Properties

Label 925.2.y.b.393.6
Level $925$
Weight $2$
Character 925.393
Analytic conductor $7.386$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [925,2,Mod(193,925)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(925, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("925.193"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 925 = 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 925.y (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.38616218697\)
Analytic rank: \(0\)
Dimension: \(68\)
Relative dimension: \(17\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 185)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 393.6
Character \(\chi\) \(=\) 925.393
Dual form 925.2.y.b.732.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.983757 - 0.567972i) q^{2} +(-1.02118 - 0.273625i) q^{3} +(-0.354815 - 0.614557i) q^{4} +(0.849185 + 0.849185i) q^{6} +(-1.57806 - 0.422839i) q^{7} +3.07799i q^{8} +(-1.63013 - 0.941157i) q^{9} +1.92257i q^{11} +(0.194173 + 0.724662i) q^{12} +(1.32247 - 0.763528i) q^{13} +(1.31226 + 1.31226i) q^{14} +(1.03858 - 1.79888i) q^{16} +(-0.660110 + 1.14334i) q^{17} +(1.06910 + 1.85174i) q^{18} +(-2.17790 - 0.583566i) q^{19} +(1.49579 + 0.863592i) q^{21} +(1.09196 - 1.89134i) q^{22} +4.57925i q^{23} +(0.842216 - 3.14319i) q^{24} -1.73465 q^{26} +(3.64981 + 3.64981i) q^{27} +(0.300059 + 1.11984i) q^{28} +(-0.241089 - 0.241089i) q^{29} +(-1.00617 + 1.00617i) q^{31} +(3.28781 - 1.89822i) q^{32} +(0.526063 - 1.96329i) q^{33} +(1.29878 - 0.749849i) q^{34} +1.33575i q^{36} +(5.83510 + 1.71804i) q^{37} +(1.81107 + 1.81107i) q^{38} +(-1.55940 + 0.417841i) q^{39} +(6.76304 - 3.90464i) q^{41} +(-0.980993 - 1.69913i) q^{42} -5.46568i q^{43} +(1.18153 - 0.682155i) q^{44} +(2.60089 - 4.50487i) q^{46} +(-1.79140 + 1.79140i) q^{47} +(-1.55280 + 1.55280i) q^{48} +(-3.75071 - 2.16547i) q^{49} +(0.986942 - 0.986942i) q^{51} +(-0.938463 - 0.541822i) q^{52} +(-3.24893 + 0.870548i) q^{53} +(-1.51754 - 5.66352i) q^{54} +(1.30149 - 4.85724i) q^{56} +(2.06436 + 1.19186i) q^{57} +(0.100241 + 0.374105i) q^{58} +(1.40987 + 5.26170i) q^{59} +(10.4583 + 2.80230i) q^{61} +(1.56131 - 0.418352i) q^{62} +(2.17448 + 2.17448i) q^{63} -8.46687 q^{64} +(-1.63261 + 1.63261i) q^{66} +(2.53340 - 9.45477i) q^{67} +0.936868 q^{68} +(1.25300 - 4.67625i) q^{69} +(1.65295 + 2.86299i) q^{71} +(2.89687 - 5.01753i) q^{72} +(1.78634 - 1.78634i) q^{73} +(-4.76452 - 5.00430i) q^{74} +(0.414116 + 1.54550i) q^{76} +(0.812936 - 3.03392i) q^{77} +(1.77140 + 0.474644i) q^{78} +(12.3408 + 3.30670i) q^{79} +(0.0950223 + 0.164583i) q^{81} -8.87092 q^{82} +(8.57952 - 2.29888i) q^{83} -1.22566i q^{84} +(-3.10436 + 5.37690i) q^{86} +(0.180228 + 0.312164i) q^{87} -5.91764 q^{88} +(16.4223 - 4.40035i) q^{89} +(-2.40978 + 0.645698i) q^{91} +(2.81421 - 1.62479i) q^{92} +(1.30280 - 0.752174i) q^{93} +(2.77976 - 0.744835i) q^{94} +(-3.87685 + 1.03880i) q^{96} -15.4196 q^{97} +(2.45986 + 4.26060i) q^{98} +(1.80944 - 3.13404i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q + 6 q^{2} + 4 q^{3} + 30 q^{4} - 8 q^{6} + 2 q^{7} + 10 q^{12} + 6 q^{13} - 26 q^{16} + 10 q^{17} + 8 q^{18} - 4 q^{19} - 12 q^{21} + 14 q^{22} - 24 q^{26} - 68 q^{27} - 14 q^{28} - 14 q^{29} - 24 q^{31}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/925\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(852\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.983757 0.567972i −0.695621 0.401617i 0.110093 0.993921i \(-0.464885\pi\)
−0.805714 + 0.592304i \(0.798218\pi\)
\(3\) −1.02118 0.273625i −0.589581 0.157978i −0.0483191 0.998832i \(-0.515386\pi\)
−0.541262 + 0.840854i \(0.682053\pi\)
\(4\) −0.354815 0.614557i −0.177407 0.307279i
\(5\) 0 0
\(6\) 0.849185 + 0.849185i 0.346678 + 0.346678i
\(7\) −1.57806 0.422839i −0.596449 0.159818i −0.0520501 0.998644i \(-0.516576\pi\)
−0.544399 + 0.838826i \(0.683242\pi\)
\(8\) 3.07799i 1.08823i
\(9\) −1.63013 0.941157i −0.543377 0.313719i
\(10\) 0 0
\(11\) 1.92257i 0.579676i 0.957076 + 0.289838i \(0.0936014\pi\)
−0.957076 + 0.289838i \(0.906399\pi\)
\(12\) 0.194173 + 0.724662i 0.0560528 + 0.209192i
\(13\) 1.32247 0.763528i 0.366787 0.211764i −0.305267 0.952267i \(-0.598746\pi\)
0.672054 + 0.740502i \(0.265412\pi\)
\(14\) 1.31226 + 1.31226i 0.350717 + 0.350717i
\(15\) 0 0
\(16\) 1.03858 1.79888i 0.259646 0.449720i
\(17\) −0.660110 + 1.14334i −0.160100 + 0.277302i −0.934904 0.354899i \(-0.884515\pi\)
0.774804 + 0.632201i \(0.217848\pi\)
\(18\) 1.06910 + 1.85174i 0.251990 + 0.436459i
\(19\) −2.17790 0.583566i −0.499644 0.133879i 0.000190628 1.00000i \(-0.499939\pi\)
−0.499835 + 0.866121i \(0.666606\pi\)
\(20\) 0 0
\(21\) 1.49579 + 0.863592i 0.326407 + 0.188451i
\(22\) 1.09196 1.89134i 0.232808 0.403235i
\(23\) 4.57925i 0.954839i 0.878675 + 0.477420i \(0.158428\pi\)
−0.878675 + 0.477420i \(0.841572\pi\)
\(24\) 0.842216 3.14319i 0.171917 0.641601i
\(25\) 0 0
\(26\) −1.73465 −0.340193
\(27\) 3.64981 + 3.64981i 0.702407 + 0.702407i
\(28\) 0.300059 + 1.11984i 0.0567058 + 0.211629i
\(29\) −0.241089 0.241089i −0.0447691 0.0447691i 0.684368 0.729137i \(-0.260078\pi\)
−0.729137 + 0.684368i \(0.760078\pi\)
\(30\) 0 0
\(31\) −1.00617 + 1.00617i −0.180714 + 0.180714i −0.791667 0.610953i \(-0.790787\pi\)
0.610953 + 0.791667i \(0.290787\pi\)
\(32\) 3.28781 1.89822i 0.581208 0.335560i
\(33\) 0.526063 1.96329i 0.0915758 0.341766i
\(34\) 1.29878 0.749849i 0.222738 0.128598i
\(35\) 0 0
\(36\) 1.33575i 0.222624i
\(37\) 5.83510 + 1.71804i 0.959284 + 0.282443i
\(38\) 1.81107 + 1.81107i 0.293795 + 0.293795i
\(39\) −1.55940 + 0.417841i −0.249704 + 0.0669081i
\(40\) 0 0
\(41\) 6.76304 3.90464i 1.05621 0.609803i 0.131828 0.991273i \(-0.457915\pi\)
0.924381 + 0.381470i \(0.124582\pi\)
\(42\) −0.980993 1.69913i −0.151370 0.262181i
\(43\) 5.46568i 0.833509i −0.909019 0.416754i \(-0.863168\pi\)
0.909019 0.416754i \(-0.136832\pi\)
\(44\) 1.18153 0.682155i 0.178122 0.102839i
\(45\) 0 0
\(46\) 2.60089 4.50487i 0.383480 0.664207i
\(47\) −1.79140 + 1.79140i −0.261302 + 0.261302i −0.825583 0.564281i \(-0.809154\pi\)
0.564281 + 0.825583i \(0.309154\pi\)
\(48\) −1.55280 + 1.55280i −0.224128 + 0.224128i
\(49\) −3.75071 2.16547i −0.535816 0.309353i
\(50\) 0 0
\(51\) 0.986942 0.986942i 0.138200 0.138200i
\(52\) −0.938463 0.541822i −0.130141 0.0751372i
\(53\) −3.24893 + 0.870548i −0.446275 + 0.119579i −0.474956 0.880010i \(-0.657536\pi\)
0.0286809 + 0.999589i \(0.490869\pi\)
\(54\) −1.51754 5.66352i −0.206511 0.770708i
\(55\) 0 0
\(56\) 1.30149 4.85724i 0.173919 0.649076i
\(57\) 2.06436 + 1.19186i 0.273431 + 0.157865i
\(58\) 0.100241 + 0.374105i 0.0131623 + 0.0491223i
\(59\) 1.40987 + 5.26170i 0.183549 + 0.685016i 0.994936 + 0.100506i \(0.0320463\pi\)
−0.811387 + 0.584509i \(0.801287\pi\)
\(60\) 0 0
\(61\) 10.4583 + 2.80230i 1.33905 + 0.358797i 0.856081 0.516841i \(-0.172892\pi\)
0.482968 + 0.875638i \(0.339559\pi\)
\(62\) 1.56131 0.418352i 0.198287 0.0531307i
\(63\) 2.17448 + 2.17448i 0.273959 + 0.273959i
\(64\) −8.46687 −1.05836
\(65\) 0 0
\(66\) −1.63261 + 1.63261i −0.200961 + 0.200961i
\(67\) 2.53340 9.45477i 0.309504 1.15508i −0.619495 0.785001i \(-0.712662\pi\)
0.928999 0.370083i \(-0.120671\pi\)
\(68\) 0.936868 0.113612
\(69\) 1.25300 4.67625i 0.150843 0.562955i
\(70\) 0 0
\(71\) 1.65295 + 2.86299i 0.196169 + 0.339774i 0.947283 0.320398i \(-0.103817\pi\)
−0.751114 + 0.660172i \(0.770483\pi\)
\(72\) 2.89687 5.01753i 0.341399 0.591321i
\(73\) 1.78634 1.78634i 0.209075 0.209075i −0.594799 0.803874i \(-0.702768\pi\)
0.803874 + 0.594799i \(0.202768\pi\)
\(74\) −4.76452 5.00430i −0.553864 0.581739i
\(75\) 0 0
\(76\) 0.414116 + 1.54550i 0.0475023 + 0.177281i
\(77\) 0.812936 3.03392i 0.0926427 0.345747i
\(78\) 1.77140 + 0.474644i 0.200571 + 0.0537429i
\(79\) 12.3408 + 3.30670i 1.38844 + 0.372032i 0.874181 0.485600i \(-0.161399\pi\)
0.514263 + 0.857633i \(0.328066\pi\)
\(80\) 0 0
\(81\) 0.0950223 + 0.164583i 0.0105580 + 0.0182871i
\(82\) −8.87092 −0.979629
\(83\) 8.57952 2.29888i 0.941725 0.252334i 0.244878 0.969554i \(-0.421252\pi\)
0.696847 + 0.717220i \(0.254586\pi\)
\(84\) 1.22566i 0.133731i
\(85\) 0 0
\(86\) −3.10436 + 5.37690i −0.334751 + 0.579806i
\(87\) 0.180228 + 0.312164i 0.0193225 + 0.0334675i
\(88\) −5.91764 −0.630823
\(89\) 16.4223 4.40035i 1.74076 0.466436i 0.758146 0.652085i \(-0.226106\pi\)
0.982616 + 0.185650i \(0.0594390\pi\)
\(90\) 0 0
\(91\) −2.40978 + 0.645698i −0.252613 + 0.0676876i
\(92\) 2.81421 1.62479i 0.293402 0.169396i
\(93\) 1.30280 0.752174i 0.135094 0.0779968i
\(94\) 2.77976 0.744835i 0.286711 0.0768239i
\(95\) 0 0
\(96\) −3.87685 + 1.03880i −0.395680 + 0.106022i
\(97\) −15.4196 −1.56563 −0.782814 0.622256i \(-0.786216\pi\)
−0.782814 + 0.622256i \(0.786216\pi\)
\(98\) 2.45986 + 4.26060i 0.248483 + 0.430385i
\(99\) 1.80944 3.13404i 0.181855 0.314983i
\(100\) 0 0
\(101\) 0.767212i 0.0763405i −0.999271 0.0381702i \(-0.987847\pi\)
0.999271 0.0381702i \(-0.0121529\pi\)
\(102\) −1.53147 + 0.410355i −0.151638 + 0.0406312i
\(103\) 4.78539 0.471518 0.235759 0.971812i \(-0.424242\pi\)
0.235759 + 0.971812i \(0.424242\pi\)
\(104\) 2.35013 + 4.07054i 0.230449 + 0.399150i
\(105\) 0 0
\(106\) 3.69061 + 0.988895i 0.358463 + 0.0960500i
\(107\) 12.5674 + 3.36743i 1.21494 + 0.325542i 0.808698 0.588225i \(-0.200173\pi\)
0.406240 + 0.913766i \(0.366840\pi\)
\(108\) 0.948011 3.53803i 0.0912224 0.340447i
\(109\) 3.42875 + 12.7963i 0.328414 + 1.22566i 0.910835 + 0.412771i \(0.135439\pi\)
−0.582421 + 0.812888i \(0.697894\pi\)
\(110\) 0 0
\(111\) −5.48861 3.35106i −0.520955 0.318069i
\(112\) −2.39958 + 2.39958i −0.226739 + 0.226739i
\(113\) 7.28470 12.6175i 0.685287 1.18695i −0.288060 0.957612i \(-0.593010\pi\)
0.973347 0.229339i \(-0.0736565\pi\)
\(114\) −1.35388 2.34499i −0.126803 0.219629i
\(115\) 0 0
\(116\) −0.0626210 + 0.233705i −0.00581421 + 0.0216989i
\(117\) −2.87440 −0.265738
\(118\) 1.60153 5.97701i 0.147433 0.550228i
\(119\) 1.52514 1.52514i 0.139810 0.139810i
\(120\) 0 0
\(121\) 7.30374 0.663976
\(122\) −8.69681 8.69681i −0.787372 0.787372i
\(123\) −7.97471 + 2.13682i −0.719056 + 0.192670i
\(124\) 0.975357 + 0.261346i 0.0875896 + 0.0234696i
\(125\) 0 0
\(126\) −0.904116 3.37421i −0.0805450 0.300598i
\(127\) 1.32394 + 4.94102i 0.117481 + 0.438445i 0.999461 0.0328428i \(-0.0104561\pi\)
−0.881980 + 0.471288i \(0.843789\pi\)
\(128\) 1.75373 + 1.01252i 0.155009 + 0.0894947i
\(129\) −1.49555 + 5.58146i −0.131676 + 0.491421i
\(130\) 0 0
\(131\) −0.824339 3.07647i −0.0720228 0.268793i 0.920519 0.390698i \(-0.127766\pi\)
−0.992542 + 0.121905i \(0.961100\pi\)
\(132\) −1.39321 + 0.373310i −0.121263 + 0.0324924i
\(133\) 3.19009 + 1.84180i 0.276616 + 0.159704i
\(134\) −7.86230 + 7.86230i −0.679199 + 0.679199i
\(135\) 0 0
\(136\) −3.51920 2.03181i −0.301769 0.174227i
\(137\) −15.2791 + 15.2791i −1.30538 + 1.30538i −0.380674 + 0.924709i \(0.624308\pi\)
−0.924709 + 0.380674i \(0.875692\pi\)
\(138\) −3.88863 + 3.88863i −0.331022 + 0.331022i
\(139\) −8.97537 + 15.5458i −0.761281 + 1.31858i 0.180910 + 0.983500i \(0.442096\pi\)
−0.942191 + 0.335077i \(0.891238\pi\)
\(140\) 0 0
\(141\) 2.31952 1.33917i 0.195339 0.112779i
\(142\) 3.75532i 0.315139i
\(143\) 1.46793 + 2.54253i 0.122755 + 0.212617i
\(144\) −3.38605 + 1.95494i −0.282171 + 0.162912i
\(145\) 0 0
\(146\) −2.77191 + 0.742732i −0.229405 + 0.0614689i
\(147\) 3.23763 + 3.23763i 0.267036 + 0.267036i
\(148\) −1.01455 4.19559i −0.0833952 0.344875i
\(149\) 16.8891i 1.38361i −0.722084 0.691805i \(-0.756816\pi\)
0.722084 0.691805i \(-0.243184\pi\)
\(150\) 0 0
\(151\) −19.2569 + 11.1180i −1.56711 + 0.904770i −0.570603 + 0.821226i \(0.693290\pi\)
−0.996504 + 0.0835434i \(0.973376\pi\)
\(152\) 1.79621 6.70355i 0.145692 0.543730i
\(153\) 2.15213 1.24253i 0.173990 0.100453i
\(154\) −2.52291 + 2.52291i −0.203302 + 0.203302i
\(155\) 0 0
\(156\) 0.810087 + 0.810087i 0.0648588 + 0.0648588i
\(157\) −1.34884 5.03393i −0.107649 0.401751i 0.890983 0.454036i \(-0.150016\pi\)
−0.998632 + 0.0522849i \(0.983350\pi\)
\(158\) −10.2622 10.2622i −0.816417 0.816417i
\(159\) 3.55596 0.282006
\(160\) 0 0
\(161\) 1.93628 7.22631i 0.152601 0.569513i
\(162\) 0.215880i 0.0169611i
\(163\) −7.33603 + 12.7064i −0.574603 + 0.995241i 0.421482 + 0.906837i \(0.361510\pi\)
−0.996085 + 0.0884042i \(0.971823\pi\)
\(164\) −4.79925 2.77085i −0.374759 0.216367i
\(165\) 0 0
\(166\) −9.74586 2.61140i −0.756426 0.202684i
\(167\) 10.7921 + 18.6925i 0.835120 + 1.44647i 0.893933 + 0.448201i \(0.147935\pi\)
−0.0588131 + 0.998269i \(0.518732\pi\)
\(168\) −2.65813 + 4.60401i −0.205079 + 0.355207i
\(169\) −5.33405 + 9.23885i −0.410312 + 0.710681i
\(170\) 0 0
\(171\) 3.00103 + 3.00103i 0.229495 + 0.229495i
\(172\) −3.35897 + 1.93930i −0.256119 + 0.147871i
\(173\) 0.213654 + 0.797367i 0.0162438 + 0.0606227i 0.973572 0.228380i \(-0.0733429\pi\)
−0.957328 + 0.289003i \(0.906676\pi\)
\(174\) 0.409458i 0.0310409i
\(175\) 0 0
\(176\) 3.45847 + 1.99675i 0.260692 + 0.150510i
\(177\) 5.75894i 0.432869i
\(178\) −18.6548 4.99855i −1.39824 0.374657i
\(179\) 16.5150 + 16.5150i 1.23439 + 1.23439i 0.962262 + 0.272124i \(0.0877261\pi\)
0.272124 + 0.962262i \(0.412274\pi\)
\(180\) 0 0
\(181\) −10.0502 17.4074i −0.747024 1.29388i −0.949243 0.314544i \(-0.898148\pi\)
0.202219 0.979340i \(-0.435185\pi\)
\(182\) 2.73738 + 0.733478i 0.202908 + 0.0543690i
\(183\) −9.91307 5.72332i −0.732796 0.423080i
\(184\) −14.0949 −1.03909
\(185\) 0 0
\(186\) −1.70886 −0.125299
\(187\) −2.19816 1.26911i −0.160745 0.0928063i
\(188\) 1.73653 + 0.465302i 0.126649 + 0.0339356i
\(189\) −4.21633 7.30289i −0.306693 0.531207i
\(190\) 0 0
\(191\) −12.5389 12.5389i −0.907285 0.907285i 0.0887670 0.996052i \(-0.471707\pi\)
−0.996052 + 0.0887670i \(0.971707\pi\)
\(192\) 8.64623 + 2.31675i 0.623988 + 0.167197i
\(193\) 17.1943i 1.23767i 0.785519 + 0.618837i \(0.212396\pi\)
−0.785519 + 0.618837i \(0.787604\pi\)
\(194\) 15.1692 + 8.75793i 1.08908 + 0.628783i
\(195\) 0 0
\(196\) 3.07337i 0.219526i
\(197\) 2.30767 + 8.61235i 0.164415 + 0.613604i 0.998114 + 0.0613857i \(0.0195520\pi\)
−0.833699 + 0.552219i \(0.813781\pi\)
\(198\) −3.56009 + 2.05542i −0.253005 + 0.146072i
\(199\) −7.61077 7.61077i −0.539513 0.539513i 0.383873 0.923386i \(-0.374590\pi\)
−0.923386 + 0.383873i \(0.874590\pi\)
\(200\) 0 0
\(201\) −5.17413 + 8.96186i −0.364955 + 0.632121i
\(202\) −0.435755 + 0.754750i −0.0306596 + 0.0531041i
\(203\) 0.278510 + 0.482393i 0.0195476 + 0.0338574i
\(204\) −0.956714 0.256351i −0.0669834 0.0179481i
\(205\) 0 0
\(206\) −4.70766 2.71797i −0.327998 0.189370i
\(207\) 4.30979 7.46478i 0.299551 0.518838i
\(208\) 3.17195i 0.219935i
\(209\) 1.12195 4.18716i 0.0776066 0.289632i
\(210\) 0 0
\(211\) 1.64325 0.113126 0.0565629 0.998399i \(-0.481986\pi\)
0.0565629 + 0.998399i \(0.481986\pi\)
\(212\) 1.68777 + 1.68777i 0.115917 + 0.115917i
\(213\) −0.904577 3.37593i −0.0619806 0.231315i
\(214\) −10.4507 10.4507i −0.714393 0.714393i
\(215\) 0 0
\(216\) −11.2341 + 11.2341i −0.764383 + 0.764383i
\(217\) 2.01325 1.16235i 0.136668 0.0789054i
\(218\) 3.89487 14.5358i 0.263794 0.984491i
\(219\) −2.31297 + 1.33539i −0.156296 + 0.0902374i
\(220\) 0 0
\(221\) 2.01605i 0.135614i
\(222\) 3.49615 + 6.41401i 0.234646 + 0.430480i
\(223\) 13.8186 + 13.8186i 0.925365 + 0.925365i 0.997402 0.0720369i \(-0.0229499\pi\)
−0.0720369 + 0.997402i \(0.522950\pi\)
\(224\) −5.99098 + 1.60528i −0.400289 + 0.107257i
\(225\) 0 0
\(226\) −14.3327 + 8.27502i −0.953400 + 0.550446i
\(227\) 10.6242 + 18.4016i 0.705151 + 1.22136i 0.966637 + 0.256150i \(0.0824539\pi\)
−0.261487 + 0.965207i \(0.584213\pi\)
\(228\) 1.69155i 0.112026i
\(229\) 3.48912 2.01445i 0.230568 0.133118i −0.380266 0.924877i \(-0.624168\pi\)
0.610834 + 0.791759i \(0.290834\pi\)
\(230\) 0 0
\(231\) −1.66031 + 2.87575i −0.109241 + 0.189210i
\(232\) 0.742069 0.742069i 0.0487192 0.0487192i
\(233\) 2.25220 2.25220i 0.147547 0.147547i −0.629475 0.777021i \(-0.716730\pi\)
0.777021 + 0.629475i \(0.216730\pi\)
\(234\) 2.82771 + 1.63258i 0.184853 + 0.106725i
\(235\) 0 0
\(236\) 2.73338 2.73338i 0.177928 0.177928i
\(237\) −11.6974 6.75349i −0.759827 0.438686i
\(238\) −2.36661 + 0.634131i −0.153404 + 0.0411046i
\(239\) 5.13865 + 19.1777i 0.332392 + 1.24050i 0.906669 + 0.421843i \(0.138617\pi\)
−0.574277 + 0.818661i \(0.694717\pi\)
\(240\) 0 0
\(241\) 2.89066 10.7881i 0.186204 0.694922i −0.808166 0.588955i \(-0.799539\pi\)
0.994370 0.105967i \(-0.0337939\pi\)
\(242\) −7.18510 4.14832i −0.461876 0.266664i
\(243\) −4.05977 15.1513i −0.260435 0.971955i
\(244\) −1.98859 7.42153i −0.127307 0.475114i
\(245\) 0 0
\(246\) 9.05883 + 2.42731i 0.577570 + 0.154759i
\(247\) −3.32577 + 0.891138i −0.211614 + 0.0567017i
\(248\) −3.09699 3.09699i −0.196659 0.196659i
\(249\) −9.39030 −0.595086
\(250\) 0 0
\(251\) −6.77562 + 6.77562i −0.427673 + 0.427673i −0.887835 0.460162i \(-0.847791\pi\)
0.460162 + 0.887835i \(0.347791\pi\)
\(252\) 0.564805 2.10788i 0.0355794 0.132784i
\(253\) −8.80391 −0.553497
\(254\) 1.50393 5.61273i 0.0943647 0.352174i
\(255\) 0 0
\(256\) 7.31671 + 12.6729i 0.457294 + 0.792057i
\(257\) −0.176949 + 0.306484i −0.0110378 + 0.0191180i −0.871492 0.490411i \(-0.836847\pi\)
0.860454 + 0.509529i \(0.170180\pi\)
\(258\) 4.64137 4.64137i 0.288959 0.288959i
\(259\) −8.48166 5.17846i −0.527025 0.321774i
\(260\) 0 0
\(261\) 0.166104 + 0.619909i 0.0102816 + 0.0383714i
\(262\) −0.936403 + 3.49470i −0.0578512 + 0.215904i
\(263\) −19.4898 5.22227i −1.20179 0.322019i −0.398255 0.917275i \(-0.630384\pi\)
−0.803536 + 0.595256i \(0.797051\pi\)
\(264\) 6.04300 + 1.61922i 0.371921 + 0.0996559i
\(265\) 0 0
\(266\) −2.09218 3.62377i −0.128280 0.222187i
\(267\) −17.9742 −1.10001
\(268\) −6.70939 + 1.79777i −0.409841 + 0.109817i
\(269\) 6.49930i 0.396269i 0.980175 + 0.198135i \(0.0634883\pi\)
−0.980175 + 0.198135i \(0.936512\pi\)
\(270\) 0 0
\(271\) −2.12937 + 3.68817i −0.129350 + 0.224040i −0.923425 0.383779i \(-0.874622\pi\)
0.794075 + 0.607820i \(0.207956\pi\)
\(272\) 1.37116 + 2.37492i 0.0831388 + 0.144001i
\(273\) 2.63751 0.159629
\(274\) 23.7091 6.35282i 1.43232 0.383788i
\(275\) 0 0
\(276\) −3.31841 + 0.889165i −0.199745 + 0.0535214i
\(277\) −0.494657 + 0.285590i −0.0297211 + 0.0171595i −0.514787 0.857318i \(-0.672129\pi\)
0.485066 + 0.874478i \(0.338796\pi\)
\(278\) 17.6592 10.1955i 1.05913 0.611487i
\(279\) 2.58716 0.693228i 0.154889 0.0415025i
\(280\) 0 0
\(281\) 30.2609 8.10837i 1.80521 0.483705i 0.810439 0.585823i \(-0.199229\pi\)
0.994772 + 0.102118i \(0.0325620\pi\)
\(282\) −3.04245 −0.181176
\(283\) −0.308111 0.533664i −0.0183153 0.0317230i 0.856722 0.515778i \(-0.172497\pi\)
−0.875038 + 0.484055i \(0.839164\pi\)
\(284\) 1.17298 2.03166i 0.0696036 0.120557i
\(285\) 0 0
\(286\) 3.33498i 0.197202i
\(287\) −12.3235 + 3.30207i −0.727433 + 0.194915i
\(288\) −7.14608 −0.421087
\(289\) 7.62851 + 13.2130i 0.448736 + 0.777233i
\(290\) 0 0
\(291\) 15.7463 + 4.21920i 0.923063 + 0.247334i
\(292\) −1.73163 0.463988i −0.101336 0.0271528i
\(293\) −2.55888 + 9.54988i −0.149492 + 0.557910i 0.850023 + 0.526746i \(0.176588\pi\)
−0.999514 + 0.0311641i \(0.990079\pi\)
\(294\) −1.34616 5.02393i −0.0785096 0.293002i
\(295\) 0 0
\(296\) −5.28810 + 17.9604i −0.307364 + 1.04393i
\(297\) −7.01701 + 7.01701i −0.407168 + 0.407168i
\(298\) −9.59255 + 16.6148i −0.555682 + 0.962469i
\(299\) 3.49638 + 6.05591i 0.202201 + 0.350222i
\(300\) 0 0
\(301\) −2.31110 + 8.62515i −0.133210 + 0.497146i
\(302\) 25.2589 1.45348
\(303\) −0.209929 + 0.783464i −0.0120601 + 0.0450089i
\(304\) −3.31170 + 3.31170i −0.189939 + 0.189939i
\(305\) 0 0
\(306\) −2.82290 −0.161375
\(307\) −12.7533 12.7533i −0.727869 0.727869i 0.242326 0.970195i \(-0.422090\pi\)
−0.970195 + 0.242326i \(0.922090\pi\)
\(308\) −2.15296 + 0.576883i −0.122676 + 0.0328710i
\(309\) −4.88676 1.30940i −0.277998 0.0744893i
\(310\) 0 0
\(311\) 6.30945 + 23.5472i 0.357776 + 1.33524i 0.876955 + 0.480572i \(0.159571\pi\)
−0.519179 + 0.854665i \(0.673762\pi\)
\(312\) −1.28611 4.79983i −0.0728116 0.271737i
\(313\) −0.801929 0.462994i −0.0453277 0.0261700i 0.477165 0.878814i \(-0.341664\pi\)
−0.522493 + 0.852644i \(0.674998\pi\)
\(314\) −1.53220 + 5.71826i −0.0864673 + 0.322700i
\(315\) 0 0
\(316\) −2.34653 8.75737i −0.132003 0.492640i
\(317\) 25.5685 6.85107i 1.43607 0.384794i 0.544916 0.838491i \(-0.316562\pi\)
0.891156 + 0.453696i \(0.149895\pi\)
\(318\) −3.49820 2.01969i −0.196169 0.113258i
\(319\) 0.463509 0.463509i 0.0259515 0.0259515i
\(320\) 0 0
\(321\) −11.9122 6.87752i −0.664875 0.383866i
\(322\) −6.00918 + 6.00918i −0.334878 + 0.334878i
\(323\) 2.10487 2.10487i 0.117118 0.117118i
\(324\) 0.0674306 0.116793i 0.00374615 0.00648852i
\(325\) 0 0
\(326\) 14.4338 8.33333i 0.799412 0.461540i
\(327\) 14.0055i 0.774507i
\(328\) 12.0184 + 20.8166i 0.663608 + 1.14940i
\(329\) 3.58440 2.06945i 0.197614 0.114093i
\(330\) 0 0
\(331\) −9.40727 + 2.52067i −0.517070 + 0.138549i −0.507911 0.861410i \(-0.669582\pi\)
−0.00915915 + 0.999958i \(0.502915\pi\)
\(332\) −4.45693 4.45693i −0.244606 0.244606i
\(333\) −7.89503 8.29237i −0.432645 0.454419i
\(334\) 24.5185i 1.34159i
\(335\) 0 0
\(336\) 3.10700 1.79382i 0.169501 0.0978612i
\(337\) 5.14226 19.1912i 0.280117 1.04541i −0.672217 0.740354i \(-0.734658\pi\)
0.952334 0.305057i \(-0.0986754\pi\)
\(338\) 10.4948 6.05919i 0.570843 0.329576i
\(339\) −10.8915 + 10.8915i −0.591544 + 0.591544i
\(340\) 0 0
\(341\) −1.93444 1.93444i −0.104756 0.104756i
\(342\) −1.24778 4.65679i −0.0674724 0.251810i
\(343\) 13.0897 + 13.0897i 0.706778 + 0.706778i
\(344\) 16.8233 0.907052
\(345\) 0 0
\(346\) 0.242699 0.905765i 0.0130476 0.0486942i
\(347\) 10.3295i 0.554517i −0.960795 0.277258i \(-0.910574\pi\)
0.960795 0.277258i \(-0.0894258\pi\)
\(348\) 0.127895 0.221521i 0.00685589 0.0118748i
\(349\) −13.7141 7.91783i −0.734098 0.423832i 0.0858212 0.996311i \(-0.472649\pi\)
−0.819920 + 0.572479i \(0.805982\pi\)
\(350\) 0 0
\(351\) 7.61350 + 2.04003i 0.406378 + 0.108889i
\(352\) 3.64945 + 6.32103i 0.194516 + 0.336912i
\(353\) 4.35227 7.53835i 0.231648 0.401226i −0.726645 0.687013i \(-0.758922\pi\)
0.958293 + 0.285787i \(0.0922550\pi\)
\(354\) −3.27092 + 5.66540i −0.173847 + 0.301113i
\(355\) 0 0
\(356\) −8.53114 8.53114i −0.452150 0.452150i
\(357\) −1.97477 + 1.14013i −0.104516 + 0.0603422i
\(358\) −6.86667 25.6268i −0.362915 1.35442i
\(359\) 9.85969i 0.520375i −0.965558 0.260187i \(-0.916216\pi\)
0.965558 0.260187i \(-0.0837843\pi\)
\(360\) 0 0
\(361\) −12.0518 6.95810i −0.634305 0.366216i
\(362\) 22.8329i 1.20007i
\(363\) −7.45845 1.99849i −0.391467 0.104893i
\(364\) 1.25184 + 1.25184i 0.0656144 + 0.0656144i
\(365\) 0 0
\(366\) 6.50137 + 11.2607i 0.339832 + 0.588606i
\(367\) 19.5857 + 5.24797i 1.02236 + 0.273942i 0.730787 0.682606i \(-0.239153\pi\)
0.291577 + 0.956547i \(0.405820\pi\)
\(368\) 8.23752 + 4.75593i 0.429410 + 0.247920i
\(369\) −14.6995 −0.765227
\(370\) 0 0
\(371\) 5.49510 0.285291
\(372\) −0.924507 0.533765i −0.0479335 0.0276744i
\(373\) 2.29926 + 0.616084i 0.119051 + 0.0318996i 0.317853 0.948140i \(-0.397038\pi\)
−0.198802 + 0.980040i \(0.563705\pi\)
\(374\) 1.44163 + 2.49698i 0.0745452 + 0.129116i
\(375\) 0 0
\(376\) −5.51390 5.51390i −0.284358 0.284358i
\(377\) −0.502910 0.134754i −0.0259012 0.00694021i
\(378\) 9.57903i 0.492692i
\(379\) 14.3987 + 8.31312i 0.739614 + 0.427016i 0.821929 0.569590i \(-0.192898\pi\)
−0.0823151 + 0.996606i \(0.526231\pi\)
\(380\) 0 0
\(381\) 5.40795i 0.277058i
\(382\) 5.21350 + 19.4570i 0.266746 + 0.995508i
\(383\) 7.80032 4.50352i 0.398578 0.230119i −0.287292 0.957843i \(-0.592755\pi\)
0.685870 + 0.727724i \(0.259422\pi\)
\(384\) −1.51383 1.51383i −0.0772523 0.0772523i
\(385\) 0 0
\(386\) 9.76590 16.9150i 0.497071 0.860953i
\(387\) −5.14406 + 8.90978i −0.261487 + 0.452910i
\(388\) 5.47112 + 9.47625i 0.277754 + 0.481084i
\(389\) −11.4603 3.07078i −0.581061 0.155695i −0.0436964 0.999045i \(-0.513913\pi\)
−0.537365 + 0.843350i \(0.680580\pi\)
\(390\) 0 0
\(391\) −5.23566 3.02281i −0.264779 0.152870i
\(392\) 6.66530 11.5446i 0.336649 0.583093i
\(393\) 3.36720i 0.169853i
\(394\) 2.62139 9.78315i 0.132064 0.492868i
\(395\) 0 0
\(396\) −2.56806 −0.129050
\(397\) 1.62569 + 1.62569i 0.0815913 + 0.0815913i 0.746725 0.665133i \(-0.231625\pi\)
−0.665133 + 0.746725i \(0.731625\pi\)
\(398\) 3.16444 + 11.8099i 0.158619 + 0.591974i
\(399\) −2.75371 2.75371i −0.137858 0.137858i
\(400\) 0 0
\(401\) 16.9699 16.9699i 0.847436 0.847436i −0.142377 0.989813i \(-0.545474\pi\)
0.989813 + 0.142377i \(0.0454744\pi\)
\(402\) 10.1802 5.87753i 0.507741 0.293144i
\(403\) −0.562392 + 2.09888i −0.0280147 + 0.104552i
\(404\) −0.471496 + 0.272218i −0.0234578 + 0.0135434i
\(405\) 0 0
\(406\) 0.632744i 0.0314026i
\(407\) −3.30304 + 11.2184i −0.163726 + 0.556074i
\(408\) 3.03780 + 3.03780i 0.150393 + 0.150393i
\(409\) −24.9023 + 6.67256i −1.23134 + 0.329937i −0.815102 0.579318i \(-0.803319\pi\)
−0.416240 + 0.909255i \(0.636652\pi\)
\(410\) 0 0
\(411\) 19.7835 11.4220i 0.975850 0.563407i
\(412\) −1.69793 2.94089i −0.0836508 0.144887i
\(413\) 8.89941i 0.437911i
\(414\) −8.47957 + 4.89568i −0.416748 + 0.240610i
\(415\) 0 0
\(416\) 2.89868 5.02066i 0.142120 0.246158i
\(417\) 13.4192 13.4192i 0.657142 0.657142i
\(418\) −3.48191 + 3.48191i −0.170306 + 0.170306i
\(419\) 29.0354 + 16.7636i 1.41847 + 0.818955i 0.996165 0.0874987i \(-0.0278874\pi\)
0.422306 + 0.906453i \(0.361221\pi\)
\(420\) 0 0
\(421\) −0.954366 + 0.954366i −0.0465130 + 0.0465130i −0.729981 0.683468i \(-0.760471\pi\)
0.683468 + 0.729981i \(0.260471\pi\)
\(422\) −1.61656 0.933319i −0.0786927 0.0454333i
\(423\) 4.60620 1.23423i 0.223961 0.0600102i
\(424\) −2.67954 10.0002i −0.130130 0.485651i
\(425\) 0 0
\(426\) −1.02755 + 3.83487i −0.0497849 + 0.185800i
\(427\) −15.3189 8.84436i −0.741333 0.428009i
\(428\) −2.38963 8.91821i −0.115507 0.431078i
\(429\) −0.803327 2.99806i −0.0387850 0.144748i
\(430\) 0 0
\(431\) −12.1677 3.26032i −0.586097 0.157044i −0.0464282 0.998922i \(-0.514784\pi\)
−0.539669 + 0.841877i \(0.681451\pi\)
\(432\) 10.3562 2.77494i 0.498263 0.133509i
\(433\) 13.7322 + 13.7322i 0.659928 + 0.659928i 0.955363 0.295435i \(-0.0954646\pi\)
−0.295435 + 0.955363i \(0.595465\pi\)
\(434\) −2.64073 −0.126759
\(435\) 0 0
\(436\) 6.64746 6.64746i 0.318356 0.318356i
\(437\) 2.67230 9.97314i 0.127833 0.477080i
\(438\) 3.03386 0.144963
\(439\) 8.00818 29.8869i 0.382210 1.42643i −0.460309 0.887759i \(-0.652261\pi\)
0.842519 0.538667i \(-0.181072\pi\)
\(440\) 0 0
\(441\) 4.07610 + 7.06001i 0.194100 + 0.336191i
\(442\) 1.14506 1.98330i 0.0544650 0.0943361i
\(443\) −13.3025 + 13.3025i −0.632023 + 0.632023i −0.948575 0.316552i \(-0.897475\pi\)
0.316552 + 0.948575i \(0.397475\pi\)
\(444\) −0.111980 + 4.56207i −0.00531432 + 0.216506i
\(445\) 0 0
\(446\) −5.74558 21.4428i −0.272061 1.01535i
\(447\) −4.62129 + 17.2469i −0.218580 + 0.815750i
\(448\) 13.3612 + 3.58012i 0.631257 + 0.169145i
\(449\) 28.3423 + 7.59430i 1.33756 + 0.358397i 0.855527 0.517758i \(-0.173233\pi\)
0.482029 + 0.876155i \(0.339900\pi\)
\(450\) 0 0
\(451\) 7.50694 + 13.0024i 0.353488 + 0.612259i
\(452\) −10.3389 −0.486300
\(453\) 22.7070 6.08433i 1.06687 0.285867i
\(454\) 24.1369i 1.13280i
\(455\) 0 0
\(456\) −3.66852 + 6.35407i −0.171794 + 0.297556i
\(457\) −3.20861 5.55747i −0.150092 0.259968i 0.781169 0.624320i \(-0.214624\pi\)
−0.931261 + 0.364352i \(0.881290\pi\)
\(458\) −4.57660 −0.213850
\(459\) −6.58228 + 1.76372i −0.307234 + 0.0823232i
\(460\) 0 0
\(461\) 25.3037 6.78010i 1.17851 0.315781i 0.384175 0.923260i \(-0.374486\pi\)
0.794335 + 0.607479i \(0.207819\pi\)
\(462\) 3.26669 1.88602i 0.151980 0.0877458i
\(463\) 33.0936 19.1066i 1.53799 0.887960i 0.539035 0.842283i \(-0.318789\pi\)
0.998956 0.0456763i \(-0.0145443\pi\)
\(464\) −0.684081 + 0.183299i −0.0317576 + 0.00850944i
\(465\) 0 0
\(466\) −3.49481 + 0.936431i −0.161894 + 0.0433793i
\(467\) −13.5181 −0.625544 −0.312772 0.949828i \(-0.601258\pi\)
−0.312772 + 0.949828i \(0.601258\pi\)
\(468\) 1.01988 + 1.76648i 0.0471439 + 0.0816556i
\(469\) −7.99569 + 13.8489i −0.369207 + 0.639485i
\(470\) 0 0
\(471\) 5.50964i 0.253871i
\(472\) −16.1955 + 4.33956i −0.745457 + 0.199745i
\(473\) 10.5081 0.483165
\(474\) 7.67159 + 13.2876i 0.352368 + 0.610319i
\(475\) 0 0
\(476\) −1.47843 0.396144i −0.0677637 0.0181572i
\(477\) 6.11551 + 1.63865i 0.280010 + 0.0750284i
\(478\) 5.83723 21.7848i 0.266989 0.996415i
\(479\) 0.466920 + 1.74257i 0.0213341 + 0.0796200i 0.975772 0.218789i \(-0.0702107\pi\)
−0.954438 + 0.298409i \(0.903544\pi\)
\(480\) 0 0
\(481\) 9.02850 2.18321i 0.411664 0.0995457i
\(482\) −8.97105 + 8.97105i −0.408620 + 0.408620i
\(483\) −3.95460 + 6.84957i −0.179941 + 0.311666i
\(484\) −2.59147 4.48856i −0.117794 0.204026i
\(485\) 0 0
\(486\) −4.61168 + 17.2110i −0.209190 + 0.780708i
\(487\) −4.70678 −0.213285 −0.106642 0.994297i \(-0.534010\pi\)
−0.106642 + 0.994297i \(0.534010\pi\)
\(488\) −8.62544 + 32.1906i −0.390455 + 1.45720i
\(489\) 10.9682 10.9682i 0.496000 0.496000i
\(490\) 0 0
\(491\) 22.3671 1.00941 0.504707 0.863291i \(-0.331601\pi\)
0.504707 + 0.863291i \(0.331601\pi\)
\(492\) 4.14274 + 4.14274i 0.186769 + 0.186769i
\(493\) 0.434793 0.116502i 0.0195821 0.00524700i
\(494\) 3.77789 + 1.01228i 0.169975 + 0.0455448i
\(495\) 0 0
\(496\) 0.764990 + 2.85498i 0.0343491 + 0.128192i
\(497\) −1.39786 5.21689i −0.0627026 0.234009i
\(498\) 9.23777 + 5.33343i 0.413954 + 0.238997i
\(499\) 4.04934 15.1123i 0.181273 0.676521i −0.814124 0.580691i \(-0.802783\pi\)
0.995398 0.0958307i \(-0.0305507\pi\)
\(500\) 0 0
\(501\) −5.90600 22.0415i −0.263860 0.984741i
\(502\) 10.5139 2.81720i 0.469260 0.125738i
\(503\) −8.84970 5.10938i −0.394589 0.227816i 0.289558 0.957161i \(-0.406492\pi\)
−0.684146 + 0.729345i \(0.739825\pi\)
\(504\) −6.69303 + 6.69303i −0.298131 + 0.298131i
\(505\) 0 0
\(506\) 8.66091 + 5.00038i 0.385024 + 0.222294i
\(507\) 7.97503 7.97503i 0.354183 0.354183i
\(508\) 2.56679 2.56679i 0.113883 0.113883i
\(509\) 3.43610 5.95149i 0.152302 0.263795i −0.779771 0.626065i \(-0.784665\pi\)
0.932073 + 0.362269i \(0.117998\pi\)
\(510\) 0 0
\(511\) −3.57427 + 2.06361i −0.158117 + 0.0912886i
\(512\) 20.6728i 0.913618i
\(513\) −5.81902 10.0788i −0.256916 0.444991i
\(514\) 0.348149 0.201004i 0.0153562 0.00886591i
\(515\) 0 0
\(516\) 3.96077 1.06129i 0.174363 0.0467205i
\(517\) −3.44408 3.44408i −0.151471 0.151471i
\(518\) 5.40267 + 9.91170i 0.237379 + 0.435495i
\(519\) 0.872719i 0.0383081i
\(520\) 0 0
\(521\) −19.6337 + 11.3355i −0.860166 + 0.496617i −0.864068 0.503375i \(-0.832091\pi\)
0.00390182 + 0.999992i \(0.498758\pi\)
\(522\) 0.188685 0.704182i 0.00825852 0.0308212i
\(523\) −7.34396 + 4.24004i −0.321129 + 0.185404i −0.651896 0.758309i \(-0.726026\pi\)
0.330767 + 0.943713i \(0.392693\pi\)
\(524\) −1.59818 + 1.59818i −0.0698169 + 0.0698169i
\(525\) 0 0
\(526\) 16.2071 + 16.2071i 0.706663 + 0.706663i
\(527\) −0.486218 1.81459i −0.0211800 0.0790448i
\(528\) −2.98537 2.98537i −0.129921 0.129921i
\(529\) 2.03048 0.0882817
\(530\) 0 0
\(531\) 2.65382 9.90418i 0.115166 0.429805i
\(532\) 2.61399i 0.113331i
\(533\) 5.96260 10.3275i 0.258269 0.447335i
\(534\) 17.6823 + 10.2089i 0.765187 + 0.441781i
\(535\) 0 0
\(536\) 29.1017 + 7.79777i 1.25700 + 0.336813i
\(537\) −12.3459 21.3837i −0.532765 0.922776i
\(538\) 3.69142 6.39373i 0.159148 0.275653i
\(539\) 4.16327 7.21099i 0.179325 0.310599i
\(540\) 0 0
\(541\) −9.87420 9.87420i −0.424525 0.424525i 0.462233 0.886758i \(-0.347048\pi\)
−0.886758 + 0.462233i \(0.847048\pi\)
\(542\) 4.18956 2.41884i 0.179957 0.103898i
\(543\) 5.49997 + 20.5262i 0.236026 + 0.880862i
\(544\) 5.01213i 0.214893i
\(545\) 0 0
\(546\) −2.59466 1.49803i −0.111041 0.0641098i
\(547\) 16.2777i 0.695983i 0.937498 + 0.347992i \(0.113136\pi\)
−0.937498 + 0.347992i \(0.886864\pi\)
\(548\) 14.8112 + 3.96864i 0.632701 + 0.169532i
\(549\) −14.4110 14.4110i −0.615047 0.615047i
\(550\) 0 0
\(551\) 0.384376 + 0.665758i 0.0163750 + 0.0283623i
\(552\) 14.3935 + 3.85672i 0.612626 + 0.164153i
\(553\) −18.0762 10.4363i −0.768679 0.443797i
\(554\) 0.648830 0.0275661
\(555\) 0 0
\(556\) 12.7384 0.540227
\(557\) −11.0303 6.36833i −0.467368 0.269835i 0.247769 0.968819i \(-0.420302\pi\)
−0.715137 + 0.698984i \(0.753636\pi\)
\(558\) −2.93887 0.787469i −0.124412 0.0333362i
\(559\) −4.17320 7.22819i −0.176508 0.305720i
\(560\) 0 0
\(561\) 1.89746 + 1.89746i 0.0801109 + 0.0801109i
\(562\) −34.3747 9.21066i −1.45001 0.388528i
\(563\) 9.88042i 0.416410i 0.978085 + 0.208205i \(0.0667622\pi\)
−0.978085 + 0.208205i \(0.933238\pi\)
\(564\) −1.64600 0.950317i −0.0693090 0.0400156i
\(565\) 0 0
\(566\) 0.699994i 0.0294229i
\(567\) −0.0803582 0.299901i −0.00337473 0.0125947i
\(568\) −8.81225 + 5.08776i −0.369754 + 0.213478i
\(569\) −28.2430 28.2430i −1.18401 1.18401i −0.978697 0.205312i \(-0.934179\pi\)
−0.205312 0.978697i \(-0.565821\pi\)
\(570\) 0 0
\(571\) −18.9395 + 32.8041i −0.792592 + 1.37281i 0.131765 + 0.991281i \(0.457936\pi\)
−0.924357 + 0.381529i \(0.875398\pi\)
\(572\) 1.04169 1.80426i 0.0435552 0.0754398i
\(573\) 9.37358 + 16.2355i 0.391587 + 0.678249i
\(574\) 13.9988 + 3.75097i 0.584299 + 0.156562i
\(575\) 0 0
\(576\) 13.8021 + 7.96865i 0.575088 + 0.332027i
\(577\) 13.6089 23.5713i 0.566547 0.981288i −0.430357 0.902659i \(-0.641612\pi\)
0.996904 0.0786291i \(-0.0250543\pi\)
\(578\) 17.3311i 0.720880i
\(579\) 4.70480 17.5586i 0.195525 0.729709i
\(580\) 0 0
\(581\) −14.5110 −0.602019
\(582\) −13.0941 13.0941i −0.542769 0.542769i
\(583\) −1.67369 6.24629i −0.0693171 0.258695i
\(584\) 5.49833 + 5.49833i 0.227522 + 0.227522i
\(585\) 0 0
\(586\) 7.94139 7.94139i 0.328056 0.328056i
\(587\) −10.5112 + 6.06864i −0.433843 + 0.250480i −0.700983 0.713178i \(-0.747255\pi\)
0.267139 + 0.963658i \(0.413922\pi\)
\(588\) 0.840951 3.13847i 0.0346802 0.129428i
\(589\) 2.77851 1.60418i 0.114487 0.0660989i
\(590\) 0 0
\(591\) 9.42622i 0.387743i
\(592\) 9.15077 8.71231i 0.376095 0.358074i
\(593\) 22.9652 + 22.9652i 0.943070 + 0.943070i 0.998465 0.0553950i \(-0.0176418\pi\)
−0.0553950 + 0.998465i \(0.517642\pi\)
\(594\) 10.8885 2.91757i 0.446761 0.119709i
\(595\) 0 0
\(596\) −10.3793 + 5.99251i −0.425154 + 0.245463i
\(597\) 5.68949 + 9.85449i 0.232855 + 0.403317i
\(598\) 7.94340i 0.324830i
\(599\) 2.59862 1.50032i 0.106177 0.0613013i −0.445971 0.895047i \(-0.647142\pi\)
0.552148 + 0.833746i \(0.313808\pi\)
\(600\) 0 0
\(601\) 7.76062 13.4418i 0.316562 0.548302i −0.663206 0.748437i \(-0.730805\pi\)
0.979768 + 0.200135i \(0.0641380\pi\)
\(602\) 7.17241 7.17241i 0.292326 0.292326i
\(603\) −13.0282 + 13.0282i −0.530549 + 0.530549i
\(604\) 13.6653 + 7.88966i 0.556033 + 0.321026i
\(605\) 0 0
\(606\) 0.651505 0.651505i 0.0264656 0.0264656i
\(607\) 32.0701 + 18.5157i 1.30169 + 0.751529i 0.980693 0.195552i \(-0.0626499\pi\)
0.320994 + 0.947081i \(0.395983\pi\)
\(608\) −8.26824 + 2.21547i −0.335322 + 0.0898492i
\(609\) −0.152415 0.568820i −0.00617616 0.0230497i
\(610\) 0 0
\(611\) −1.00129 + 3.73685i −0.0405077 + 0.151177i
\(612\) −1.52722 0.881739i −0.0617341 0.0356422i
\(613\) −4.51123 16.8361i −0.182207 0.680005i −0.995211 0.0977478i \(-0.968836\pi\)
0.813004 0.582258i \(-0.197831\pi\)
\(614\) 5.30262 + 19.7897i 0.213996 + 0.798645i
\(615\) 0 0
\(616\) 9.33837 + 2.50221i 0.376254 + 0.100817i
\(617\) 23.0967 6.18875i 0.929839 0.249150i 0.238053 0.971252i \(-0.423491\pi\)
0.691786 + 0.722103i \(0.256824\pi\)
\(618\) 4.06368 + 4.06368i 0.163465 + 0.163465i
\(619\) 6.37727 0.256324 0.128162 0.991753i \(-0.459092\pi\)
0.128162 + 0.991753i \(0.459092\pi\)
\(620\) 0 0
\(621\) −16.7134 + 16.7134i −0.670686 + 0.670686i
\(622\) 7.16718 26.7483i 0.287378 1.07251i
\(623\) −27.7760 −1.11282
\(624\) −0.867925 + 3.23914i −0.0347448 + 0.129669i
\(625\) 0 0
\(626\) 0.525936 + 0.910947i 0.0210206 + 0.0364088i
\(627\) −2.29142 + 3.96886i −0.0915107 + 0.158501i
\(628\) −2.61505 + 2.61505i −0.104352 + 0.104352i
\(629\) −5.81612 + 5.53743i −0.231904 + 0.220792i
\(630\) 0 0
\(631\) −5.89535 22.0017i −0.234690 0.875876i −0.978288 0.207249i \(-0.933549\pi\)
0.743598 0.668627i \(-0.233118\pi\)
\(632\) −10.1780 + 37.9847i −0.404858 + 1.51095i
\(633\) −1.67806 0.449634i −0.0666968 0.0178714i
\(634\) −29.0445 7.78244i −1.15350 0.309080i
\(635\) 0 0
\(636\) −1.26171 2.18534i −0.0500299 0.0866544i
\(637\) −6.61359 −0.262040
\(638\) −0.719241 + 0.192720i −0.0284750 + 0.00762986i
\(639\) 6.22273i 0.246168i
\(640\) 0 0
\(641\) −11.7520 + 20.3550i −0.464175 + 0.803976i −0.999164 0.0408839i \(-0.986983\pi\)
0.534988 + 0.844859i \(0.320316\pi\)
\(642\) 7.81249 + 13.5316i 0.308334 + 0.534051i
\(643\) −24.3699 −0.961055 −0.480527 0.876980i \(-0.659555\pi\)
−0.480527 + 0.876980i \(0.659555\pi\)
\(644\) −5.12800 + 1.37404i −0.202072 + 0.0541449i
\(645\) 0 0
\(646\) −3.26619 + 0.875173i −0.128507 + 0.0344332i
\(647\) −35.9680 + 20.7661i −1.41405 + 0.816400i −0.995767 0.0919177i \(-0.970700\pi\)
−0.418280 + 0.908318i \(0.637367\pi\)
\(648\) −0.506586 + 0.292478i −0.0199006 + 0.0114896i
\(649\) −10.1160 + 2.71057i −0.397087 + 0.106399i
\(650\) 0 0
\(651\) −2.37394 + 0.636096i −0.0930422 + 0.0249306i
\(652\) 10.4117 0.407755
\(653\) −0.370684 0.642043i −0.0145060 0.0251251i 0.858681 0.512510i \(-0.171284\pi\)
−0.873187 + 0.487385i \(0.837951\pi\)
\(654\) −7.95475 + 13.7780i −0.311055 + 0.538763i
\(655\) 0 0
\(656\) 16.2212i 0.633331i
\(657\) −4.59319 + 1.23074i −0.179197 + 0.0480158i
\(658\) −4.70157 −0.183286
\(659\) −15.9185 27.5717i −0.620098 1.07404i −0.989467 0.144759i \(-0.953759\pi\)
0.369369 0.929283i \(-0.379574\pi\)
\(660\) 0 0
\(661\) 46.6955 + 12.5120i 1.81624 + 0.486661i 0.996312 0.0858000i \(-0.0273446\pi\)
0.819932 + 0.572461i \(0.194011\pi\)
\(662\) 10.6861 + 2.86334i 0.415329 + 0.111287i
\(663\) 0.551642 2.05876i 0.0214240 0.0799555i
\(664\) 7.07592 + 26.4077i 0.274599 + 1.02482i
\(665\) 0 0
\(666\) 3.05696 + 12.6418i 0.118455 + 0.489861i
\(667\) 1.10401 1.10401i 0.0427473 0.0427473i
\(668\) 7.65841 13.2648i 0.296313 0.513229i
\(669\) −10.3302 17.8925i −0.399390 0.691764i
\(670\) 0 0
\(671\) −5.38760 + 20.1068i −0.207986 + 0.776214i
\(672\) 6.55714 0.252947
\(673\) −4.43056 + 16.5351i −0.170785 + 0.637380i 0.826446 + 0.563016i \(0.190359\pi\)
−0.997231 + 0.0743635i \(0.976307\pi\)
\(674\) −15.9588 + 15.9588i −0.614710 + 0.614710i
\(675\) 0 0
\(676\) 7.57040 0.291169
\(677\) 31.1728 + 31.1728i 1.19807 + 1.19807i 0.974745 + 0.223322i \(0.0716902\pi\)
0.223322 + 0.974745i \(0.428310\pi\)
\(678\) 16.9006 4.52851i 0.649064 0.173916i
\(679\) 24.3331 + 6.52002i 0.933817 + 0.250216i
\(680\) 0 0
\(681\) −5.81408 21.6984i −0.222796 0.831486i
\(682\) 0.804309 + 3.00172i 0.0307986 + 0.114942i
\(683\) −31.9387 18.4398i −1.22210 0.705580i −0.256736 0.966482i \(-0.582647\pi\)
−0.965365 + 0.260901i \(0.915980\pi\)
\(684\) 0.779496 2.90912i 0.0298048 0.111233i
\(685\) 0 0
\(686\) −5.44250 20.3117i −0.207796 0.775503i
\(687\) −4.11424 + 1.10241i −0.156968 + 0.0420595i
\(688\) −9.83210 5.67657i −0.374845 0.216417i
\(689\) −3.63192 + 3.63192i −0.138365 + 0.138365i
\(690\) 0 0
\(691\) −0.520289 0.300389i −0.0197927 0.0114273i 0.490071 0.871683i \(-0.336971\pi\)
−0.509864 + 0.860255i \(0.670304\pi\)
\(692\) 0.414220 0.414220i 0.0157463 0.0157463i
\(693\) −4.18059 + 4.18059i −0.158807 + 0.158807i
\(694\) −5.86687 + 10.1617i −0.222703 + 0.385734i
\(695\) 0 0
\(696\) −0.960837 + 0.554740i −0.0364204 + 0.0210274i
\(697\) 10.3100i 0.390518i
\(698\) 8.99422 + 15.5785i 0.340436 + 0.589653i
\(699\) −2.91617 + 1.68365i −0.110300 + 0.0636816i
\(700\) 0 0
\(701\) −6.15868 + 1.65021i −0.232610 + 0.0623277i −0.373241 0.927734i \(-0.621754\pi\)
0.140631 + 0.990062i \(0.455087\pi\)
\(702\) −6.33115 6.33115i −0.238954 0.238954i
\(703\) −11.7057 7.14687i −0.441487 0.269549i
\(704\) 16.2781i 0.613505i
\(705\) 0 0
\(706\) −8.56315 + 4.94394i −0.322278 + 0.186067i
\(707\) −0.324407 + 1.21070i −0.0122006 + 0.0455332i
\(708\) −3.53920 + 2.04336i −0.133011 + 0.0767941i
\(709\) 0.102970 0.102970i 0.00386711 0.00386711i −0.705171 0.709038i \(-0.749130\pi\)
0.709038 + 0.705171i \(0.249130\pi\)
\(710\) 0 0
\(711\) −17.0049 17.0049i −0.637735 0.637735i
\(712\) 13.5442 + 50.5477i 0.507591 + 1.89436i
\(713\) −4.60752 4.60752i −0.172553 0.172553i
\(714\) 2.59025 0.0969378
\(715\) 0 0
\(716\) 4.28964 16.0091i 0.160311 0.598290i
\(717\) 20.9900i 0.783887i
\(718\) −5.60003 + 9.69954i −0.208991 + 0.361984i
\(719\) 15.6399 + 9.02972i 0.583271 + 0.336752i 0.762432 0.647068i \(-0.224005\pi\)
−0.179161 + 0.983820i \(0.557338\pi\)
\(720\) 0 0
\(721\) −7.55161 2.02345i −0.281237 0.0753571i
\(722\) 7.90402 + 13.6902i 0.294157 + 0.509495i
\(723\) −5.90379 + 10.2257i −0.219564 + 0.380297i
\(724\) −7.13191 + 12.3528i −0.265055 + 0.459089i
\(725\) 0 0
\(726\) 6.20222 + 6.20222i 0.230186 + 0.230186i
\(727\) 16.9712 9.79831i 0.629426 0.363399i −0.151104 0.988518i \(-0.548283\pi\)
0.780530 + 0.625119i \(0.214949\pi\)
\(728\) −1.98745 7.41727i −0.0736599 0.274902i
\(729\) 16.0130i 0.593073i
\(730\) 0 0
\(731\) 6.24916 + 3.60795i 0.231134 + 0.133445i
\(732\) 8.12287i 0.300230i
\(733\) −29.4663 7.89548i −1.08836 0.291626i −0.330346 0.943860i \(-0.607165\pi\)
−0.758018 + 0.652234i \(0.773832\pi\)
\(734\) −16.2868 16.2868i −0.601158 0.601158i
\(735\) 0 0
\(736\) 8.69240 + 15.0557i 0.320406 + 0.554960i
\(737\) 18.1774 + 4.87063i 0.669574 + 0.179412i
\(738\) 14.4608 + 8.34892i 0.532308 + 0.307328i
\(739\) −52.1459 −1.91822 −0.959110 0.283035i \(-0.908659\pi\)
−0.959110 + 0.283035i \(0.908659\pi\)
\(740\) 0 0
\(741\) 3.64006 0.133721
\(742\) −5.40584 3.12106i −0.198455 0.114578i
\(743\) 25.3141 + 6.78290i 0.928686 + 0.248841i 0.691294 0.722573i \(-0.257041\pi\)
0.237392 + 0.971414i \(0.423708\pi\)
\(744\) 2.31518 + 4.01001i 0.0848787 + 0.147014i
\(745\) 0 0
\(746\) −1.91199 1.91199i −0.0700030 0.0700030i
\(747\) −16.1494 4.32721i −0.590874 0.158324i
\(748\) 1.80119i 0.0658581i
\(749\) −18.4082 10.6280i −0.672621 0.388338i
\(750\) 0 0
\(751\) 53.1233i 1.93850i 0.246087 + 0.969248i \(0.420855\pi\)
−0.246087 + 0.969248i \(0.579145\pi\)
\(752\) 1.36199 + 5.08302i 0.0496667 + 0.185359i
\(753\) 8.77313 5.06517i 0.319711 0.184585i
\(754\) 0.418205 + 0.418205i 0.0152301 + 0.0152301i
\(755\) 0 0
\(756\) −2.99203 + 5.18235i −0.108819 + 0.188480i
\(757\) 7.47044 12.9392i 0.271518 0.470282i −0.697733 0.716358i \(-0.745808\pi\)
0.969251 + 0.246075i \(0.0791411\pi\)
\(758\) −9.44324 16.3562i −0.342994 0.594083i
\(759\) 8.99041 + 2.40897i 0.326331 + 0.0874402i
\(760\) 0 0
\(761\) −33.1931 19.1641i −1.20325 0.694697i −0.241974 0.970283i \(-0.577795\pi\)
−0.961277 + 0.275586i \(0.911128\pi\)
\(762\) −3.07157 + 5.32011i −0.111271 + 0.192727i
\(763\) 21.6430i 0.783530i
\(764\) −3.25689 + 12.1549i −0.117830 + 0.439749i
\(765\) 0 0
\(766\) −10.2315 −0.369679
\(767\) 5.88197 + 5.88197i 0.212385 + 0.212385i
\(768\) −4.00407 14.9434i −0.144485 0.539224i
\(769\) 22.4800 + 22.4800i 0.810650 + 0.810650i 0.984731 0.174081i \(-0.0556955\pi\)
−0.174081 + 0.984731i \(0.555696\pi\)
\(770\) 0 0
\(771\) 0.264559 0.264559i 0.00952786 0.00952786i
\(772\) 10.5669 6.10080i 0.380311 0.219573i
\(773\) −7.93815 + 29.6256i −0.285515 + 1.06556i 0.662947 + 0.748667i \(0.269306\pi\)
−0.948462 + 0.316891i \(0.897361\pi\)
\(774\) 10.1210 5.84337i 0.363792 0.210036i
\(775\) 0 0
\(776\) 47.4615i 1.70377i
\(777\) 7.24437 + 7.60896i 0.259890 + 0.272970i
\(778\) 9.53005 + 9.53005i 0.341669 + 0.341669i
\(779\) −17.0078 + 4.55724i −0.609369 + 0.163280i
\(780\) 0 0
\(781\) −5.50429 + 3.17790i −0.196959 + 0.113714i
\(782\) 3.43375 + 5.94742i 0.122790 + 0.212679i
\(783\) 1.75986i 0.0628922i
\(784\) −7.79085 + 4.49805i −0.278245 + 0.160645i
\(785\) 0 0
\(786\) 1.91248 3.31251i 0.0682159 0.118153i
\(787\) 17.9843 17.9843i 0.641072 0.641072i −0.309747 0.950819i \(-0.600244\pi\)
0.950819 + 0.309747i \(0.100244\pi\)
\(788\) 4.47398 4.47398i 0.159379 0.159379i
\(789\) 18.4737 + 10.6658i 0.657681 + 0.379712i
\(790\) 0 0
\(791\) −16.8308 + 16.8308i −0.598435 + 0.598435i
\(792\) 9.64653 + 5.56943i 0.342775 + 0.197901i
\(793\) 15.9704 4.27926i 0.567126 0.151961i
\(794\) −0.675939 2.52264i −0.0239882 0.0895251i
\(795\) 0 0
\(796\) −1.97684 + 7.37767i −0.0700672 + 0.261494i
\(797\) −24.4236 14.1009i −0.865127 0.499481i 0.000599033 1.00000i \(-0.499809\pi\)
−0.865726 + 0.500519i \(0.833143\pi\)
\(798\) 1.14495 + 4.27301i 0.0405307 + 0.151263i
\(799\) −0.865665 3.23070i −0.0306250 0.114294i
\(800\) 0 0
\(801\) −30.9119 8.28283i −1.09222 0.292659i
\(802\) −26.3327 + 7.05582i −0.929839 + 0.249150i
\(803\) 3.43435 + 3.43435i 0.121196 + 0.121196i
\(804\) 7.34343 0.258983
\(805\) 0 0
\(806\) 1.74536 1.74536i 0.0614777 0.0614777i
\(807\) 1.77837 6.63697i 0.0626017 0.233633i
\(808\) 2.36147 0.0830763
\(809\) −0.812619 + 3.03273i −0.0285701 + 0.106625i −0.978739 0.205112i \(-0.934244\pi\)
0.950168 + 0.311737i \(0.100911\pi\)
\(810\) 0 0
\(811\) −10.5095 18.2030i −0.369038 0.639192i 0.620377 0.784303i \(-0.286979\pi\)
−0.989415 + 0.145111i \(0.953646\pi\)
\(812\) 0.197639 0.342321i 0.00693577 0.0120131i
\(813\) 3.18365 3.18365i 0.111655 0.111655i
\(814\) 9.62111 9.16011i 0.337220 0.321062i
\(815\) 0 0
\(816\) −0.750368 2.80041i −0.0262681 0.0980340i
\(817\) −3.18959 + 11.9037i −0.111590 + 0.416458i
\(818\) 28.2877 + 7.57966i 0.989056 + 0.265017i
\(819\) 4.53596 + 1.21541i 0.158499 + 0.0424697i
\(820\) 0 0
\(821\) 2.11926 + 3.67067i 0.0739627 + 0.128107i 0.900635 0.434577i \(-0.143102\pi\)
−0.826672 + 0.562684i \(0.809769\pi\)
\(822\) −25.9496 −0.905096
\(823\) −0.912687 + 0.244554i −0.0318143 + 0.00852461i −0.274691 0.961533i \(-0.588576\pi\)
0.242877 + 0.970057i \(0.421909\pi\)
\(824\) 14.7294i 0.513122i
\(825\) 0 0
\(826\) −5.05462 + 8.75486i −0.175873 + 0.304621i
\(827\) −11.9529 20.7030i −0.415642 0.719912i 0.579854 0.814720i \(-0.303110\pi\)
−0.995496 + 0.0948080i \(0.969776\pi\)
\(828\) −6.11671 −0.212570
\(829\) 2.51032 0.672639i 0.0871871 0.0233617i −0.214962 0.976622i \(-0.568963\pi\)
0.302149 + 0.953261i \(0.402296\pi\)
\(830\) 0 0
\(831\) 0.583280 0.156289i 0.0202338 0.00542162i
\(832\) −11.1972 + 6.46469i −0.388192 + 0.224123i
\(833\) 4.95177 2.85890i 0.171569 0.0990551i
\(834\) −20.8230 + 5.57951i −0.721041 + 0.193202i
\(835\) 0 0
\(836\) −2.97133 + 0.796165i −0.102766 + 0.0275360i
\(837\) −7.34470 −0.253870
\(838\) −19.0425 32.9826i −0.657812 1.13936i
\(839\) 18.2196 31.5573i 0.629012 1.08948i −0.358739 0.933438i \(-0.616793\pi\)
0.987750 0.156042i \(-0.0498736\pi\)
\(840\) 0 0
\(841\) 28.8838i 0.995991i
\(842\) 1.48092 0.396811i 0.0510358 0.0136750i
\(843\) −33.1205 −1.14073
\(844\) −0.583049 1.00987i −0.0200694 0.0347611i
\(845\) 0 0
\(846\) −5.23239 1.40201i −0.179893 0.0482022i
\(847\) −11.5257 3.08830i −0.396028 0.106115i
\(848\) −1.80827 + 6.74857i −0.0620964 + 0.231747i
\(849\) 0.168614 + 0.629276i 0.00578681 + 0.0215967i
\(850\) 0 0
\(851\) −7.86732 + 26.7204i −0.269688 + 0.915962i
\(852\) −1.75374 + 1.75374i −0.0600822 + 0.0600822i
\(853\) −12.9804 + 22.4827i −0.444440 + 0.769792i −0.998013 0.0630083i \(-0.979931\pi\)
0.553573 + 0.832800i \(0.313264\pi\)
\(854\) 10.0467 + 17.4014i 0.343791 + 0.595464i
\(855\) 0 0
\(856\) −10.3649 + 38.6824i −0.354265 + 1.32214i
\(857\) −40.2792 −1.37591 −0.687955 0.725753i \(-0.741491\pi\)
−0.687955 + 0.725753i \(0.741491\pi\)
\(858\) −0.912535 + 3.40563i −0.0311534 + 0.116266i
\(859\) −3.69657 + 3.69657i −0.126125 + 0.126125i −0.767352 0.641226i \(-0.778426\pi\)
0.641226 + 0.767352i \(0.278426\pi\)
\(860\) 0 0
\(861\) 13.4881 0.459672
\(862\) 10.1183 + 10.1183i 0.344630 + 0.344630i
\(863\) −6.85933 + 1.83795i −0.233494 + 0.0625646i −0.373669 0.927562i \(-0.621900\pi\)
0.140174 + 0.990127i \(0.455234\pi\)
\(864\) 18.9280 + 5.07175i 0.643944 + 0.172544i
\(865\) 0 0
\(866\) −5.70964 21.3087i −0.194021 0.724098i
\(867\) −4.17471 15.5802i −0.141780 0.529132i
\(868\) −1.42866 0.824838i −0.0484919 0.0279968i
\(869\) −6.35735 + 23.7259i −0.215658 + 0.804847i
\(870\) 0 0
\(871\) −3.86864 14.4380i −0.131084 0.489212i
\(872\) −39.3867 + 10.5536i −1.33380 + 0.357391i
\(873\) 25.1360 + 14.5123i 0.850726 + 0.491167i
\(874\) −8.29336 + 8.29336i −0.280527 + 0.280527i
\(875\) 0 0
\(876\) 1.64135 + 0.947633i 0.0554560 + 0.0320176i
\(877\) 26.8398 26.8398i 0.906315 0.906315i −0.0896576 0.995973i \(-0.528577\pi\)
0.995973 + 0.0896576i \(0.0285773\pi\)
\(878\) −24.8531 + 24.8531i −0.838750 + 0.838750i
\(879\) 5.22618 9.05201i 0.176275 0.305317i
\(880\) 0 0
\(881\) −3.79357 + 2.19022i −0.127809 + 0.0737904i −0.562541 0.826769i \(-0.690176\pi\)
0.434733 + 0.900560i \(0.356843\pi\)
\(882\) 9.26045i 0.311815i
\(883\) −29.2518 50.6657i −0.984402 1.70504i −0.644562 0.764552i \(-0.722960\pi\)
−0.339840 0.940483i \(-0.610373\pi\)
\(884\) 1.23898 0.715324i 0.0416713 0.0240590i
\(885\) 0 0
\(886\) 20.6420 5.53099i 0.693480 0.185817i
\(887\) 2.53298 + 2.53298i 0.0850491 + 0.0850491i 0.748351 0.663302i \(-0.230846\pi\)
−0.663302 + 0.748351i \(0.730846\pi\)
\(888\) 10.3145 16.8939i 0.346133 0.566921i
\(889\) 8.35702i 0.280286i
\(890\) 0 0
\(891\) −0.316423 + 0.182687i −0.0106006 + 0.00612024i
\(892\) 3.58929 13.3954i 0.120178 0.448511i
\(893\) 4.94688 2.85608i 0.165541 0.0955752i
\(894\) 14.3420 14.3420i 0.479668 0.479668i
\(895\) 0 0
\(896\) −2.33935 2.33935i −0.0781523 0.0781523i
\(897\) −1.91340 7.14090i −0.0638865 0.238428i
\(898\) −23.5686 23.5686i −0.786494 0.786494i
\(899\) 0.485155 0.0161808
\(900\) 0 0
\(901\) 1.14932 4.28931i 0.0382893 0.142898i
\(902\) 17.0549i 0.567867i
\(903\) 4.72012 8.17549i 0.157076 0.272063i
\(904\) 38.8364 + 22.4222i 1.29168 + 0.745752i
\(905\) 0 0
\(906\) −25.7939 6.91146i −0.856946 0.229618i
\(907\) −6.14134 10.6371i −0.203920 0.353200i 0.745868 0.666094i \(-0.232035\pi\)
−0.949788 + 0.312894i \(0.898702\pi\)
\(908\) 7.53922 13.0583i 0.250198 0.433355i
\(909\) −0.722067 + 1.25066i −0.0239495 + 0.0414817i
\(910\) 0 0
\(911\) −8.69751 8.69751i −0.288161 0.288161i 0.548191 0.836353i \(-0.315317\pi\)
−0.836353 + 0.548191i \(0.815317\pi\)
\(912\) 4.28801 2.47568i 0.141990 0.0819781i
\(913\) 4.41974 + 16.4947i 0.146272 + 0.545895i
\(914\) 7.28961i 0.241119i
\(915\) 0 0
\(916\) −2.47599 1.42951i −0.0818089 0.0472324i
\(917\) 5.20341i 0.171832i
\(918\) 7.47710 + 2.00348i 0.246781 + 0.0661248i
\(919\) −25.2847 25.2847i −0.834065 0.834065i 0.154005 0.988070i \(-0.450783\pi\)
−0.988070 + 0.154005i \(0.950783\pi\)
\(920\) 0 0
\(921\) 9.53382 + 16.5131i 0.314150 + 0.544124i
\(922\) −28.7436 7.70182i −0.946620 0.253646i
\(923\) 4.37194 + 2.52414i 0.143904 + 0.0830832i
\(924\) 2.35642 0.0775204
\(925\) 0 0
\(926\) −43.4081 −1.42648
\(927\) −7.80081 4.50380i −0.256212 0.147924i
\(928\) −1.25029 0.335015i −0.0410428 0.0109974i
\(929\) 6.26098 + 10.8443i 0.205416 + 0.355791i 0.950265 0.311442i \(-0.100812\pi\)
−0.744849 + 0.667233i \(0.767479\pi\)
\(930\) 0 0
\(931\) 6.90497 + 6.90497i 0.226301 + 0.226301i
\(932\) −2.18322 0.584992i −0.0715138 0.0191621i
\(933\) 25.7724i 0.843751i
\(934\) 13.2985 + 7.67791i 0.435141 + 0.251229i
\(935\) 0 0
\(936\) 8.84736i 0.289185i
\(937\) 3.17302 + 11.8419i 0.103658 + 0.386857i 0.998189 0.0601478i \(-0.0191572\pi\)
−0.894531 + 0.447005i \(0.852491\pi\)
\(938\) 15.7316 9.08266i 0.513656 0.296559i
\(939\) 0.692230 + 0.692230i 0.0225901 + 0.0225901i
\(940\) 0 0
\(941\) −13.7869 + 23.8796i −0.449440 + 0.778452i −0.998350 0.0574293i \(-0.981710\pi\)
0.548910 + 0.835881i \(0.315043\pi\)
\(942\) 3.12932 5.42015i 0.101959 0.176598i
\(943\) 17.8803 + 30.9696i 0.582264 + 1.00851i
\(944\) 10.9294 + 2.92853i 0.355723 + 0.0953157i
\(945\) 0 0
\(946\) −10.3375 5.96833i −0.336100 0.194047i
\(947\) −4.48370 + 7.76600i −0.145701 + 0.252361i −0.929634 0.368484i \(-0.879877\pi\)
0.783933 + 0.620845i \(0.213210\pi\)
\(948\) 9.58495i 0.311305i
\(949\) 0.998457 3.72629i 0.0324113 0.120961i
\(950\) 0 0
\(951\) −27.9848 −0.907469
\(952\) 4.69437 + 4.69437i 0.152145 + 0.152145i
\(953\) −9.63231 35.9483i −0.312021 1.16448i −0.926731 0.375725i \(-0.877394\pi\)
0.614710 0.788753i \(-0.289273\pi\)
\(954\) −5.08547 5.08547i −0.164648 0.164648i
\(955\) 0 0
\(956\) 9.96253 9.96253i 0.322211 0.322211i
\(957\) −0.600156 + 0.346500i −0.0194003 + 0.0112008i
\(958\) 0.530395 1.97946i 0.0171363 0.0639535i
\(959\) 30.5719 17.6507i 0.987219 0.569971i
\(960\) 0 0
\(961\) 28.9752i 0.934685i
\(962\) −10.1219 2.98019i −0.326342 0.0960852i
\(963\) −17.3173 17.3173i −0.558041 0.558041i
\(964\) −7.65555 + 2.05130i −0.246569 + 0.0660679i
\(965\) 0 0
\(966\) 7.78074 4.49221i 0.250341 0.144535i
\(967\) 28.0830 + 48.6411i 0.903087 + 1.56419i 0.823464 + 0.567368i \(0.192038\pi\)
0.0796228 + 0.996825i \(0.474628\pi\)
\(968\) 22.4808i 0.722561i
\(969\) −2.72541 + 1.57351i −0.0875526 + 0.0505485i
\(970\) 0 0
\(971\) −19.7612 + 34.2274i −0.634167 + 1.09841i 0.352523 + 0.935803i \(0.385324\pi\)
−0.986691 + 0.162607i \(0.948010\pi\)
\(972\) −7.87086 + 7.87086i −0.252458 + 0.252458i
\(973\) 20.7370 20.7370i 0.664798 0.664798i
\(974\) 4.63033 + 2.67332i 0.148365 + 0.0856588i
\(975\) 0 0
\(976\) 15.9028 15.9028i 0.509037 0.509037i
\(977\) −5.20188 3.00331i −0.166423 0.0960843i 0.414475 0.910061i \(-0.363965\pi\)
−0.580898 + 0.813976i \(0.697298\pi\)
\(978\) −17.0197 + 4.56042i −0.544231 + 0.145826i
\(979\) 8.45996 + 31.5730i 0.270381 + 1.00908i
\(980\) 0 0
\(981\) 6.45397 24.0866i 0.206060 0.769025i
\(982\) −22.0038 12.7039i −0.702169 0.405398i
\(983\) −6.19133 23.1064i −0.197473 0.736979i −0.991613 0.129244i \(-0.958745\pi\)
0.794140 0.607735i \(-0.207922\pi\)
\(984\) −6.57710 24.5461i −0.209670 0.782501i
\(985\) 0 0
\(986\) −0.493901 0.132340i −0.0157290 0.00421457i
\(987\) −4.22658 + 1.13251i −0.134534 + 0.0360482i
\(988\) 1.72769 + 1.72769i 0.0549651 + 0.0549651i
\(989\) 25.0287 0.795867
\(990\) 0 0
\(991\) 18.5888 18.5888i 0.590492 0.590492i −0.347272 0.937764i \(-0.612892\pi\)
0.937764 + 0.347272i \(0.112892\pi\)
\(992\) −1.39817 + 5.21804i −0.0443919 + 0.165673i
\(993\) 10.2963 0.326742
\(994\) −1.58789 + 5.92610i −0.0503649 + 0.187964i
\(995\) 0 0
\(996\) 3.33182 + 5.77087i 0.105573 + 0.182857i
\(997\) −25.8150 + 44.7129i −0.817569 + 1.41607i 0.0898999 + 0.995951i \(0.471345\pi\)
−0.907469 + 0.420120i \(0.861988\pi\)
\(998\) −12.5670 + 12.5670i −0.397800 + 0.397800i
\(999\) 15.0265 + 27.5675i 0.475417 + 0.872198i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 925.2.y.b.393.6 68
5.2 odd 4 925.2.t.b.282.12 68
5.3 odd 4 185.2.p.a.97.6 68
5.4 even 2 185.2.u.a.23.12 yes 68
37.29 odd 12 925.2.t.b.843.12 68
185.29 odd 12 185.2.p.a.103.6 yes 68
185.103 even 12 185.2.u.a.177.12 yes 68
185.177 even 12 inner 925.2.y.b.732.6 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
185.2.p.a.97.6 68 5.3 odd 4
185.2.p.a.103.6 yes 68 185.29 odd 12
185.2.u.a.23.12 yes 68 5.4 even 2
185.2.u.a.177.12 yes 68 185.103 even 12
925.2.t.b.282.12 68 5.2 odd 4
925.2.t.b.843.12 68 37.29 odd 12
925.2.y.b.393.6 68 1.1 even 1 trivial
925.2.y.b.732.6 68 185.177 even 12 inner