) q^{6} +(-1.57806 + 0.422839i) q^{7} -3.07799i q^{8} +(-1.63013 + 0.941157i) q^{9} -1.92257i q^{11} +(0.194173 - 0.724662i) q^{12} +(1.32247 + 0.763528i) q^{13} +(1.31226 - 1.31226i) q^{14} +(1.03858 + 1.79888i) q^{16} +(-0.660110 - 1.14334i) q^{17} +(1.06910 - 1.85174i) q^{18} +(-2.17790 + 0.583566i) q^{19} +(1.49579 - 0.863592i) q^{21} +(1.09196 + 1.89134i) q^{22} -4.57925i q^{23} +(0.842216 + 3.14319i) q^{24} -1.73465 q^{26} +(3.64981 - 3.64981i) q^{27} +(0.300059 - 1.11984i) q^{28} +(-0.241089 + 0.241089i) q^{29} +(-1.00617 - 1.00617i) q^{31} +(3.28781 + 1.89822i) q^{32} +(0.526063 + 1.96329i) q^{33} +(1.29878 + 0.749849i) q^{34} -1.33575i q^{36} +(5.83510 - 1.71804i) q^{37} +(1.81107 - 1.81107i) q^{38} +(-1.55940 - 0.417841i) q^{39} +(6.76304 + 3.90464i) q^{41} +(-0.980993 + 1.69913i) q^{42} +5.46568i q^{43} +(1.18153 + 0.682155i) q^{44} +(2.60089 + 4.50487i) q^{46} +(-1.79140 - 1.79140i) q^{47} +(-1.55280 - 1.55280i) q^{48} +(-3.75071 + 2.16547i) q^{49} +(0.986942 + 0.986942i) q^{51} +(-0.938463 + 0.541822i) q^{52} +(-3.24893 - 0.870548i) q^{53} +(-1.51754 + 5.66352i) q^{54} +(1.30149 + 4.85724i) q^{56} +(2.06436 - 1.19186i) q^{57} +(0.100241 - 0.374105i) q^{58} +(1.40987 - 5.26170i) q^{59} +(10.4583 - 2.80230i) q^{61} +(1.56131 + 0.418352i) q^{62} +(2.17448 - 2.17448i) q^{63} -8.46687 q^{64} +(-1.63261 - 1.63261i) q^{66} +(2.53340 + 9.45477i) q^{67} +0.936868 q^{68} +(1.25300 + 4.67625i) q^{69} +(1.65295 - 2.86299i) q^{71} +(2.89687 + 5.01753i) q^{72} +(1.78634 + 1.78634i) q^{73} +(-4.76452 + 5.00430i) q^{74} +(0.414116 - 1.54550i) q^{76} +(0.812936 + 3.03392i) q^{77} +(1.77140 - 0.474644i) q^{78} +(12.3408 - 3.30670i) q^{79} +(0.0950223 - 0.164583i) q^{81} -8.87092 q^{82} +(8.57952 + 2.29888i) q^{83} +1.22566i q^{84} +(-3.10436 - 5.37690i) q^{86} +(0.180228 - 0.312164i) q^{87} -5.91764 q^{88} +(16.4223 + 4.40035i) q^{89} +(-2.40978 - 0.645698i) q^{91} +(2.81421 + 1.62479i) q^{92} +(1.30280 + 0.752174i) q^{93} +(2.77976 + 0.744835i) q^{94} +(-3.87685 - 1.03880i) q^{96} -15.4196 q^{97} +(2.45986 - 4.26060i) q^{98} +(1.80944 + 3.13404i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 6 q^{2} + 4 q^{3} + 30 q^{4} - 8 q^{6} + 2 q^{7} + 10 q^{12} + 6 q^{13} - 26 q^{16} + 10 q^{17} + 8 q^{18} - 4 q^{19} - 12 q^{21} + 14 q^{22} - 24 q^{26} - 68 q^{27} - 14 q^{28} - 14 q^{29} - 24 q^{31}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.983757 + 0.567972i −0.695621 + 0.401617i −0.805714 0.592304i \(-0.798218\pi\)
0.110093 + 0.993921i \(0.464885\pi\)
\(3\) −1.02118 + 0.273625i −0.589581 + 0.157978i −0.541262 0.840854i \(-0.682053\pi\)
−0.0483191 + 0.998832i \(0.515386\pi\)
\(4\) −0.354815 + 0.614557i −0.177407 + 0.307279i
\(5\) 0 0
\(6\) 0.849185 0.849185i 0.346678 0.346678i
\(7\) −1.57806 + 0.422839i −0.596449 + 0.159818i −0.544399 0.838826i \(-0.683242\pi\)
−0.0520501 + 0.998644i \(0.516576\pi\)
\(8\) 3.07799i 1.08823i
\(9\) −1.63013 + 0.941157i −0.543377 + 0.313719i
\(10\) 0 0
\(11\) 1.92257i 0.579676i −0.957076 0.289838i \(-0.906399\pi\)
0.957076 0.289838i \(-0.0936014\pi\)
\(12\) 0.194173 0.724662i 0.0560528 0.209192i
\(13\) 1.32247 + 0.763528i 0.366787 + 0.211764i 0.672054 0.740502i \(-0.265412\pi\)
−0.305267 + 0.952267i \(0.598746\pi\)
\(14\) 1.31226 1.31226i 0.350717 0.350717i
\(15\) 0 0
\(16\) 1.03858 + 1.79888i 0.259646 + 0.449720i
\(17\) −0.660110 1.14334i −0.160100 0.277302i 0.774804 0.632201i \(-0.217848\pi\)
−0.934904 + 0.354899i \(0.884515\pi\)
\(18\) 1.06910 1.85174i 0.251990 0.436459i
\(19\) −2.17790 + 0.583566i −0.499644 + 0.133879i −0.499835 0.866121i \(-0.666606\pi\)
0.000190628 1.00000i \(0.499939\pi\)
\(20\) 0 0
\(21\) 1.49579 0.863592i 0.326407 0.188451i
\(22\) 1.09196 + 1.89134i 0.232808 + 0.403235i
\(23\) 4.57925i 0.954839i −0.878675 0.477420i \(-0.841572\pi\)
0.878675 0.477420i \(-0.158428\pi\)
\(24\) 0.842216 + 3.14319i 0.171917 + 0.641601i
\(25\) 0 0
\(26\) −1.73465 −0.340193
\(27\) 3.64981 3.64981i 0.702407 0.702407i
\(28\) 0.300059 1.11984i 0.0567058 0.211629i
\(29\) −0.241089 + 0.241089i −0.0447691 + 0.0447691i −0.729137 0.684368i \(-0.760078\pi\)
0.684368 + 0.729137i \(0.260078\pi\)
\(30\) 0 0
\(31\) −1.00617 1.00617i −0.180714 0.180714i 0.610953 0.791667i \(-0.290787\pi\)
−0.791667 + 0.610953i \(0.790787\pi\)
\(32\) 3.28781 + 1.89822i 0.581208 + 0.335560i
\(33\) 0.526063 + 1.96329i 0.0915758 + 0.341766i
\(34\) 1.29878 + 0.749849i 0.222738 + 0.128598i
\(35\) 0 0
\(36\) 1.33575i 0.222624i
\(37\) 5.83510 1.71804i 0.959284 0.282443i
\(38\) 1.81107 1.81107i 0.293795 0.293795i
\(39\) −1.55940 0.417841i −0.249704 0.0669081i
\(40\) 0 0
\(41\) 6.76304 + 3.90464i 1.05621 + 0.609803i 0.924381 0.381470i \(-0.124582\pi\)
0.131828 + 0.991273i \(0.457915\pi\)
\(42\) −0.980993 + 1.69913i −0.151370 + 0.262181i
\(43\) 5.46568i 0.833509i 0.909019 + 0.416754i \(0.136832\pi\)
−0.909019 + 0.416754i \(0.863168\pi\)
\(44\) 1.18153 + 0.682155i 0.178122 + 0.102839i
\(45\) 0 0
\(46\) 2.60089 + 4.50487i 0.383480 + 0.664207i
\(47\) −1.79140 1.79140i −0.261302 0.261302i 0.564281 0.825583i \(-0.309154\pi\)
−0.825583 + 0.564281i \(0.809154\pi\)
\(48\) −1.55280 1.55280i −0.224128 0.224128i
\(49\) −3.75071 + 2.16547i −0.535816 + 0.309353i
\(50\) 0 0
\(51\) 0.986942 + 0.986942i 0.138200 + 0.138200i
\(52\) −0.938463 + 0.541822i −0.130141 + 0.0751372i
\(53\) −3.24893 0.870548i −0.446275 0.119579i 0.0286809 0.999589i \(-0.490869\pi\)
−0.474956 + 0.880010i \(0.657536\pi\)
\(54\) −1.51754 + 5.66352i −0.206511 + 0.770708i
\(55\) 0 0
\(56\) 1.30149 + 4.85724i 0.173919 + 0.649076i
\(57\) 2.06436 1.19186i 0.273431 0.157865i
\(58\) 0.100241 0.374105i 0.0131623 0.0491223i
\(59\) 1.40987 5.26170i 0.183549 0.685016i −0.811387 0.584509i \(-0.801287\pi\)
0.994936 0.100506i \(-0.0320463\pi\)
\(60\) 0 0
\(61\) 10.4583 2.80230i 1.33905 0.358797i 0.482968 0.875638i \(-0.339559\pi\)
0.856081 + 0.516841i \(0.172892\pi\)
\(62\) 1.56131 + 0.418352i 0.198287 + 0.0531307i
\(63\) 2.17448 2.17448i 0.273959 0.273959i
\(64\) −8.46687 −1.05836
\(65\) 0 0
\(66\) −1.63261 1.63261i −0.200961 0.200961i
\(67\) 2.53340 + 9.45477i 0.309504 + 1.15508i 0.928999 + 0.370083i \(0.120671\pi\)
−0.619495 + 0.785001i \(0.712662\pi\)
\(68\) 0.936868 0.113612
\(69\) 1.25300 + 4.67625i 0.150843 + 0.562955i
\(70\) 0 0
\(71\) 1.65295 2.86299i 0.196169 0.339774i −0.751114 0.660172i \(-0.770483\pi\)
0.947283 + 0.320398i \(0.103817\pi\)
\(72\) 2.89687 + 5.01753i 0.341399 + 0.591321i
\(73\) 1.78634 + 1.78634i 0.209075 + 0.209075i 0.803874 0.594799i \(-0.202768\pi\)
−0.594799 + 0.803874i \(0.702768\pi\)
\(74\) −4.76452 + 5.00430i −0.553864 + 0.581739i
\(75\) 0 0
\(76\) 0.414116 1.54550i 0.0475023 0.177281i
\(77\) 0.812936 + 3.03392i 0.0926427 + 0.345747i
\(78\) 1.77140 0.474644i 0.200571 0.0537429i
\(79\) 12.3408 3.30670i 1.38844 0.372032i 0.514263 0.857633i \(-0.328066\pi\)
0.874181 + 0.485600i \(0.161399\pi\)
\(80\) 0 0
\(81\) 0.0950223 0.164583i 0.0105580 0.0182871i
\(82\) −8.87092 −0.979629
\(83\) 8.57952 + 2.29888i 0.941725 + 0.252334i 0.696847 0.717220i \(-0.254586\pi\)
0.244878 + 0.969554i \(0.421252\pi\)
\(84\) 1.22566i 0.133731i
\(85\) 0 0
\(86\) −3.10436 5.37690i −0.334751 0.579806i
\(87\) 0.180228 0.312164i 0.0193225 0.0334675i
\(88\) −5.91764 −0.630823
\(89\) 16.4223 + 4.40035i 1.74076 + 0.466436i 0.982616 0.185650i \(-0.0594390\pi\)
0.758146 + 0.652085i \(0.226106\pi\)
\(90\) 0 0
\(91\) −2.40978 0.645698i −0.252613 0.0676876i
\(92\) 2.81421 + 1.62479i 0.293402 + 0.169396i
\(93\) 1.30280 + 0.752174i 0.135094 + 0.0779968i
\(94\) 2.77976 + 0.744835i 0.286711 + 0.0768239i
\(95\) 0 0
\(96\) −3.87685 1.03880i −0.395680 0.106022i
\(97\) −15.4196 −1.56563 −0.782814 0.622256i \(-0.786216\pi\)
−0.782814 + 0.622256i \(0.786216\pi\)
\(98\) 2.45986 4.26060i 0.248483 0.430385i
\(99\) 1.80944 + 3.13404i 0.181855 + 0.314983i
\(100\) 0 0
\(101\) 0.767212i 0.0763405i 0.999271 + 0.0381702i \(0.0121529\pi\)
−0.999271 + 0.0381702i \(0.987847\pi\)
\(102\) −1.53147 0.410355i −0.151638 0.0406312i
\(103\) 4.78539 0.471518 0.235759 0.971812i \(-0.424242\pi\)
0.235759 + 0.971812i \(0.424242\pi\)
\(104\) 2.35013 4.07054i 0.230449 0.399150i
\(105\) 0 0
\(106\) 3.69061 0.988895i 0.358463 0.0960500i
\(107\) 12.5674 3.36743i 1.21494 0.325542i 0.406240 0.913766i \(-0.366840\pi\)
0.808698 + 0.588225i \(0.200173\pi\)
\(108\) 0.948011 + 3.53803i 0.0912224 + 0.340447i
\(109\) 3.42875 12.7963i 0.328414 1.22566i −0.582421 0.812888i \(-0.697894\pi\)
0.910835 0.412771i \(-0.135439\pi\)
\(110\) 0 0
\(111\) −5.48861 + 3.35106i −0.520955 + 0.318069i
\(112\) −2.39958 2.39958i −0.226739 0.226739i
\(113\) 7.28470 + 12.6175i 0.685287 + 1.18695i 0.973347 + 0.229339i \(0.0736565\pi\)
−0.288060 + 0.957612i \(0.593010\pi\)
\(114\) −1.35388 + 2.34499i −0.126803 + 0.219629i
\(115\) 0 0
\(116\) −0.0626210 0.233705i −0.00581421 0.0216989i
\(117\) −2.87440 −0.265738
\(118\) 1.60153 + 5.97701i 0.147433 + 0.550228i
\(119\) 1.52514 + 1.52514i 0.139810 + 0.139810i
\(120\) 0 0
\(121\) 7.30374 0.663976
\(122\) −8.69681 + 8.69681i −0.787372 + 0.787372i
\(123\) −7.97471 2.13682i −0.719056 0.192670i
\(124\) 0.975357 0.261346i 0.0875896 0.0234696i
\(125\) 0 0
\(126\) −0.904116 + 3.37421i −0.0805450 + 0.300598i
\(127\) 1.32394 4.94102i 0.117481 0.438445i −0.881980 0.471288i \(-0.843789\pi\)
0.999461 + 0.0328428i \(0.0104561\pi\)
\(128\) 1.75373 1.01252i 0.155009 0.0894947i
\(129\) −1.49555 5.58146i −0.131676 0.491421i
\(130\) 0 0
\(131\) −0.824339 + 3.07647i −0.0720228 + 0.268793i −0.992542 0.121905i \(-0.961100\pi\)
0.920519 + 0.390698i \(0.127766\pi\)
\(132\) −1.39321 0.373310i −0.121263 0.0324924i
\(133\) 3.19009 1.84180i 0.276616 0.159704i
\(134\) −7.86230 7.86230i −0.679199 0.679199i
\(135\) 0 0
\(136\) −3.51920 + 2.03181i −0.301769 + 0.174227i
\(137\) −15.2791 15.2791i −1.30538 1.30538i −0.924709 0.380674i \(-0.875692\pi\)
−0.380674 0.924709i \(-0.624308\pi\)
\(138\) −3.88863 3.88863i −0.331022 0.331022i
\(139\) −8.97537 15.5458i −0.761281 1.31858i −0.942191 0.335077i \(-0.891238\pi\)
0.180910 0.983500i \(-0.442096\pi\)
\(140\) 0 0
\(141\) 2.31952 + 1.33917i 0.195339 + 0.112779i
\(142\) 3.75532i 0.315139i
\(143\) 1.46793 2.54253i 0.122755 0.212617i
\(144\) −3.38605 1.95494i −0.282171 0.162912i
\(145\) 0 0
\(146\) −2.77191 0.742732i −0.229405 0.0614689i
\(147\) 3.23763 3.23763i 0.267036 0.267036i
\(148\) −1.01455 + 4.19559i −0.0833952 + 0.344875i
\(149\) 16.8891i 1.38361i 0.722084 + 0.691805i \(0.243184\pi\)
−0.722084 + 0.691805i \(0.756816\pi\)
\(150\) 0 0
\(151\) −19.2569 11.1180i −1.56711 0.904770i −0.996504 0.0835434i \(-0.973376\pi\)
−0.570603 0.821226i \(-0.693290\pi\)
\(152\) 1.79621 + 6.70355i 0.145692 + 0.543730i
\(153\) 2.15213 + 1.24253i 0.173990 + 0.100453i
\(154\) −2.52291 2.52291i −0.203302 0.203302i
\(155\) 0 0
\(156\) 0.810087 0.810087i 0.0648588 0.0648588i
\(157\) −1.34884 + 5.03393i −0.107649 + 0.401751i −0.998632 0.0522849i \(-0.983350\pi\)
0.890983 + 0.454036i \(0.150016\pi\)
\(158\) −10.2622 + 10.2622i −0.816417 + 0.816417i
\(159\) 3.55596 0.282006
\(160\) 0 0
\(161\) 1.93628 + 7.22631i 0.152601 + 0.569513i
\(162\) 0.215880i 0.0169611i
\(163\) −7.33603 12.7064i −0.574603 0.995241i −0.996085 0.0884042i \(-0.971823\pi\)
0.421482 0.906837i \(-0.361510\pi\)
\(164\) −4.79925 + 2.77085i −0.374759 + 0.216367i
\(165\) 0 0
\(166\) −9.74586 + 2.61140i −0.756426 + 0.202684i
\(167\) 10.7921 18.6925i 0.835120 1.44647i −0.0588131 0.998269i \(-0.518732\pi\)
0.893933 0.448201i \(-0.147935\pi\)
\(168\) −2.65813 4.60401i −0.205079 0.355207i
\(169\) −5.33405 9.23885i −0.410312 0.710681i
\(170\) 0 0
\(171\) 3.00103 3.00103i 0.229495 0.229495i
\(172\) −3.35897 1.93930i −0.256119 0.147871i
\(173\) 0.213654 0.797367i 0.0162438 0.0606227i −0.957328 0.289003i \(-0.906676\pi\)
0.973572 + 0.228380i \(0.0733429\pi\)
\(174\) 0.409458i 0.0310409i
\(175\) 0 0
\(176\) 3.45847 1.99675i 0.260692 0.150510i
\(177\) 5.75894i 0.432869i
\(178\) −18.6548 + 4.99855i −1.39824 + 0.374657i
\(179\) 16.5150 16.5150i 1.23439 1.23439i 0.272124 0.962262i \(-0.412274\pi\)
0.962262 0.272124i \(-0.0877261\pi\)
\(180\) 0 0
\(181\) −10.0502 + 17.4074i −0.747024 + 1.29388i 0.202219 + 0.979340i \(0.435185\pi\)
−0.949243 + 0.314544i \(0.898148\pi\)
\(182\) 2.73738 0.733478i 0.202908 0.0543690i
\(183\) −9.91307 + 5.72332i −0.732796 + 0.423080i
\(184\) −14.0949 −1.03909
\(185\) 0 0
\(186\) −1.70886 −0.125299
\(187\) −2.19816 + 1.26911i −0.160745 + 0.0928063i
\(188\) 1.73653 0.465302i 0.126649 0.0339356i
\(189\) −4.21633 + 7.30289i −0.306693 + 0.531207i
\(190\) 0 0
\(191\) −12.5389 + 12.5389i −0.907285 + 0.907285i −0.996052 0.0887670i \(-0.971707\pi\)
0.0887670 + 0.996052i \(0.471707\pi\)
\(192\) 8.64623 2.31675i 0.623988 0.167197i
\(193\) 17.1943i 1.23767i −0.785519 0.618837i \(-0.787604\pi\)
0.785519 0.618837i \(-0.212396\pi\)
\(194\) 15.1692 8.75793i 1.08908 0.628783i
\(195\) 0 0
\(196\) 3.07337i 0.219526i
\(197\) 2.30767 8.61235i 0.164415 0.613604i −0.833699 0.552219i \(-0.813781\pi\)
0.998114 0.0613857i \(-0.0195520\pi\)
\(198\) −3.56009 2.05542i −0.253005 0.146072i
\(199\) −7.61077 + 7.61077i −0.539513 + 0.539513i −0.923386 0.383873i \(-0.874590\pi\)
0.383873 + 0.923386i \(0.374590\pi\)
\(200\) 0 0
\(201\) −5.17413 8.96186i −0.364955 0.632121i
\(202\) −0.435755 0.754750i −0.0306596 0.0531041i
\(203\) 0.278510 0.482393i 0.0195476 0.0338574i
\(204\) −0.956714 + 0.256351i −0.0669834 + 0.0179481i
\(205\) 0 0
\(206\) −4.70766 + 2.71797i −0.327998 + 0.189370i
\(207\) 4.30979 + 7.46478i 0.299551 + 0.518838i
\(208\) 3.17195i 0.219935i
\(209\) 1.12195 + 4.18716i 0.0776066 + 0.289632i
\(210\) 0 0
\(211\) 1.64325 0.113126 0.0565629 0.998399i \(-0.481986\pi\)
0.0565629 + 0.998399i \(0.481986\pi\)
\(212\) 1.68777 1.68777i 0.115917 0.115917i
\(213\) −0.904577 + 3.37593i −0.0619806 + 0.231315i
\(214\) −10.4507 + 10.4507i −0.714393 + 0.714393i
\(215\) 0 0
\(216\) −11.2341 11.2341i −0.764383 0.764383i
\(217\) 2.01325 + 1.16235i 0.136668 + 0.0789054i
\(218\) 3.89487 + 14.5358i 0.263794 + 0.984491i
\(219\) −2.31297 1.33539i −0.156296 0.0902374i
\(220\) 0 0
\(221\) 2.01605i 0.135614i
\(222\) 3.49615 6.41401i 0.234646 0.430480i
\(223\) 13.8186 13.8186i 0.925365 0.925365i −0.0720369 0.997402i \(-0.522950\pi\)
0.997402 + 0.0720369i \(0.0229499\pi\)
\(224\) −5.99098 1.60528i −0.400289 0.107257i
\(225\) 0 0
\(226\) −14.3327 8.27502i −0.953400 0.550446i
\(227\) 10.6242 18.4016i 0.705151 1.22136i −0.261487 0.965207i \(-0.584213\pi\)
0.966637 0.256150i \(-0.0824539\pi\)
\(228\) 1.69155i 0.112026i
\(229\) 3.48912 + 2.01445i 0.230568 + 0.133118i 0.610834 0.791759i \(-0.290834\pi\)
−0.380266 + 0.924877i \(0.624168\pi\)
\(230\) 0 0
\(231\) −1.66031 2.87575i −0.109241 0.189210i
\(232\) 0.742069 + 0.742069i 0.0487192 + 0.0487192i
\(233\) 2.25220 + 2.25220i 0.147547 + 0.147547i 0.777021 0.629475i \(-0.216730\pi\)
−0.629475 + 0.777021i \(0.716730\pi\)
\(234\) 2.82771 1.63258i 0.184853 0.106725i
\(235\) 0 0
\(236\) 2.73338 + 2.73338i 0.177928 + 0.177928i
\(237\) −11.6974 + 6.75349i −0.759827 + 0.438686i
\(238\) −2.36661 0.634131i −0.153404 0.0411046i
\(239\) 5.13865 19.1777i 0.332392 1.24050i −0.574277 0.818661i \(-0.694717\pi\)
0.906669 0.421843i \(-0.138617\pi\)
\(240\) 0 0
\(241\) 2.89066 + 10.7881i 0.186204 + 0.694922i 0.994370 + 0.105967i \(0.0337939\pi\)
−0.808166 + 0.588955i \(0.799539\pi\)
\(242\) −7.18510 + 4.14832i −0.461876 + 0.266664i
\(243\) −4.05977 + 15.1513i −0.260435 + 0.971955i
\(244\) −1.98859 + 7.42153i −0.127307 + 0.475114i
\(245\) 0 0
\(246\) 9.05883 2.42731i 0.577570 0.154759i
\(247\) −3.32577 0.891138i −0.211614 0.0567017i
\(248\) −3.09699 + 3.09699i −0.196659 + 0.196659i
\(249\) −9.39030 −0.595086
\(250\) 0 0
\(251\) −6.77562 6.77562i −0.427673 0.427673i 0.460162 0.887835i \(-0.347791\pi\)
−0.887835 + 0.460162i \(0.847791\pi\)
\(252\) 0.564805 + 2.10788i 0.0355794 + 0.132784i
\(253\) −8.80391 −0.553497
\(254\) 1.50393 + 5.61273i 0.0943647 + 0.352174i
\(255\) 0 0
\(256\) 7.31671 12.6729i 0.457294 0.792057i
\(257\) −0.176949 0.306484i −0.0110378 0.0191180i 0.860454 0.509529i \(-0.170180\pi\)
−0.871492 + 0.490411i \(0.836847\pi\)
\(258\) 4.64137 + 4.64137i 0.288959 + 0.288959i
\(259\) −8.48166 + 5.17846i −0.527025 + 0.321774i
\(260\) 0 0
\(261\) 0.166104 0.619909i 0.0102816 0.0383714i
\(262\) −0.936403 3.49470i −0.0578512 0.215904i
\(263\) −19.4898 + 5.22227i −1.20179 + 0.322019i −0.803536 0.595256i \(-0.797051\pi\)
−0.398255 + 0.917275i \(0.630384\pi\)
\(264\) 6.04300 1.61922i 0.371921 0.0996559i
\(265\) 0 0
\(266\) −2.09218 + 3.62377i −0.128280 + 0.222187i
\(267\) −17.9742 −1.10001
\(268\) −6.70939 1.79777i −0.409841 0.109817i
\(269\) 6.49930i 0.396269i −0.980175 0.198135i \(-0.936512\pi\)
0.980175 0.198135i \(-0.0634883\pi\)
\(270\) 0 0
\(271\) −2.12937 3.68817i −0.129350 0.224040i 0.794075 0.607820i \(-0.207956\pi\)
−0.923425 + 0.383779i \(0.874622\pi\)
\(272\) 1.37116 2.37492i 0.0831388 0.144001i
\(273\) 2.63751 0.159629
\(274\) 23.7091 + 6.35282i 1.43232 + 0.383788i
\(275\) 0 0
\(276\) −3.31841 0.889165i −0.199745 0.0535214i
\(277\) −0.494657 0.285590i −0.0297211 0.0171595i 0.485066 0.874478i \(-0.338796\pi\)
−0.514787 + 0.857318i \(0.672129\pi\)
\(278\) 17.6592 + 10.1955i 1.05913 + 0.611487i
\(279\) 2.58716 + 0.693228i 0.154889 + 0.0415025i
\(280\) 0 0
\(281\) 30.2609 + 8.10837i 1.80521 + 0.483705i 0.994772 0.102118i \(-0.0325620\pi\)
0.810439 + 0.585823i \(0.199229\pi\)
\(282\) −3.04245 −0.181176
\(283\) −0.308111 + 0.533664i −0.0183153 + 0.0317230i −0.875038 0.484055i \(-0.839164\pi\)
0.856722 + 0.515778i \(0.172497\pi\)
\(284\) 1.17298 + 2.03166i 0.0696036 + 0.120557i
\(285\) 0 0
\(286\) 3.33498i 0.197202i
\(287\) −12.3235 3.30207i −0.727433 0.194915i
\(288\) −7.14608 −0.421087
\(289\) 7.62851 13.2130i 0.448736 0.777233i
\(290\) 0 0
\(291\) 15.7463 4.21920i 0.923063 0.247334i
\(292\) −1.73163 + 0.463988i −0.101336 + 0.0271528i
\(293\) −2.55888 9.54988i −0.149492 0.557910i −0.999514 0.0311641i \(-0.990079\pi\)
0.850023 0.526746i \(-0.176588\pi\)
\(294\) −1.34616 + 5.02393i −0.0785096 + 0.293002i
\(295\) 0 0
\(296\) −5.28810 17.9604i −0.307364 1.04393i
\(297\) −7.01701 7.01701i −0.407168 0.407168i
\(298\) −9.59255 16.6148i −0.555682 0.962469i
\(299\) 3.49638 6.05591i 0.202201 0.350222i
\(300\) 0 0
\(301\) −2.31110 8.62515i −0.133210 0.497146i
\(302\) 25.2589 1.45348
\(303\) −0.209929 0.783464i −0.0120601 0.0450089i
\(304\) −3.31170 3.31170i −0.189939 0.189939i
\(305\) 0 0
\(306\) −2.82290 −0.161375
\(307\) −12.7533 + 12.7533i −0.727869 + 0.727869i −0.970195 0.242326i \(-0.922090\pi\)
0.242326 + 0.970195i \(0.422090\pi\)
\(308\) −2.15296 0.576883i −0.122676 0.0328710i
\(309\) −4.88676 + 1.30940i −0.277998 + 0.0744893i
\(310\) 0 0
\(311\) 6.30945 23.5472i 0.357776 1.33524i −0.519179 0.854665i \(-0.673762\pi\)
0.876955 0.480572i \(-0.159571\pi\)
\(312\) −1.28611 + 4.79983i −0.0728116 + 0.271737i
\(313\) −0.801929 + 0.462994i −0.0453277 + 0.0261700i −0.522493 0.852644i \(-0.674998\pi\)
0.477165 + 0.878814i \(0.341664\pi\)
\(314\) −1.53220 5.71826i −0.0864673 0.322700i
\(315\) 0 0
\(316\) −2.34653 + 8.75737i −0.132003 + 0.492640i
\(317\) 25.5685 + 6.85107i 1.43607 + 0.384794i 0.891156 0.453696i \(-0.149895\pi\)
0.544916 + 0.838491i \(0.316562\pi\)
\(318\) −3.49820 + 2.01969i −0.196169 + 0.113258i
\(319\) 0.463509 + 0.463509i 0.0259515 + 0.0259515i
\(320\) 0 0
\(321\) −11.9122 + 6.87752i −0.664875 + 0.383866i
\(322\) −6.00918 6.00918i −0.334878 0.334878i
\(323\) 2.10487 + 2.10487i 0.117118 + 0.117118i
\(324\) 0.0674306 + 0.116793i 0.00374615 + 0.00648852i
\(325\) 0 0
\(326\) 14.4338 + 8.33333i 0.799412 + 0.461540i
\(327\) 14.0055i 0.774507i
\(328\) 12.0184 20.8166i 0.663608 1.14940i
\(329\) 3.58440 + 2.06945i 0.197614 + 0.114093i
\(330\) 0 0
\(331\) −9.40727 2.52067i −0.517070 0.138549i −0.00915915 0.999958i \(-0.502915\pi\)
−0.507911 + 0.861410i \(0.669582\pi\)
\(332\) −4.45693 + 4.45693i −0.244606 + 0.244606i
\(333\) −7.89503 + 8.29237i −0.432645 + 0.454419i
\(334\) 24.5185i 1.34159i
\(335\) 0 0
\(336\) 3.10700 + 1.79382i 0.169501 + 0.0978612i
\(337\) 5.14226 + 19.1912i 0.280117 + 1.04541i 0.952334 + 0.305057i \(0.0986754\pi\)
−0.672217 + 0.740354i \(0.734658\pi\)
\(338\) 10.4948 + 6.05919i 0.570843 + 0.329576i
\(339\) −10.8915 10.8915i −0.591544 0.591544i
\(340\) 0 0
\(341\) −1.93444 + 1.93444i −0.104756 + 0.104756i
\(342\) −1.24778 + 4.65679i −0.0674724 + 0.251810i
\(343\) 13.0897 13.0897i 0.706778 0.706778i
\(344\) 16.8233 0.907052
\(345\) 0 0
\(346\) 0.242699 + 0.905765i 0.0130476 + 0.0486942i
\(347\) 10.3295i 0.554517i 0.960795 + 0.277258i \(0.0894258\pi\)
−0.960795 + 0.277258i \(0.910574\pi\)
\(348\) 0.127895 + 0.221521i 0.00685589 + 0.0118748i
\(349\) −13.7141 + 7.91783i −0.734098 + 0.423832i −0.819920 0.572479i \(-0.805982\pi\)
0.0858212 + 0.996311i \(0.472649\pi\)
\(350\) 0 0
\(351\) 7.61350 2.04003i 0.406378 0.108889i
\(352\) 3.64945 6.32103i 0.194516 0.336912i
\(353\) 4.35227 + 7.53835i 0.231648 + 0.401226i 0.958293 0.285787i \(-0.0922550\pi\)
−0.726645 + 0.687013i \(0.758922\pi\)
\(354\) −3.27092 5.66540i −0.173847 0.301113i
\(355\) 0 0
\(356\) −8.53114 + 8.53114i −0.452150 + 0.452150i
\(357\) −1.97477 1.14013i −0.104516 0.0603422i
\(358\) −6.86667 + 25.6268i −0.362915 + 1.35442i
\(359\) 9.85969i 0.520375i 0.965558 + 0.260187i \(0.0837843\pi\)
−0.965558 + 0.260187i \(0.916216\pi\)
\(360\) 0 0
\(361\) −12.0518 + 6.95810i −0.634305 + 0.366216i
\(362\) 22.8329i 1.20007i
\(363\) −7.45845 + 1.99849i −0.391467 + 0.104893i
\(364\) 1.25184 1.25184i 0.0656144 0.0656144i
\(365\) 0 0
\(366\) 6.50137 11.2607i 0.339832 0.588606i
\(367\) 19.5857 5.24797i 1.02236 0.273942i 0.291577 0.956547i \(-0.405820\pi\)
0.730787 + 0.682606i \(0.239153\pi\)
\(368\) 8.23752 4.75593i 0.429410 0.247920i
\(369\) −14.6995 −0.765227
\(370\) 0 0
\(371\) 5.49510 0.285291
\(372\) −0.924507 + 0.533765i −0.0479335 + 0.0276744i
\(373\) 2.29926 0.616084i 0.119051 0.0318996i −0.198802 0.980040i \(-0.563705\pi\)
0.317853 + 0.948140i \(0.397038\pi\)
\(374\) 1.44163 2.49698i 0.0745452 0.129116i
\(375\) 0 0
\(376\) −5.51390 + 5.51390i −0.284358 + 0.284358i
\(377\) −0.502910 + 0.134754i −0.0259012 + 0.00694021i
\(378\) 9.57903i 0.492692i
\(379\) 14.3987 8.31312i 0.739614 0.427016i −0.0823151 0.996606i \(-0.526231\pi\)
0.821929 + 0.569590i \(0.192898\pi\)
\(380\) 0 0
\(381\) 5.40795i 0.277058i
\(382\) 5.21350 19.4570i 0.266746 0.995508i
\(383\) 7.80032 + 4.50352i 0.398578 + 0.230119i 0.685870 0.727724i \(-0.259422\pi\)
−0.287292 + 0.957843i \(0.592755\pi\)
\(384\) −1.51383 + 1.51383i −0.0772523 + 0.0772523i
\(385\) 0 0
\(386\) 9.76590 + 16.9150i 0.497071 + 0.860953i
\(387\) −5.14406 8.90978i −0.261487 0.452910i
\(388\) 5.47112 9.47625i 0.277754 0.481084i
\(389\) −11.4603 + 3.07078i −0.581061 + 0.155695i −0.537365 0.843350i \(-0.680580\pi\)
−0.0436964 + 0.999045i \(0.513913\pi\)
\(390\) 0 0
\(391\) −5.23566 + 3.02281i −0.264779 + 0.152870i
\(392\) 6.66530 + 11.5446i 0.336649 + 0.583093i
\(393\) 3.36720i 0.169853i
\(394\) 2.62139 + 9.78315i 0.132064 + 0.492868i
\(395\) 0 0
\(396\) −2.56806 −0.129050
\(397\) 1.62569 1.62569i 0.0815913 0.0815913i −0.665133 0.746725i \(-0.731625\pi\)
0.746725 + 0.665133i \(0.231625\pi\)
\(398\) 3.16444 11.8099i 0.158619 0.591974i
\(399\) −2.75371 + 2.75371i −0.137858 + 0.137858i
\(400\) 0 0
\(401\) 16.9699 + 16.9699i 0.847436 + 0.847436i 0.989813 0.142377i \(-0.0454744\pi\)
−0.142377 + 0.989813i \(0.545474\pi\)
\(402\) 10.1802 + 5.87753i 0.507741 + 0.293144i
\(403\) −0.562392 2.09888i −0.0280147 0.104552i
\(404\) −0.471496 0.272218i −0.0234578 0.0135434i
\(405\) 0 0
\(406\) 0.632744i 0.0314026i
\(407\) −3.30304 11.2184i −0.163726 0.556074i
\(408\) 3.03780 3.03780i 0.150393 0.150393i
\(409\) −24.9023 6.67256i −1.23134 0.329937i −0.416240 0.909255i \(-0.636652\pi\)
−0.815102 + 0.579318i \(0.803319\pi\)
\(410\) 0 0
\(411\) 19.7835 + 11.4220i 0.975850 + 0.563407i
\(412\) −1.69793 + 2.94089i −0.0836508 + 0.144887i
\(413\) 8.89941i 0.437911i
\(414\) −8.47957 4.89568i −0.416748 0.240610i
\(415\) 0 0
\(416\) 2.89868 + 5.02066i 0.142120 + 0.246158i
\(417\) 13.4192 + 13.4192i 0.657142 + 0.657142i
\(418\) −3.48191 3.48191i −0.170306 0.170306i
\(419\) 29.0354 16.7636i 1.41847 0.818955i 0.422306 0.906453i \(-0.361221\pi\)
0.996165 + 0.0874987i \(0.0278874\pi\)
\(420\) 0 0
\(421\) −0.954366 0.954366i −0.0465130 0.0465130i 0.683468 0.729981i \(-0.260471\pi\)
−0.729981 + 0.683468i \(0.760471\pi\)
\(422\) −1.61656 + 0.933319i −0.0786927 + 0.0454333i
\(423\) 4.60620 + 1.23423i 0.223961 + 0.0600102i
\(424\) −2.67954 + 10.0002i −0.130130 + 0.485651i
\(425\) 0 0
\(426\) −1.02755 3.83487i −0.0497849 0.185800i
\(427\) −15.3189 + 8.84436i −0.741333 + 0.428009i
\(428\) −2.38963 + 8.91821i −0.115507 + 0.431078i
\(429\) −0.803327 + 2.99806i −0.0387850 + 0.144748i
\(430\) 0 0
\(431\) −12.1677 + 3.26032i −0.586097 + 0.157044i −0.539669 0.841877i \(-0.681451\pi\)
−0.0464282 + 0.998922i \(0.514784\pi\)
\(432\) 10.3562 + 2.77494i 0.498263 + 0.133509i
\(433\) 13.7322 13.7322i 0.659928 0.659928i −0.295435 0.955363i \(-0.595465\pi\)
0.955363 + 0.295435i \(0.0954646\pi\)
\(434\) −2.64073 −0.126759
\(435\) 0 0
\(436\) 6.64746 + 6.64746i 0.318356 + 0.318356i
\(437\) 2.67230 + 9.97314i 0.127833 + 0.477080i
\(438\) 3.03386 0.144963
\(439\) 8.00818 + 29.8869i 0.382210 + 1.42643i 0.842519 + 0.538667i \(0.181072\pi\)
−0.460309 + 0.887759i \(0.652261\pi\)
\(440\) 0 0
\(441\) 4.07610 7.06001i 0.194100 0.336191i
\(442\) 1.14506 + 1.98330i 0.0544650 + 0.0943361i
\(443\) −13.3025 13.3025i −0.632023 0.632023i 0.316552 0.948575i \(-0.397475\pi\)
−0.948575 + 0.316552i \(0.897475\pi\)
\(444\) −0.111980 4.56207i −0.00531432 0.216506i
\(445\) 0 0
\(446\) −5.74558 + 21.4428i −0.272061 + 1.01535i
\(447\) −4.62129 17.2469i −0.218580 0.815750i
\(448\) 13.3612 3.58012i 0.631257 0.169145i
\(449\) 28.3423 7.59430i 1.33756 0.358397i 0.482029 0.876155i \(-0.339900\pi\)
0.855527 + 0.517758i \(0.173233\pi\)
\(450\) 0 0
\(451\) 7.50694 13.0024i 0.353488 0.612259i
\(452\) −10.3389 −0.486300
\(453\) 22.7070 + 6.08433i 1.06687 + 0.285867i
\(454\) 24.1369i 1.13280i
\(455\) 0 0
\(456\) −3.66852 6.35407i −0.171794 0.297556i
\(457\) −3.20861 + 5.55747i −0.150092 + 0.259968i −0.931261 0.364352i \(-0.881290\pi\)
0.781169 + 0.624320i \(0.214624\pi\)
\(458\) −4.57660 −0.213850
\(459\) −6.58228 1.76372i −0.307234 0.0823232i
\(460\) 0 0
\(461\) 25.3037 + 6.78010i 1.17851 + 0.315781i 0.794335 0.607479i \(-0.207819\pi\)
0.384175 + 0.923260i \(0.374486\pi\)
\(462\) 3.26669 + 1.88602i 0.151980 + 0.0877458i
\(463\) 33.0936 + 19.1066i 1.53799 + 0.887960i 0.998956 + 0.0456763i \(0.0145443\pi\)
0.539035 + 0.842283i \(0.318789\pi\)
\(464\) −0.684081 0.183299i −0.0317576 0.00850944i
\(465\) 0 0
\(466\) −3.49481 0.936431i −0.161894 0.0433793i
\(467\) −13.5181 −0.625544 −0.312772 0.949828i \(-0.601258\pi\)
−0.312772 + 0.949828i \(0.601258\pi\)
\(468\) 1.01988 1.76648i 0.0471439 0.0816556i
\(469\) −7.99569 13.8489i −0.369207 0.639485i
\(470\) 0 0
\(471\) 5.50964i 0.253871i
\(472\) −16.1955 4.33956i −0.745457 0.199745i
\(473\) 10.5081 0.483165
\(474\) 7.67159 13.2876i 0.352368 0.610319i
\(475\) 0 0
\(476\) −1.47843 + 0.396144i −0.0677637 + 0.0181572i
\(477\) 6.11551 1.63865i 0.280010 0.0750284i
\(478\) 5.83723 + 21.7848i 0.266989 + 0.996415i
\(479\) 0.466920 1.74257i 0.0213341 0.0796200i −0.954438 0.298409i \(-0.903544\pi\)
0.975772 + 0.218789i \(0.0702107\pi\)
\(480\) 0 0
\(481\) 9.02850 + 2.18321i 0.411664 + 0.0995457i
\(482\) −8.97105 8.97105i −0.408620 0.408620i
\(483\) −3.95460 6.84957i −0.179941 0.311666i
\(484\) −2.59147 + 4.48856i −0.117794 + 0.204026i
\(485\) 0 0
\(486\) −4.61168 17.2110i −0.209190 0.780708i
\(487\) −4.70678 −0.213285 −0.106642 0.994297i \(-0.534010\pi\)
−0.106642 + 0.994297i \(0.534010\pi\)
\(488\) −8.62544 32.1906i −0.390455 1.45720i
\(489\) 10.9682 + 10.9682i 0.496000 + 0.496000i
\(490\) 0 0
\(491\) 22.3671 1.00941 0.504707 0.863291i \(-0.331601\pi\)
0.504707 + 0.863291i \(0.331601\pi\)
\(492\) 4.14274 4.14274i 0.186769 0.186769i
\(493\) 0.434793 + 0.116502i 0.0195821 + 0.00524700i
\(494\) 3.77789 1.01228i 0.169975 0.0455448i
\(495\) 0 0
\(496\) 0.764990 2.85498i 0.0343491 0.128192i
\(497\) −1.39786 + 5.21689i −0.0627026 + 0.234009i
\(498\) 9.23777 5.33343i 0.413954 0.238997i
\(499\) 4.04934 + 15.1123i 0.181273 + 0.676521i 0.995398 + 0.0958307i \(0.0305507\pi\)
−0.814124 + 0.580691i \(0.802783\pi\)
\(500\) 0 0
\(501\) −5.90600 + 22.0415i −0.263860 + 0.984741i
\(502\) 10.5139 + 2.81720i 0.469260 + 0.125738i
\(503\) −8.84970 + 5.10938i −0.394589 + 0.227816i −0.684146 0.729345i \(-0.739825\pi\)
0.289558 + 0.957161i \(0.406492\pi\)
\(504\) −6.69303 6.69303i −0.298131 0.298131i
\(505\) 0 0
\(506\) 8.66091 5.00038i 0.385024 0.222294i
\(507\) 7.97503 + 7.97503i 0.354183 + 0.354183i
\(508\) 2.56679 + 2.56679i 0.113883 + 0.113883i
\(509\) 3.43610 + 5.95149i 0.152302 + 0.263795i 0.932073 0.362269i \(-0.117998\pi\)
−0.779771 + 0.626065i \(0.784665\pi\)
\(510\) 0 0
\(511\) −3.57427 2.06361i −0.158117 0.0912886i
\(512\) 20.6728i 0.913618i
\(513\) −5.81902 + 10.0788i −0.256916 + 0.444991i
\(514\) 0.348149 + 0.201004i 0.0153562 + 0.00886591i
\(515\) 0 0
\(516\) 3.96077 + 1.06129i 0.174363 + 0.0467205i
\(517\) −3.44408 + 3.44408i −0.151471 + 0.151471i
\(518\) 5.40267 9.91170i 0.237379 0.435495i
\(519\) 0.872719i 0.0383081i
\(520\) 0 0
\(521\) −19.6337 11.3355i −0.860166 0.496617i 0.00390182 0.999992i \(-0.498758\pi\)
−0.864068 + 0.503375i \(0.832091\pi\)
\(522\) 0.188685 + 0.704182i 0.00825852 + 0.0308212i
\(523\) −7.34396 4.24004i −0.321129 0.185404i 0.330767 0.943713i \(-0.392693\pi\)
−0.651896 + 0.758309i \(0.726026\pi\)
\(524\) −1.59818 1.59818i −0.0698169 0.0698169i
\(525\) 0 0
\(526\) 16.2071 16.2071i 0.706663 0.706663i
\(527\) −0.486218 + 1.81459i −0.0211800 + 0.0790448i
\(528\) −2.98537 + 2.98537i −0.129921 + 0.129921i
\(529\) 2.03048 0.0882817
\(530\) 0 0
\(531\) 2.65382 + 9.90418i 0.115166 + 0.429805i
\(532\) 2.61399i 0.113331i
\(533\) 5.96260 + 10.3275i 0.258269 + 0.447335i
\(534\) 17.6823 10.2089i 0.765187 0.441781i
\(535\) 0 0
\(536\) 29.1017 7.79777i 1.25700 0.336813i
\(537\) −12.3459 + 21.3837i −0.532765 + 0.922776i
\(538\) 3.69142 + 6.39373i 0.159148 + 0.275653i
\(539\) 4.16327 + 7.21099i 0.179325 + 0.310599i
\(540\) 0 0
\(541\) −9.87420 + 9.87420i −0.424525 + 0.424525i −0.886758 0.462233i \(-0.847048\pi\)
0.462233 + 0.886758i \(0.347048\pi\)
\(542\) 4.18956 + 2.41884i 0.179957 + 0.103898i
\(543\) 5.49997 20.5262i 0.236026 0.880862i
\(544\) 5.01213i 0.214893i
\(545\) 0 0
\(546\) −2.59466 + 1.49803i −0.111041 + 0.0641098i
\(547\) 16.2777i 0.695983i −0.937498 0.347992i \(-0.886864\pi\)
0.937498 0.347992i \(-0.113136\pi\)
\(548\) 14.8112 3.96864i 0.632701 0.169532i
\(549\) −14.4110 + 14.4110i −0.615047 + 0.615047i
\(550\) 0 0
\(551\) 0.384376 0.665758i 0.0163750 0.0283623i
\(552\) 14.3935 3.85672i 0.612626 0.164153i
\(553\) −18.0762 + 10.4363i −0.768679 + 0.443797i
\(554\) 0.648830 0.0275661
\(555\) 0 0
\(556\) 12.7384 0.540227
\(557\) −11.0303 + 6.36833i −0.467368 + 0.269835i −0.715137 0.698984i \(-0.753636\pi\)
0.247769 + 0.968819i \(0.420302\pi\)
\(558\) −2.93887 + 0.787469i −0.124412 + 0.0333362i
\(559\) −4.17320 + 7.22819i −0.176508 + 0.305720i
\(560\) 0 0
\(561\) 1.89746 1.89746i 0.0801109 0.0801109i
\(562\) −34.3747 + 9.21066i −1.45001 + 0.388528i
\(563\) 9.88042i 0.416410i −0.978085 0.208205i \(-0.933238\pi\)
0.978085 0.208205i \(-0.0667622\pi\)
\(564\) −1.64600 + 0.950317i −0.0693090 + 0.0400156i
\(565\) 0 0
\(566\) 0.699994i 0.0294229i
\(567\) −0.0803582 + 0.299901i −0.00337473 + 0.0125947i
\(568\) −8.81225 5.08776i −0.369754 0.213478i
\(569\) −28.2430 + 28.2430i −1.18401 + 1.18401i −0.205312 + 0.978697i \(0.565821\pi\)
−0.978697 + 0.205312i \(0.934179\pi\)
\(570\) 0 0
\(571\) −18.9395 32.8041i −0.792592 1.37281i −0.924357 0.381529i \(-0.875398\pi\)
0.131765 0.991281i \(-0.457936\pi\)
\(572\) 1.04169 + 1.80426i 0.0435552 + 0.0754398i
\(573\) 9.37358 16.2355i 0.391587 0.678249i
\(574\) 13.9988 3.75097i 0.584299 0.156562i
\(575\) 0 0
\(576\) 13.8021 7.96865i 0.575088 0.332027i
\(577\) 13.6089 + 23.5713i 0.566547 + 0.981288i 0.996904 + 0.0786291i \(0.0250543\pi\)
−0.430357 + 0.902659i \(0.641612\pi\)
\(578\) 17.3311i 0.720880i
\(579\) 4.70480 + 17.5586i 0.195525 + 0.729709i
\(580\) 0 0
\(581\) −14.5110 −0.602019
\(582\) −13.0941 + 13.0941i −0.542769 + 0.542769i
\(583\) −1.67369 + 6.24629i −0.0693171 + 0.258695i
\(584\) 5.49833 5.49833i 0.227522 0.227522i
\(585\) 0 0
\(586\) 7.94139 + 7.94139i 0.328056 + 0.328056i
\(587\) −10.5112 6.06864i −0.433843 0.250480i 0.267139 0.963658i \(-0.413922\pi\)
−0.700983 + 0.713178i \(0.747255\pi\)
\(588\) 0.840951 + 3.13847i 0.0346802 + 0.129428i
\(589\) 2.77851 + 1.60418i 0.114487 + 0.0660989i
\(590\) 0 0
\(591\) 9.42622i 0.387743i
\(592\) 9.15077 + 8.71231i 0.376095 + 0.358074i
\(593\) 22.9652 22.9652i 0.943070 0.943070i −0.0553950 0.998465i \(-0.517642\pi\)
0.998465 + 0.0553950i \(0.0176418\pi\)
\(594\) 10.8885 + 2.91757i 0.446761 + 0.119709i
\(595\) 0 0
\(596\) −10.3793 5.99251i −0.425154 0.245463i
\(597\) 5.68949 9.85449i 0.232855 0.403317i
\(598\) 7.94340i 0.324830i
\(599\) 2.59862 + 1.50032i 0.106177 + 0.0613013i 0.552148 0.833746i \(-0.313808\pi\)
−0.445971 + 0.895047i \(0.647142\pi\)
\(600\) 0 0
\(601\) 7.76062 + 13.4418i 0.316562 + 0.548302i 0.979768 0.200135i \(-0.0641380\pi\)
−0.663206 + 0.748437i \(0.730805\pi\)
\(602\) 7.17241 + 7.17241i 0.292326 + 0.292326i
\(603\) −13.0282 13.0282i −0.530549 0.530549i
\(604\) 13.6653 7.88966i 0.556033 0.321026i
\(605\) 0 0
\(606\) 0.651505 + 0.651505i 0.0264656 + 0.0264656i
\(607\) 32.0701 18.5157i 1.30169 0.751529i 0.320994 0.947081i \(-0.395983\pi\)
0.980693 + 0.195552i \(0.0626499\pi\)
\(608\) −8.26824 2.21547i −0.335322 0.0898492i
\(609\) −0.152415 + 0.568820i −0.00617616 + 0.0230497i
\(610\) 0 0
\(611\) −1.00129 3.73685i −0.0405077 0.151177i
\(612\) −1.52722 + 0.881739i −0.0617341 + 0.0356422i
\(613\) −4.51123 + 16.8361i −0.182207 + 0.680005i 0.813004 + 0.582258i \(0.197831\pi\)
−0.995211 + 0.0977478i \(0.968836\pi\)
\(614\) 5.30262 19.7897i 0.213996 0.798645i
\(615\) 0 0
\(616\) 9.33837 2.50221i 0.376254 0.100817i
\(617\) 23.0967 + 6.18875i 0.929839 + 0.249150i 0.691786 0.722103i \(-0.256824\pi\)
0.238053 + 0.971252i \(0.423491\pi\)
\(618\) 4.06368 4.06368i 0.163465 0.163465i
\(619\) 6.37727 0.256324 0.128162 0.991753i \(-0.459092\pi\)
0.128162 + 0.991753i \(0.459092\pi\)
\(620\) 0 0
\(621\) −16.7134 16.7134i −0.670686 0.670686i
\(622\) 7.16718 + 26.7483i 0.287378 + 1.07251i
\(623\) −27.7760 −1.11282
\(624\) −0.867925 3.23914i −0.0347448 0.129669i
\(625\) 0 0
\(626\) 0.525936 0.910947i 0.0210206 0.0364088i
\(627\) −2.29142 3.96886i −0.0915107 0.158501i
\(628\) −2.61505 2.61505i −0.104352 0.104352i
\(629\) −5.81612 5.53743i −0.231904 0.220792i
\(630\) 0 0
\(631\) −5.89535 + 22.0017i −0.234690 + 0.875876i 0.743598 + 0.668627i \(0.233118\pi\)
−0.978288 + 0.207249i \(0.933549\pi\)
\(632\) −10.1780 37.9847i −0.404858 1.51095i
\(633\) −1.67806 + 0.449634i −0.0666968 + 0.0178714i
\(634\) −29.0445 + 7.78244i −1.15350 + 0.309080i
\(635\) 0 0
\(636\) −1.26171 + 2.18534i −0.0500299 + 0.0866544i
\(637\) −6.61359 −0.262040
\(638\) −0.719241 0.192720i −0.0284750 0.00762986i
\(639\) 6.22273i 0.246168i
\(640\) 0 0
\(641\) −11.7520 20.3550i −0.464175 0.803976i 0.534988 0.844859i \(-0.320316\pi\)
−0.999164 + 0.0408839i \(0.986983\pi\)
\(642\) 7.81249 13.5316i 0.308334 0.534051i
\(643\) −24.3699 −0.961055 −0.480527 0.876980i \(-0.659555\pi\)
−0.480527 + 0.876980i \(0.659555\pi\)
\(644\) −5.12800 1.37404i −0.202072 0.0541449i
\(645\) 0 0
\(646\) −3.26619 0.875173i −0.128507 0.0344332i
\(647\) −35.9680 20.7661i −1.41405 0.816400i −0.418280 0.908318i \(-0.637367\pi\)
−0.995767 + 0.0919177i \(0.970700\pi\)
\(648\) −0.506586 0.292478i −0.0199006 0.0114896i
\(649\) −10.1160 2.71057i −0.397087 0.106399i
\(650\) 0 0
\(651\) −2.37394 0.636096i −0.0930422 0.0249306i
\(652\) 10.4117 0.407755
\(653\) −0.370684 + 0.642043i −0.0145060 + 0.0251251i −0.873187 0.487385i \(-0.837951\pi\)
0.858681 + 0.512510i \(0.171284\pi\)
\(654\) −7.95475 13.7780i −0.311055 0.538763i
\(655\) 0 0
\(656\) 16.2212i 0.633331i
\(657\) −4.59319 1.23074i −0.179197 0.0480158i
\(658\) −4.70157 −0.183286
\(659\) −15.9185 + 27.5717i −0.620098 + 1.07404i 0.369369 + 0.929283i \(0.379574\pi\)
−0.989467 + 0.144759i \(0.953759\pi\)
\(660\) 0 0
\(661\) 46.6955 12.5120i 1.81624 0.486661i 0.819932 0.572461i \(-0.194011\pi\)
0.996312 + 0.0858000i \(0.0273446\pi\)
\(662\) 10.6861 2.86334i 0.415329 0.111287i
\(663\) 0.551642 + 2.05876i 0.0214240 + 0.0799555i
\(664\) 7.07592 26.4077i 0.274599 1.02482i
\(665\) 0 0
\(666\) 3.05696 12.6418i 0.118455 0.489861i
\(667\) 1.10401 + 1.10401i 0.0427473 + 0.0427473i
\(668\) 7.65841 + 13.2648i 0.296313 + 0.513229i
\(669\) −10.3302 + 17.8925i −0.399390 + 0.691764i
\(670\) 0 0
\(671\) −5.38760 20.1068i −0.207986 0.776214i
\(672\) 6.55714 0.252947
\(673\) −4.43056 16.5351i −0.170785 0.637380i −0.997231 0.0743635i \(-0.976307\pi\)
0.826446 0.563016i \(-0.190359\pi\)
\(674\) −15.9588 15.9588i −0.614710 0.614710i
\(675\) 0 0
\(676\) 7.57040 0.291169
\(677\) 31.1728 31.1728i 1.19807 1.19807i 0.223322 0.974745i \(-0.428310\pi\)
0.974745 0.223322i \(-0.0716902\pi\)
\(678\) 16.9006 + 4.52851i 0.649064 + 0.173916i
\(679\) 24.3331 6.52002i 0.933817 0.250216i
\(680\) 0 0
\(681\) −5.81408 + 21.6984i −0.222796 + 0.831486i
\(682\) 0.804309 3.00172i 0.0307986 0.114942i
\(683\) −31.9387 + 18.4398i −1.22210 + 0.705580i −0.965365 0.260901i \(-0.915980\pi\)
−0.256736 + 0.966482i \(0.582647\pi\)
\(684\) 0.779496 + 2.90912i 0.0298048 + 0.111233i
\(685\) 0 0
\(686\) −5.44250 + 20.3117i −0.207796 + 0.775503i
\(687\) −4.11424 1.10241i −0.156968 0.0420595i
\(688\) −9.83210 + 5.67657i −0.374845 + 0.216417i
\(689\) −3.63192 3.63192i −0.138365 0.138365i
\(690\) 0 0
\(691\) −0.520289 + 0.300389i −0.0197927 + 0.0114273i −0.509864 0.860255i \(-0.670304\pi\)
0.490071 + 0.871683i \(0.336971\pi\)
\(692\) 0.414220 + 0.414220i 0.0157463 + 0.0157463i
\(693\) −4.18059 4.18059i −0.158807 0.158807i
\(694\) −5.86687 10.1617i −0.222703 0.385734i
\(695\) 0 0
\(696\) −0.960837 0.554740i −0.0364204 0.0210274i
\(697\) 10.3100i 0.390518i
\(698\) 8.99422 15.5785i 0.340436 0.589653i
\(699\) −2.91617 1.68365i −0.110300 0.0636816i
\(700\) 0 0
\(701\) −6.15868 1.65021i −0.232610 0.0623277i 0.140631 0.990062i \(-0.455087\pi\)
−0.373241 + 0.927734i \(0.621754\pi\)
\(702\) −6.33115 + 6.33115i −0.238954 + 0.238954i
\(703\) −11.7057 + 7.14687i −0.441487 + 0.269549i
\(704\) 16.2781i 0.613505i
\(705\) 0 0
\(706\) −8.56315 4.94394i −0.322278 0.186067i
\(707\) −0.324407 1.21070i −0.0122006 0.0455332i
\(708\) −3.53920 2.04336i −0.133011 0.0767941i
\(709\) 0.102970 + 0.102970i 0.00386711 + 0.00386711i 0.709038 0.705171i \(-0.249130\pi\)
−0.705171 + 0.709038i \(0.749130\pi\)
\(710\) 0 0
\(711\) −17.0049 + 17.0049i −0.637735 + 0.637735i
\(712\) 13.5442 50.5477i 0.507591 1.89436i
\(713\) −4.60752 + 4.60752i −0.172553 + 0.172553i
\(714\) 2.59025 0.0969378
\(715\) 0 0
\(716\) 4.28964 + 16.0091i 0.160311 + 0.598290i
\(717\) 20.9900i 0.783887i
\(718\) −5.60003 9.69954i −0.208991 0.361984i
\(719\) 15.6399 9.02972i 0.583271 0.336752i −0.179161 0.983820i \(-0.557338\pi\)
0.762432 + 0.647068i \(0.224005\pi\)
\(720\) 0 0
\(721\) −7.55161 + 2.02345i −0.281237 + 0.0753571i
\(722\) 7.90402 13.6902i 0.294157 0.509495i
\(723\) −5.90379 10.2257i −0.219564 0.380297i
\(724\) −7.13191 12.3528i −0.265055 0.459089i
\(725\) 0 0
\(726\) 6.20222 6.20222i 0.230186 0.230186i
\(727\) 16.9712 + 9.79831i 0.629426 + 0.363399i 0.780530 0.625119i \(-0.214949\pi\)
−0.151104 + 0.988518i \(0.548283\pi\)
\(728\) −1.98745 + 7.41727i −0.0736599 + 0.274902i
\(729\) 16.0130i 0.593073i
\(730\) 0 0
\(731\) 6.24916 3.60795i 0.231134 0.133445i
\(732\) 8.12287i 0.300230i
\(733\) −29.4663 + 7.89548i −1.08836 + 0.291626i −0.758018 0.652234i \(-0.773832\pi\)
−0.330346 + 0.943860i \(0.607165\pi\)
\(734\) −16.2868 + 16.2868i −0.601158 + 0.601158i
\(735\) 0 0
\(736\) 8.69240 15.0557i 0.320406 0.554960i
\(737\) 18.1774 4.87063i 0.669574 0.179412i
\(738\) 14.4608 8.34892i 0.532308 0.307328i
\(739\) −52.1459 −1.91822 −0.959110 0.283035i \(-0.908659\pi\)
−0.959110 + 0.283035i \(0.908659\pi\)
\(740\) 0 0
\(741\) 3.64006 0.133721
\(742\) −5.40584 + 3.12106i −0.198455 + 0.114578i
\(743\) 25.3141 6.78290i 0.928686 0.248841i 0.237392 0.971414i \(-0.423708\pi\)
0.691294 + 0.722573i \(0.257041\pi\)
\(744\) 2.31518 4.01001i 0.0848787 0.147014i
\(745\) 0 0
\(746\) −1.91199 + 1.91199i −0.0700030 + 0.0700030i
\(747\) −16.1494 + 4.32721i −0.590874 + 0.158324i
\(748\) 1.80119i 0.0658581i
\(749\) −18.4082 + 10.6280i −0.672621 + 0.388338i
\(750\) 0 0
\(751\) 53.1233i 1.93850i −0.246087 0.969248i \(-0.579145\pi\)
0.246087 0.969248i \(-0.420855\pi\)
\(752\) 1.36199 5.08302i 0.0496667 0.185359i
\(753\) 8.77313 + 5.06517i 0.319711 + 0.184585i
\(754\) 0.418205 0.418205i 0.0152301 0.0152301i
\(755\) 0 0
\(756\) −2.99203 5.18235i −0.108819 0.188480i
\(757\) 7.47044 + 12.9392i 0.271518 + 0.470282i 0.969251 0.246075i \(-0.0791411\pi\)
−0.697733 + 0.716358i \(0.745808\pi\)
\(758\) −9.44324 + 16.3562i −0.342994 + 0.594083i
\(759\) 8.99041 2.40897i 0.326331 0.0874402i
\(760\) 0 0
\(761\) −33.1931 + 19.1641i −1.20325 + 0.694697i −0.961277 0.275586i \(-0.911128\pi\)
−0.241974 + 0.970283i \(0.577795\pi\)
\(762\) −3.07157 5.32011i −0.111271 0.192727i
\(763\) 21.6430i 0.783530i
\(764\) −3.25689 12.1549i −0.117830 0.439749i
\(765\) 0 0
\(766\) −10.2315 −0.369679
\(767\) 5.88197 5.88197i 0.212385 0.212385i
\(768\) −4.00407 + 14.9434i −0.144485 + 0.539224i
\(769\) 22.4800 22.4800i 0.810650 0.810650i −0.174081 0.984731i \(-0.555696\pi\)
0.984731 + 0.174081i \(0.0556955\pi\)
\(770\) 0 0
\(771\) 0.264559 + 0.264559i 0.00952786 + 0.00952786i
\(772\) 10.5669 + 6.10080i 0.380311 + 0.219573i
\(773\) −7.93815 29.6256i −0.285515 1.06556i −0.948462 0.316891i \(-0.897361\pi\)
0.662947 0.748667i \(-0.269306\pi\)
\(774\) 10.1210 + 5.84337i 0.363792 + 0.210036i
\(775\) 0 0
\(776\) 47.4615i 1.70377i
\(777\) 7.24437 7.60896i 0.259890 0.272970i
\(778\) 9.53005 9.53005i 0.341669 0.341669i
\(779\) −17.0078 4.55724i −0.609369 0.163280i
\(780\) 0 0
\(781\) −5.50429 3.17790i −0.196959 0.113714i
\(782\) 3.43375 5.94742i 0.122790 0.212679i
\(783\) 1.75986i 0.0628922i
\(784\) −7.79085 4.49805i −0.278245 0.160645i
\(785\) 0 0
\(786\) 1.91248 + 3.31251i 0.0682159 + 0.118153i
\(787\) 17.9843 + 17.9843i 0.641072 + 0.641072i 0.950819 0.309747i \(-0.100244\pi\)
−0.309747 + 0.950819i \(0.600244\pi\)
\(788\) 4.47398 + 4.47398i 0.159379 + 0.159379i
\(789\) 18.4737 10.6658i 0.657681 0.379712i
\(790\) 0 0
\(791\) −16.8308 16.8308i −0.598435 0.598435i
\(792\) 9.64653 5.56943i 0.342775 0.197901i
\(793\) 15.9704 + 4.27926i 0.567126 + 0.151961i
\(794\) −0.675939 + 2.52264i −0.0239882 + 0.0895251i
\(795\) 0 0
\(796\) −1.97684 7.37767i −0.0700672 0.261494i
\(797\) −24.4236 + 14.1009i −0.865127 + 0.499481i −0.865726 0.500519i \(-0.833143\pi\)
0.000599033 1.00000i \(0.499809\pi\)
\(798\) 1.14495 4.27301i 0.0405307 0.151263i
\(799\) −0.865665 + 3.23070i −0.0306250 + 0.114294i
\(800\) 0 0
\(801\) −30.9119 + 8.28283i −1.09222 + 0.292659i
\(802\) −26.3327 7.05582i −0.929839 0.249150i
\(803\) 3.43435 3.43435i 0.121196 0.121196i
\(804\) 7.34343 0.258983
\(805\) 0 0
\(806\) 1.74536 + 1.74536i 0.0614777 + 0.0614777i
\(807\) 1.77837 + 6.63697i 0.0626017 + 0.233633i
\(808\) 2.36147 0.0830763
\(809\) −0.812619 3.03273i −0.0285701 0.106625i 0.950168 0.311737i \(-0.100911\pi\)
−0.978739 + 0.205112i \(0.934244\pi\)
\(810\) 0 0
\(811\) −10.5095 + 18.2030i −0.369038 + 0.639192i −0.989415 0.145111i \(-0.953646\pi\)
0.620377 + 0.784303i \(0.286979\pi\)
\(812\) 0.197639 + 0.342321i 0.00693577 + 0.0120131i
\(813\) 3.18365 + 3.18365i 0.111655 + 0.111655i
\(814\) 9.62111 + 9.16011i 0.337220 + 0.321062i
\(815\) 0 0
\(816\) −0.750368 + 2.80041i −0.0262681 + 0.0980340i
\(817\) −3.18959 11.9037i −0.111590 0.416458i
\(818\) 28.2877 7.57966i 0.989056 0.265017i
\(819\) 4.53596 1.21541i 0.158499 0.0424697i
\(820\) 0 0
\(821\) 2.11926 3.67067i 0.0739627 0.128107i −0.826672 0.562684i \(-0.809769\pi\)
0.900635 + 0.434577i \(0.143102\pi\)
\(822\) −25.9496 −0.905096
\(823\) −0.912687 0.244554i −0.0318143 0.00852461i 0.242877 0.970057i \(-0.421909\pi\)
−0.274691 + 0.961533i \(0.588576\pi\)
\(824\) 14.7294i 0.513122i
\(825\) 0 0
\(826\) −5.05462 8.75486i −0.175873 0.304621i
\(827\) −11.9529 + 20.7030i −0.415642 + 0.719912i −0.995496 0.0948080i \(-0.969776\pi\)
0.579854 + 0.814720i \(0.303110\pi\)
\(828\) −6.11671 −0.212570
\(829\) 2.51032 + 0.672639i 0.0871871 + 0.0233617i 0.302149 0.953261i \(-0.402296\pi\)
−0.214962 + 0.976622i \(0.568963\pi\)
\(830\) 0 0
\(831\) 0.583280 + 0.156289i 0.0202338 + 0.00542162i
\(832\) −11.1972 6.46469i −0.388192 0.224123i
\(833\) 4.95177 + 2.85890i 0.171569 + 0.0990551i
\(834\) −20.8230 5.57951i −0.721041 0.193202i
\(835\) 0 0
\(836\) −2.97133 0.796165i −0.102766 0.0275360i
\(837\) −7.34470 −0.253870
\(838\) −19.0425 + 32.9826i −0.657812 + 1.13936i
\(839\) 18.2196 + 31.5573i 0.629012 + 1.08948i 0.987750 + 0.156042i \(0.0498736\pi\)
−0.358739 + 0.933438i \(0.616793\pi\)
\(840\) 0 0
\(841\) 28.8838i 0.995991i
\(842\) 1.48092 + 0.396811i 0.0510358 + 0.0136750i
\(843\) −33.1205 −1.14073
\(844\) −0.583049 + 1.00987i −0.0200694 + 0.0347611i
\(845\) 0 0
\(846\) −5.23239 + 1.40201i −0.179893 + 0.0482022i
\(847\) −11.5257 + 3.08830i −0.396028 + 0.106115i
\(848\) −1.80827 6.74857i −0.0620964 0.231747i
\(849\) 0.168614 0.629276i 0.00578681 0.0215967i
\(850\) 0 0
\(851\) −7.86732 26.7204i −0.269688 0.915962i
\(852\) −1.75374 1.75374i −0.0600822 0.0600822i
\(853\) −12.9804 22.4827i −0.444440 0.769792i 0.553573 0.832800i \(-0.313264\pi\)
−0.998013 + 0.0630083i \(0.979931\pi\)
\(854\) 10.0467 17.4014i 0.343791 0.595464i
\(855\) 0 0
\(856\) −10.3649 38.6824i −0.354265 1.32214i
\(857\) −40.2792 −1.37591 −0.687955 0.725753i \(-0.741491\pi\)
−0.687955 + 0.725753i \(0.741491\pi\)
\(858\) −0.912535 3.40563i −0.0311534 0.116266i
\(859\) −3.69657 3.69657i −0.126125 0.126125i 0.641226 0.767352i \(-0.278426\pi\)
−0.767352 + 0.641226i \(0.778426\pi\)
\(860\) 0 0
\(861\) 13.4881 0.459672
\(862\) 10.1183 10.1183i 0.344630 0.344630i
\(863\) −6.85933 1.83795i −0.233494 0.0625646i 0.140174 0.990127i \(-0.455234\pi\)
−0.373669 + 0.927562i \(0.621900\pi\)
\(864\) 18.9280 5.07175i 0.643944 0.172544i
\(865\) 0 0
\(866\) −5.70964 + 21.3087i −0.194021 + 0.724098i
\(867\) −4.17471 + 15.5802i −0.141780 + 0.529132i
\(868\) −1.42866 + 0.824838i −0.0484919 + 0.0279968i
\(869\) −6.35735 23.7259i −0.215658 0.804847i
\(870\) 0 0
\(871\) −3.86864 + 14.4380i −0.131084 + 0.489212i
\(872\) −39.3867 10.5536i −1.33380 0.357391i
\(873\) 25.1360 14.5123i 0.850726 0.491167i
\(874\) −8.29336 8.29336i −0.280527 0.280527i
\(875\) 0 0
\(876\) 1.64135 0.947633i 0.0554560 0.0320176i
\(877\) 26.8398 + 26.8398i 0.906315 + 0.906315i 0.995973 0.0896576i \(-0.0285773\pi\)
−0.0896576 + 0.995973i \(0.528577\pi\)
\(878\) −24.8531 24.8531i −0.838750 0.838750i
\(879\) 5.22618 + 9.05201i 0.176275 + 0.305317i
\(880\) 0 0
\(881\) −3.79357 2.19022i −0.127809 0.0737904i 0.434733 0.900560i \(-0.356843\pi\)
−0.562541 + 0.826769i \(0.690176\pi\)
\(882\) 9.26045i 0.311815i
\(883\) −29.2518 + 50.6657i −0.984402 + 1.70504i −0.339840 + 0.940483i \(0.610373\pi\)
−0.644562 + 0.764552i \(0.722960\pi\)
\(884\) 1.23898 + 0.715324i 0.0416713 + 0.0240590i
\(885\) 0 0
\(886\) 20.6420 + 5.53099i 0.693480 + 0.185817i
\(887\) 2.53298 2.53298i 0.0850491 0.0850491i −0.663302 0.748351i \(-0.730846\pi\)
0.748351 + 0.663302i \(0.230846\pi\)
\(888\) 10.3145 + 16.8939i 0.346133 + 0.566921i
\(889\) 8.35702i 0.280286i
\(890\) 0 0
\(891\) −0.316423 0.182687i −0.0106006 0.00612024i
\(892\) 3.58929 + 13.3954i 0.120178 + 0.448511i
\(893\) 4.94688 + 2.85608i 0.165541 + 0.0955752i
\(894\) 14.3420 + 14.3420i 0.479668 + 0.479668i
\(895\) 0 0
\(896\) −2.33935 + 2.33935i −0.0781523 + 0.0781523i
\(897\) −1.91340 + 7.14090i −0.0638865 + 0.238428i
\(898\) −23.5686 + 23.5686i −0.786494 + 0.786494i
\(899\) 0.485155 0.0161808
\(900\) 0 0
\(901\) 1.14932 + 4.28931i 0.0382893 + 0.142898i
\(902\) 17.0549i 0.567867i
\(903\) 4.72012 + 8.17549i 0.157076 + 0.272063i
\(904\) 38.8364 22.4222i 1.29168 0.745752i
\(905\) 0 0
\(906\) −25.7939 + 6.91146i −0.856946 + 0.229618i
\(907\) −6.14134 + 10.6371i −0.203920 + 0.353200i −0.949788 0.312894i \(-0.898702\pi\)
0.745868 + 0.666094i \(0.232035\pi\)
\(908\) 7.53922 + 13.0583i 0.250198 + 0.433355i
\(909\) −0.722067 1.25066i −0.0239495 0.0414817i
\(910\) 0 0
\(911\) −8.69751 + 8.69751i −0.288161 + 0.288161i −0.836353 0.548191i \(-0.815317\pi\)
0.548191 + 0.836353i \(0.315317\pi\)
\(912\) 4.28801 + 2.47568i 0.141990 + 0.0819781i
\(913\) 4.41974 16.4947i 0.146272 0.545895i
\(914\) 7.28961i 0.241119i
\(915\) 0 0
\(916\) −2.47599 + 1.42951i −0.0818089 + 0.0472324i
\(917\) 5.20341i 0.171832i
\(918\) 7.47710 2.00348i 0.246781 0.0661248i
\(919\) −25.2847 + 25.2847i −0.834065 + 0.834065i −0.988070 0.154005i \(-0.950783\pi\)
0.154005 + 0.988070i \(0.450783\pi\)
\(920\) 0 0
\(921\) 9.53382 16.5131i 0.314150 0.544124i
\(922\) −28.7436 + 7.70182i −0.946620 + 0.253646i
\(923\) 4.37194 2.52414i 0.143904 0.0830832i
\(924\) 2.35642 0.0775204
\(925\) 0 0
\(926\) −43.4081 −1.42648
\(927\) −7.80081 + 4.50380i −0.256212 + 0.147924i
\(928\) −1.25029 + 0.335015i −0.0410428 + 0.0109974i
\(929\) 6.26098 10.8443i 0.205416 0.355791i −0.744849 0.667233i \(-0.767479\pi\)
0.950265 + 0.311442i \(0.100812\pi\)
\(930\) 0 0
\(931\) 6.90497 6.90497i 0.226301 0.226301i
\(932\) −2.18322 + 0.584992i −0.0715138 + 0.0191621i
\(933\) 25.7724i 0.843751i
\(934\) 13.2985 7.67791i 0.435141 0.251229i
\(935\) 0 0
\(936\) 8.84736i 0.289185i
\(937\) 3.17302 11.8419i 0.103658 0.386857i −0.894531 0.447005i \(-0.852491\pi\)
0.998189 + 0.0601478i \(0.0191572\pi\)
\(938\) 15.7316 + 9.08266i 0.513656 + 0.296559i
\(939\) 0.692230 0.692230i 0.0225901 0.0225901i
\(940\) 0 0
\(941\) −13.7869 23.8796i −0.449440 0.778452i 0.548910 0.835881i \(-0.315043\pi\)
−0.998350 + 0.0574293i \(0.981710\pi\)
\(942\) 3.12932 + 5.42015i 0.101959 + 0.176598i
\(943\) 17.8803 30.9696i 0.582264 1.00851i
\(944\) 10.9294 2.92853i 0.355723 0.0953157i
\(945\) 0 0
\(946\) −10.3375 + 5.96833i −0.336100 + 0.194047i
\(947\) −4.48370 7.76600i −0.145701 0.252361i 0.783933 0.620845i \(-0.213210\pi\)
−0.929634 + 0.368484i \(0.879877\pi\)
\(948\) 9.58495i 0.311305i
\(949\) 0.998457 + 3.72629i 0.0324113 + 0.120961i
\(950\) 0 0
\(951\) −27.9848 −0.907469
\(952\) 4.69437 4.69437i 0.152145 0.152145i
\(953\) −9.63231 + 35.9483i −0.312021 + 1.16448i 0.614710 + 0.788753i \(0.289273\pi\)
−0.926731 + 0.375725i \(0.877394\pi\)
\(954\) −5.08547 + 5.08547i −0.164648 + 0.164648i
\(955\) 0 0
\(956\) 9.96253 + 9.96253i 0.322211 + 0.322211i
\(957\) −0.600156 0.346500i −0.0194003 0.0112008i
\(958\) 0.530395 + 1.97946i 0.0171363 + 0.0639535i
\(959\) 30.5719 + 17.6507i 0.987219 + 0.569971i
\(960\) 0 0
\(961\) 28.9752i 0.934685i
\(962\) −10.1219 + 2.98019i −0.326342 + 0.0960852i
\(963\) −17.3173 + 17.3173i −0.558041 + 0.558041i
\(964\) −7.65555 2.05130i −0.246569 0.0660679i
\(965\) 0 0
\(966\) 7.78074 + 4.49221i 0.250341 + 0.144535i
\(967\) 28.0830 48.6411i 0.903087 1.56419i 0.0796228 0.996825i \(-0.474628\pi\)
0.823464 0.567368i \(-0.192038\pi\)
\(968\) 22.4808i 0.722561i
\(969\) −2.72541 1.57351i −0.0875526 0.0505485i
\(970\) 0 0
\(971\) −19.7612 34.2274i −0.634167 1.09841i −0.986691 0.162607i \(-0.948010\pi\)
0.352523 0.935803i \(-0.385324\pi\)
\(972\) −7.87086 7.87086i −0.252458 0.252458i
\(973\) 20.7370 + 20.7370i 0.664798 + 0.664798i
\(974\) 4.63033 2.67332i 0.148365 0.0856588i
\(975\) 0 0
\(976\) 15.9028 + 15.9028i 0.509037 + 0.509037i
\(977\) −5.20188 + 3.00331i −0.166423 + 0.0960843i −0.580898 0.813976i \(-0.697298\pi\)
0.414475 + 0.910061i \(0.363965\pi\)
\(978\) −17.0197 4.56042i −0.544231 0.145826i
\(979\) 8.45996 31.5730i 0.270381 1.00908i
\(980\) 0 0
\(981\) 6.45397 + 24.0866i 0.206060 + 0.769025i
\(982\) −22.0038 + 12.7039i −0.702169 + 0.405398i
\(983\) −6.19133 + 23.1064i −0.197473 + 0.736979i 0.794140 + 0.607735i \(0.207922\pi\)
−0.991613 + 0.129244i \(0.958745\pi\)
\(984\) −6.57710 + 24.5461i −0.209670 + 0.782501i
\(985\) 0 0
\(986\) −0.493901 + 0.132340i −0.0157290 + 0.00421457i
\(987\) −4.22658 1.13251i −0.134534 0.0360482i
\(988\) 1.72769 1.72769i 0.0549651 0.0549651i
\(989\) 25.0287 0.795867
\(990\) 0 0
\(991\) 18.5888 + 18.5888i 0.590492 + 0.590492i 0.937764 0.347272i \(-0.112892\pi\)
−0.347272 + 0.937764i \(0.612892\pi\)
\(992\) −1.39817 5.21804i −0.0443919 0.165673i
\(993\) 10.2963 0.326742
\(994\) −1.58789 5.92610i −0.0503649 0.187964i
\(995\) 0 0
\(996\) 3.33182 5.77087i 0.105573 0.182857i
\(997\) −25.8150 44.7129i −0.817569 1.41607i −0.907469 0.420120i \(-0.861988\pi\)
0.0898999 0.995951i \(-0.471345\pi\)
\(998\) −12.5670 12.5670i −0.397800 0.397800i
\(999\) 15.0265 27.5675i 0.475417 0.872198i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.y.b.732.6 68
5.2 odd 4 185.2.p.a.103.6 yes 68
5.3 odd 4 925.2.t.b.843.12 68
5.4 even 2 185.2.u.a.177.12 yes 68
37.23 odd 12 925.2.t.b.282.12 68
185.23 even 12 inner 925.2.y.b.393.6 68
185.97 even 12 185.2.u.a.23.12 yes 68
185.134 odd 12 185.2.p.a.97.6 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.p.a.97.6 68 185.134 odd 12
185.2.p.a.103.6 yes 68 5.2 odd 4
185.2.u.a.23.12 yes 68 185.97 even 12
185.2.u.a.177.12 yes 68 5.4 even 2
925.2.t.b.282.12 68 37.23 odd 12
925.2.t.b.843.12 68 5.3 odd 4
925.2.y.b.393.6 68 185.23 even 12 inner
925.2.y.b.732.6 68 1.1 even 1 trivial