gp: [N,k,chi] = [925,2,Mod(193,925)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("925.193");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(925, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([9, 1]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [68]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{68} - 6 T_{2}^{67} - 31 T_{2}^{66} + 258 T_{2}^{65} + 492 T_{2}^{64} - 6174 T_{2}^{63} + \cdots + 11881 \)
T2^68 - 6*T2^67 - 31*T2^66 + 258*T2^65 + 492*T2^64 - 6174*T2^63 - 3669*T2^62 + 101796*T2^61 - 14565*T2^60 - 1276350*T2^59 + 837160*T2^58 + 12742896*T2^57 - 13455937*T2^56 - 104319858*T2^55 + 146117755*T2^54 + 712061670*T2^53 - 1225965624*T2^52 - 4097385402*T2^51 + 8373695333*T2^50 + 19984232394*T2^49 - 47753636633*T2^48 - 82795056072*T2^47 + 230799496936*T2^46 + 290753186394*T2^45 - 953530501886*T2^44 - 860209400928*T2^43 + 3386301469394*T2^42 + 2114916217650*T2^41 - 10368256721526*T2^40 - 4205059474374*T2^39 + 27417384448312*T2^38 + 6322526786136*T2^37 - 62624360242927*T2^36 - 5639970043548*T2^35 + 123452897866237*T2^34 - 2899391114892*T2^33 - 209519995056786*T2^32 + 24190878855570*T2^31 + 304992938293839*T2^30 - 58192400356542*T2^29 - 378473542295505*T2^28 + 96032771509788*T2^27 + 397092223330080*T2^26 - 122688524399688*T2^25 - 347940560129042*T2^24 + 125724859292442*T2^23 + 250520960330512*T2^22 - 104501503979214*T2^21 - 144536663529208*T2^20 + 69997507789206*T2^19 + 64535387888346*T2^18 - 37151512900986*T2^17 - 20810513648938*T2^16 + 15025427757648*T2^15 + 4259501686130*T2^14 - 4426084428132*T2^13 - 272174242472*T2^12 + 846290876436*T2^11 - 72112142572*T2^10 - 108961641408*T2^9 + 27601220450*T2^8 + 5378609424*T2^7 - 2884193438*T2^6 + 29962146*T2^5 + 198659527*T2^4 - 52878150*T2^3 + 6614895*T2^2 - 428370*T2 + 11881
acting on \(S_{2}^{\mathrm{new}}(925, [\chi])\).